Beechwood carbohydrates for enzymatic synthesis of sustainable glycolipids

Sascha Siebenhaller , Tatjana Hajek , Claudia Muhle-Goll , Miriam Himmelsbach , Burkhard Luy , Frank Kirschhöfer , Gerald Brenner-Weiß , Thomas Hahn , Susanne Zibek , Christoph Syldatk

Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 25

PDF
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 25 DOI: 10.1186/s40643-017-0155-7
Research

Beechwood carbohydrates for enzymatic synthesis of sustainable glycolipids

Author information +
History +
PDF

Abstract

Moving away from crude oil to renewable resources for the production of a wide range of compounds is a challenge for future generations. To overcome this, the use of lignocellulose as substrate can contribute to drastically reduce the consumption of crude oil. In this study, sugars from lignocellulose were used as a starting material for the enzymatic synthesis of surface-active sugar esters. The substrates were obtained by an acid-catalyzed, beechwood pretreatment process, which resulted in a fiber fraction that is subsequently hydrolyzed to obtain the monosaccharides. After purification and drying, this glucose- and xylose-rich fraction was used to create a deep eutectic solvent, which acts both as solvent and substrate for the lipase-catalyzed reaction at the same time. Finally, the successful synthesis of glycolipids from a sustainable resource was confirmed by ESI–Q–ToF mass spectrometry and multidimensional NMR experiments. Moreover, conversion yields of 4.8% were determined by LC–MS/MS.

Keywords

Deep eutectic solvents / Glycolipid synthesis / Lignocellulose / Lipase / Transesterification

Cite this article

Download citation ▾
Sascha Siebenhaller, Tatjana Hajek, Claudia Muhle-Goll, Miriam Himmelsbach, Burkhard Luy, Frank Kirschhöfer, Gerald Brenner-Weiß, Thomas Hahn, Susanne Zibek, Christoph Syldatk. Beechwood carbohydrates for enzymatic synthesis of sustainable glycolipids. Bioresources and Bioprocessing, 2017, 4(1): 25 DOI:10.1186/s40643-017-0155-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures. Chem Commun, 2002, 99: 70-71.

[2]

Abbott AP, Boothby D, Capper G, Davies DL, Rasheed R. Deep eutectic solvents formed between choline chloride and carboxylic acids. J Am Chem Soc, 2004, 126: 9142.

[3]

Amos JA, Bernabc M, Otero C. Quantitative enzymatic production of 1, 6 = diacyl fructofuranoses. Enzyme Microb Technol, 1998, 22: 27-35.

[4]

Banat IM, Makkar RS, Cameotra SS. Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol, 2000, 53: 495-508.

[5]

Buchholz J, Schwentner A, Brunnenkan B, Gabris C, Grimm S, Gerstmeir R, Takors R, Eikmanns BJ, Blombacha B. Platform engineering of corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of l-lysine, l-valine, and 2-ketoisovalerate. Appl Environ Microbiol, 2013, 79: 5566-5575.

[6]

Cameotra SS, Makkar RS. Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol, 1998, 50: 520-529.

[7]

Carriazo D, Serrano MC, Gutiérrez MC, Ferrer ML, del Monte F. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem Soc Rev, 2012, 41: 4996-5014.

[8]

Castillo E, Pezzotti F, Navarro A, López-Munguía A. Lipase-catalyzed synthesis of xylitol monoesters: solvent engineering approach. J Biotechnol, 2003, 102: 251-259.

[9]

Chang SW, Shaw JF. Biocatalysis for the production of carbohydrate esters. N Biotechnol, 2009, 26: 109-116.

[10]

Ducret A, Giroux A, Trani M, Lortie R. Characterization of enzymatically prepared biosurfactants. J Am Oil Chem Soc, 1996, 73: 109-113.

[11]

Durand E, Lecomte J, Baréa B, Piombo G, Dubreucq E, Villeneuve P. Evaluation of deep eutectic solvents as new media for <i> Candida antarctica </i> B catalyzed reactions. Process Biochem, 2012, 47: 2081-2089.

[12]

Durand E, Lecomte J, Baréa B, Dubreucq E, Lortie R, Villeneuve P. Evaluation of deep eutectic solvent–water binary mixtures for lipase-catalyzed lipophilization of phenolic acids. Green Chem, 2013, 15: 2275.

[13]

Enthart A, Freudenberger JC, Furrer J, Kessler H, Luy B. The CLIP/CLAP-HSQC: pure absorptive spectra for the measurement of one-bond couplings. J Magn Reson, 2008, 192: 314-322.

[14]

Guajardo N, Domínguez de María HP, Ahumada K, Schrebler RA, Ramírez-Tagle R, Crespo F, Carlesi C. Water as cosolvent: nonviscous deep eutectic solvents for efficient lipase-catalyzed esterifications. ChemCatChem, 2017

[15]

Hayyan A, Mjalli FS, AlNashef IM, Al-Wahaibi YM, Al-Wahaibi T, Hashim MA. Glucose-based deep eutectic solvents: physical properties. J Mol Liq, 2013, 178: 137-141.

[16]

Herrera S. Bonkers about biofuels. Nat Biotechnol, 2006, 24: 755-760.

[17]

Howard RL, Abotsi E, Van Rensburg EJ, Howard S. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol, 2003, 2: 602-619.

[18]

Jørgensen H, Kristensen JB, Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefining, 2007, 1: 119-134.

[19]

Kitagawa M, Fan H, Raku T, Shibatani S, Maekawa Y, Hiraguri Y, Kurane R, Tokiwa Y. Selective enzymatic preparation of vinyl sugar esters using DMSO as a denaturing co-solvent. Biotechnol Lett, 1999, 21: 355-359.

[20]

Klibanov AM. Enzymatic catalysis in anhydrous organic solvents. Trends Biochem Sci, 1989, 14: 141-144.

[21]

Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess, 2017, 4: 7.

[22]

Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res, 2009, 48: 3713-3729.

[23]

Laure S, Leschinsky M, Fröhling M, Schultmann F, Unkelbach G. Assessment of an organosolv lignocellulose biorefinery concept based on a material flow analysis of a pilot plant. Cell Chem Technol, 2014, 48: 793-798.

[24]

Ludwig D, Amann M, Hirth T, Rupp S, Zibek S. Development and optimization of single and combined detoxification processes to improve the fermentability of lignocellulose hydrolyzates. Bioresour Technol, 2013, 133: 455-461.

[25]

Marchant R, Banat IM. Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol, 2012, 30: 558-565.

[26]

Nigam JN. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol, 2001, 87: 17-27.

[27]

Olsson L, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol, 1996, 18: 312-331.

[28]

Pan X, Xie D, Yu RW, Saddler JN. The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnol Bioeng, 2008, 101: 39-48.

[29]

Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J, 2008, 54: 559-568.

[30]

Plou FJ, Cruces MA, Ferrer M, Fuentes G, Pastor E, Bernabé M, Christensen M, Comelles F, Parra JL, Ballesteros A. Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent. J Biotechnol, 2002, 96: 55-66.

[31]

Pöhnlein M, Ulrich J, Kirschhöfer F, Nusser M, Muhle-Goll C, Kannengiesser B, Brenner-Weiß G, Luy B, Liese A, Syldatk C, Hausmann R. Lipase-catalyzed synthesis of glucose-6-O-hexanoate in deep eutectic solvents. Eur J Lipid Sci Technol, 2015, 117: 161-166.

[32]

Rubin EM, Himmel ME, Ding S, Johnson DK, Adney WS. Biomass Recalcitrance. Nature, 2007, 454: 804-807.

[33]

Šabeder S, Habulin M, Knez Ž. Lipase-catalyzed synthesis of fatty acid fructose esters. J Food Eng, 2006, 77: 880-886.

[34]

Siebenhaller S, Muhle-Goll C, Burkhard L, Kirschhöfer F, Brenner-Weiss G, Hiller E, Günther M, Rupp S, Zibek S, Syldatk C (2017) Sustainable enzymatic synthesis of glycolipids in a deep eutectic solvent system. J Mol Catal B Enzym. 1–14. doi:10.1016/j.molcatb.2017.01.015

[35]

Tang B, Row KH. Recent developments in deep eutectic solvents in chemical sciences. Mon fur Chem, 2013, 144: 1427-1454.

[36]

Tarahomjoo S, Alemzadeh I. Surfactant production by an enzymatic method. Enzyme Microb Technol, 2003, 33: 33-37.

[37]

Wyman C. Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ, 1999, 24: 189-226.

[38]

Zaks A, Klibanov AM. Enzyme-catalyzed processes in organic solvents. Proc Natl Acad Sci USA, 1985, 82: 3192-3196.

[39]

Zhang Q, De Oliveira Vigier K, Royer S, Jérôme F. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev, 2012, 41: 7108-7146.

[40]

Zhao X, Cheng K, Liu D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol, 2009, 82: 815-827.

[41]

Zhao H, Zhang C, Crittle TD. Choline-based deep eutectic solvents for enzymatic preparation of biodiesel from soybean oil. J Mol Catal B Enzym, 2013, 85–86: 243-247.

Funding

Ministry of Science, Research and the Arts of Baden-Württemberg(Az: 7533-10-5-85a)

Deutsche Forschungsgemeinschaft(LU835/6-2)

Helmholtz-Gemeinschaft(BIFTM)

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/