Recent progress on deep eutectic solvents in biocatalysis

Pei Xu , Gao-Wei Zheng , Min-Hua Zong , Ning Li , Wen-Yong Lou

Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 34

PDF
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 34 DOI: 10.1186/s40643-017-0165-5
Review

Recent progress on deep eutectic solvents in biocatalysis

Author information +
History +
PDF

Abstract

Deep eutectic solvents (DESs) are eutectic mixtures of salts and hydrogen bond donors with melting points low enough to be used as solvents. DESs have proved to be a good alternative to traditional organic solvents and ionic liquids (ILs) in many biocatalytic processes. Apart from the benign characteristics similar to those of ILs (e.g., low volatility, low inflammability and low melting point), DESs have their unique merits of easy preparation and low cost owing to their renewable and available raw materials. To better apply such solvents in green and sustainable chemistry, this review firstly describes some basic properties, mainly the toxicity and biodegradability of DESs. Secondly, it presents several valuable applications of DES as solvent/co-solvent in biocatalytic reactions, such as lipase-catalyzed transesterification and ester hydrolysis reactions. The roles, serving as extractive reagent for an enzymatic product and pretreatment solvent of enzymatic biomass hydrolysis, are also discussed. Further understanding how DESs affect biocatalytic reaction will facilitate the design of novel solvents and contribute to the discovery of new reactions in these solvents.

Keywords

Deep eutectic solvents / Biocatalysis / Catalysts / Biodegradability / Influence

Cite this article

Download citation ▾
Pei Xu, Gao-Wei Zheng, Min-Hua Zong, Ning Li, Wen-Yong Lou. Recent progress on deep eutectic solvents in biocatalysis. Bioresources and Bioprocessing, 2017, 4(1): 34 DOI:10.1186/s40643-017-0165-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

(1992D) OECD 301D Guidelines for testing of chemicals closed bottle test. Organisation of economic cooperation and development, Paris

[2]

Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Commun, 2001, 19: 2010-2011.

[3]

Abbott AP, Harris RC, Ryder KS, D’Agostino C, Gladden LF, Mantle MD. Glycerol eutectics as sustainable solvent systems. Green Chem, 2011, 13(1): 82-90.

[4]

Anastas P, Eghbali N. Green chemistry: principles and practice. Chem Soc Rev, 2010, 39(1): 301-312.

[5]

Anastas PT, Warner JC (1998) Principles of green chemistry. green chemistry: theory and practice, Oxford University Press, New York

[6]

Atilhan M, Aparicio S. Deep eutectic solvents on the surface of face centered cubic metals. J Phys Chem C, 2016, 120(19): 10400-10409.

[7]

Attri P, Venkatesu P, Kumar A, Byrne N. A protic ionic liquid attenuates the deleterious actions of urea on alpha-chymotrypsin. Phys Chem Chem Phys, 2011, 13(38): 17023-17026.

[8]

Blahušiak M, Schlosser Š, Marták J. Extraction of butyric acid with a solvent containing ammonium ionic liquid. Sep Purif Technol, 2013, 119: 102-111.

[9]

Bommarius AS, Paye MF. Stabilizing biocatalysts. Chem Soc Rev, 2013, 42(15): 6534-6565.

[10]

Cao SL, Xu H, Li XH, Lou WY, Zong MH. Papain@magnetic nanocrystalline cellulose nanobiocatalyst: a highly efficient biocatalyst for dipeptide biosynthesis in deep eutectic solvents. ACS Sustain Chem Eng, 2015, 3(7): 1589-1599.

[11]

Cao SL, Deng X, Xu P, Huang ZX, Zhou J, Li X, Zong M, Lou W. Highly efficient enzymatic acylation of dihydromyricetin by the immobilized lipase with deep eutectic solvents as co-solvent. J Agric Food Chem, 2017, 65(10): 2084-2088.

[12]

Carriazo D, Serrano MC, Gutierrez MC, Ferrer ML, del Monte F. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem Soc Rev, 2012, 41(14): 4996-5014.

[13]

Chen FF, Liu YY, Zheng GW, Xu JH. Asymmetric amination of secondary alcohols by using a redox-neutral two-enzyme cascade. ChemCatChem, 2015, 7(23): 3838-3841.

[14]

Cheng QB, Zhang LW. Highly efficient enzymatic preparation of daidzein in deep eutectic solvents. Molecules, 2017, 22(1): 186.

[15]

Choi YH, van Spronsen J, Dai YT, Verberne M, Hollmann F, Arends I, Witkamp GJ, Verpoorte R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology?. Plant Physiol, 2011, 156(4): 1701-1705.

[16]

Cvjetko Bubalo M, Ćurko N, Tomašević M, Kovačević Ganić K, Radojčić Redovniković I. Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem, 2016, 200: 159-166.

[17]

Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH. Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta, 2013, 766: 61-68.

[18]

Dai YT, Witkamp GJ, Verpoorte R, Choi YH. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal Chem, 2013, 85(13): 6272-6278.

[19]

Dai Y, Huan B, Zhang HS, He YC. Effective biotransformation of ethyl 4-chloro-3-oxobutanoate into ethyl (S)-4-chloro-3-hydroxybutanoate by recombinant E-coli CCZU-T15 whole cells in ChCl Gly-water media. Appl Biochem Biotechnol, 2017, 181(4): 1347-1359.

[20]

Daneshjou S, Khodaverdian S, Dabirmanesh B, Rahimi F, Daneshjoo S, Ghazi F, Khajeh K. Improvement of chondroitinases ABCI stability in natural deep eutectic solvents. J Mol Liq, 2017, 227: 21-25.

[21]

Dennewald D, Weuster-Botz D. Ionic liquids and whole-cell–catalyzed processes ionic liquids in biotransformations and organocatalysis, 2012, New York: Wiley, 261-314.

[22]

Durand E, Lecomte J, Baréa B, Piombo G, Dubreucq E, Villeneuve P. Evaluation of deep eutectic solvents as new media for Candida antarctica B lipase catalyzed reactions. Process Biochem, 2012, 47(12): 2081-2089.

[23]

Durand E, Lecomte J, Barea B, Dubreucq E, Lortie R, Villeneuve P. Evaluation of deep eutectic solvent–water binary mixtures for lipase-catalyzed lipophilization of phenolic acids. Green Chem, 2013, 15(8): 2275-2282.

[24]

Durand E, Lecomte J, Barea B, Villeneuve P. Towards a better understanding of how to improve lipase-catalyzed reactions using deep eutectic solvents based on choline chloride. Eur J Lipid Sci Technol, 2014, 116(1): 16-23.

[25]

Esquembre R, Sanz JM, Wall JG, del Monte F, Mateo CR, Ferrer ML. Thermal unfolding and refolding of lysozyme in deep eutectic solvents and their aqueous dilutions. Phys Chem Chem Phys, 2013, 15(27): 11248-11256.

[26]

Gangu SA, Weatherley LR, Scurto AM. Whole-cell biocatalysis with ionic liquids. Curr Org Chem, 2009, 13(13): 1242-1258.

[27]

Garcia G, Aparicio S, Ullah R, Atilhan M. Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels, 2015, 29(4): 2616-2644.

[28]

Gonzalez-Martinez D, Gotor V, Gotor-Fernandez V. Application of deep eutectic solvents in promiscuous lipase-catalysed aldol reactions. Eur J Org Chem, 2016, 8: 1513-1519.

[29]

Gorke JT, Srienc F, Kazlauskas RJ. Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem Commun, 2008, 10: 1235-1237.

[30]

Guajardo N, Domínguez de María P, Ahumada K, Schrebler RA, Ramírez-Tagle R, Crespo FA, Carlesi C. Water as cosolvent: non viscous deep eutectic solvents for efficient lipase-catalyzed esterifications. ChemCatChem, 2017, 9(8): 1393-1396.

[31]

Guan Z, Li LY, He YH. Hydrolase-catalyzed asymmetric carbon-carbon bond formation in organic synthesis. RSC Adv, 2015, 5(22): 16801-16814.

[32]

Hallett JP, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev, 2011, 111(5): 3508-3576.

[33]

Hammond OS, Bowron DT, Edler KJ. Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling. Green Chem, 2016, 18(9): 2736-2744.

[34]

Harifi-Mood AR, Ghobadi R, Divsalar A. The effect of deep eutectic solvents on catalytic function and structure of bovine liver catalase. Int J Biol Macromol, 2017, 95: 115-120.

[35]

Hayyan M, Hashim MA, Al-Saadi MA, Hayyan A, AlNashef IM, Mirghani MES. Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere, 2013, 93(2): 455-459.

[36]

Hayyan M, Hashim MA, Hayyan A, Al-Saadi MA, AlNashef IM, Mirghani MES, Saheed OK. Are deep eutectic solvents benign or toxic?. Chemosphere, 2013, 90(7): 2193-2195.

[37]

Hayyan M, Looi CY, Hayyan A, Wong WF, Hashim MA. In vitro and in vivo toxicity profiling of ammonium-based deep eutectic solvents. PLoS ONE, 2015, 10(2): e0117934.

[38]

Hayyan M, Mbous YP, Looi CY, Wong WF, Hayyan A, Salleh Z, Mohd-Ali O. Natural deep eutectic solvents: cytotoxic profile. Springerplus, 2016, 5: 913.

[39]

Hummel W, Gröger H. Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems. J Biotechnol, 2014, 191: 22-31.

[40]

Juneidi I, Hayyan M, Hashim MA. Evaluation of toxicity and biodegradability for cholinium-based deep eutectic solvents. RSC Adv, 2015, 5(102): 83636-83647.

[41]

Juneidi I, Hayyan M, Ali OM. Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish. Environ Sci Pollut R, 2016, 23(8): 7648-7659.

[42]

Juneidi I, Hayyan M, Hashim MA, Hayyan A. Pure and aqueous deep eutectic solvents for a lipase-catalysed hydrolysis reaction. Biochem Eng J, 2017, 117((Part A)): 129-138.

[43]

Kim SH, Park S, Yu H, Kim JH, Kim HJ, Yang YH, Kim YH, Kim KJ, Kan E, Lee SH. Effect of deep eutectic solvent mixtures on lipase activity and stability. J Mol Catal B-Enzym, 2016, 128: 65-72.

[44]

Kleiner B, Schörken U. Native lipase dissolved in hydrophilic green solvents: a versatile 2-phase reaction system for high yield ester synthesis. Eur J Lipid Sci Technol, 2015, 117(2): 167-177.

[45]

Kleiner B, Fleischer P, Schörken U. Biocatalytic synthesis of biodiesel utilizing deep eutectic solvents: a two-step-one-pot approach with free lipases suitable for acidic and used oil processing. Process Biochem, 2016, 51(11): 1808-1816.

[46]

Krystof M, Perez-Sanchez M, de Maria PD. Lipase-catalyzed (Trans)esterification of 5-hydroxy-methylfurfural and separation from HMF esters using deep-eutectic solvents. Chemsuschem, 2013, 6(4): 630-634.

[47]

Lindberg D, Revenga MD, Widersten M. Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis. J Biotechnol, 2010, 147(3–4): 169-171.

[48]

Marták J, Schlosser Š. New mechanism and model of butyric acid extraction by phosphonium ionic liquid. J Chem Eng Data, 2016, 61(9): 2979-2996.

[49]

Maugeri Z, de Maria PD. Whole-cell biocatalysis in deep-eutectic-solvents/aqueous mixtures. Chemcatchem, 2014, 6(6): 1535-1537.

[50]

Maugeri Z, Domínguez de María P. Benzaldehyde lyase (BAL)-catalyzed enantioselective CC bond formation in deep-eutectic-solvents–buffer mixtures. J Mol Catal B Enzym, 2014, 107: 120-123.

[51]

Maugeri Z, Leitner W, Domínguez de María P. Chymotrypsin-catalyzed peptide synthesis in deep eutectic solvents. Eur J Org Chem, 2013, 20: 4223-4228.

[52]

Mbous YP, Hayyan M, Wong WF, Looi CY, Hashim MA. Unraveling the cytotoxicity and metabolic pathways of binary natural deep eutectic solvent systems. Sci Rep, 2017, 7: 41257.

[53]

Monhemi H, Housaindokht MR, Moosavi-Movahedi AA, Bozorgmehr MR. How a protein can remain stable in a solvent with high content of urea: insights from molecular dynamics simulation of Candida antarctica lipase B in urea: choline chloride deep eutectic solvent. Phys Chem Chem Phys, 2014, 16(28): 14882-14893.

[54]

Muller CR, Lavandera I, Gotor-Fernandez V, de Maria P. Performance of recombinant-whole-cell-catalyzed reductions in deep-eutectic-solvent–aqueous-media mixtures. Chemcatchem, 2015, 7(17): 2654-2659.

[55]

Ni Y, Xu JH. Biocatalytic ketone reduction: a green and efficient access to enantiopure alcohols. Biotechnol Adv, 2012, 30(6): 1279-1288.

[56]

Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC. Natural deep eutectic solvents –solvents for the 21st century. ACS Sustain Chem Eng, 2014, 2(5): 1063-1071.

[57]

Pant PL, Shankarling GS. Deep eutectic solvent/lipase: two environmentally benign and recyclable media for efficient synthesis of N-aryl amines. Catal Lett, 2017, 147(6): 1371-1378.

[58]

Papadopoulou AA, Efstathiadou E, Patila M, Polydera AC, Stamatis H. Deep eutectic solvents as media for peroxidation reactions catalyzed by heme-dependent biocatalysts. Ind Eng Chem Res, 2016, 55(18): 5145-5151.

[59]

Peters C, Rudroff F, Mihovilovic MD, Bornscheuer U. Fusion proteins of an enoate reductase and a Baeyer-Villiger monooxygenase facilitate the synthesis of chiral lactones. Biol Chem, 2017, 398(1): 31-37.

[60]

Petkovic M, Hartmann DO, Adamova G, Seddon KR, Rebelo LPN, Pereira CS. Unravelling the mechanism of toxicity of alkyltributylphosphonium chlorides in Aspergillus nidulans conidia. New J Chem, 2012, 36(1): 56-63.

[61]

Pöhnlein M, Ulrich J, Kirschhöfer F, Nusser M, Muhle-Goll C, Kannengiesser B, Brenner-Weiß G, Luy B, Liese A, Syldatk C, Hausmann R. Lipase-catalyzed synthesis of glucose-6-O-hexanoate in deep eutectic solvents. Eur J Lipid Sci Technol, 2015, 117(2): 161-166.

[62]

Potdar MK, Kelso GF, Schwarz L, Zhang CF, Hearn MTW. Recent developments in chemical synthesis with biocatalysts in ionic liquids. Molecules, 2015, 20(9): 16788-16816.

[63]

Procentese A, Johnson E, Orr V, Campanile AG, Wood JA, Marzocchella A, Rehmann L. Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour Technol, 2015, 192: 31-36.

[64]

Qin YZ, Li YM, Zong MH, Wu H, Li N. Enzyme-catalyzed selective oxidation of 5-hydroxymethylfurfural (HMF) and separation of HMF and 2,5-diformylfuran using deep eutectic solvents. Green Chem, 2015, 17(7): 3718-3722.

[65]

Radosevic K, Bubalo MC, Srcek VG, Grgas D, Dragicevic TL, Redovnikovic IR. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol Environ Saf, 2015, 112: 46-53.

[66]

Ren HW, Chen CM, Wang QH, Zhao DS, Guo SH. The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose. BioResources, 2016, 11(2): 5435-5451.

[67]

Roosen C, Muller P, Greiner L. Ionic liquids in biotechnology: applications and perspectives for biotransformations. Appl Microbiol Biotechnol, 2008, 81(4): 607-614.

[68]

Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science, 2010, 329(5989): 305.

[69]

Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM. Using deep eutectic solvents based on methyl triphenyl phosphonium bromide for the removal of glycerol from palm-oil-based biodiesel. Energy Fuels, 2011, 25(6): 2671-2678.

[70]

Sheldon RA. Biocatalysis and biomass conversion in alternative reaction media. Chem Eur J, 2016, 22(37): 12983-12998.

[71]

Siebenhaller S, Muhle-Goll C, Luy B, Kirschhöfer F, Brenner-Weiss G, Hiller E, Günther M, Rupp S, Zibek S, Syldatk C. Sustainable enzymatic synthesis of glycolipids in a deep eutectic solvent system. J Mol Catal B Enzym, 2017

[72]

Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev, 2014, 114(21): 11060-11082.

[73]

Stepankova V, Vanacek P, Damborsky J, Chaloupkova R. Comparison of catalysis by haloalkane dehalogenases in aqueous solutions of deep eutectic and organic solvents. Green Chem, 2014, 16(5): 2754-2761.

[74]

Thuy Pham TP, Cho C-W, Yun Y-S. Environmental fate and toxicity of ionic liquids: a review. Water Res, 2010, 44(2): 352-372.

[75]

Tian XM, Zhang SQ, Zheng LY. Enzyme-catalyzed henry reaction in choline chloride-based deep eutectic solvents. J Microbiol Biotechnol, 2016, 26(1): 80-88.

[76]

Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM. Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev, 2011, 15(1): 266-274.

[77]

van Osch D, Zubeir LF, van den Bruinhorst A, Rocha MAA, Kroon MC. Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem, 2015, 17(9): 4518-4521.

[78]

van Rantwijk F, Sheldon RA. Biocatalysis in ionic liquids. Chem Rev, 2007, 107(6): 2757-2785.

[79]

Vitale P, Abbinante VM, Perna FM, Salomone A, Cardellicchio C, Capriati V. Unveiling the hidden performance of whole cells in the asymmetric bioreduction of aryl-containing ketones in aqueous deep eutectic solvents. Adv Synth Catal, 2016, 358: 1-10.

[80]

Wachtmeister J, Rother D. Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Curr Opin Biotechnol, 2016, 42: 169-177.

[81]

Wang Q, Yao X, Tang S, Lu X, Zhang X, Zhang S. Urea as an efficient and reusable catalyst for the glycolysis of poly(ethylene terephthalate) wastes and the role of hydrogen bond in this process. Green Chem, 2012, 14(9): 2559-2566.

[82]

Weingartner H, Cabrele C, Herrmann C. How ionic liquids can help to stabilize native proteins. Phys Chem Chem Phys, 2012, 14(2): 415-426.

[83]

Weiz G, Braun L, Lopez R, de María PD, Breccia JD. Enzymatic deglycosylation of flavonoids in deep eutectic solvents–aqueous mixtures: paving the way for sustainable flavonoid chemistry. J Mol Catal B Enzym, 2016, 130: 70-73.

[84]

Wen Q, Chen JX, Tang YL, Wang J, Yang Z. Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere, 2015, 132: 63-69.

[85]

Wu BP, Wen Q, Xu H, Yang Z. Insights into the impact of deep eutectic solvents on horseradish peroxidase: activity, stability and structure. J Mol Catal B Enzym, 2014, 101: 101-107.

[86]

Wu X, Li G, Yang H, Zhou H. Study on extraction and separation of butyric acid from clostridium tyrobutyricum fermentation broth in PEG/Na2SO4 aqueous two-phase system. Fluid Phase Equilib, 2015, 403: 36-42.

[87]

Xiao ZJ, Du PX, Lou WY, Wu H, Zong MH. Using water-miscible ionic liquids to improve the biocatalytic anti-Prelog asymmetric reduction of prochiral ketones with whole cells of Acetobacter sp. CCTCC M209061. Chem Eng Sci, 2012, 84: 695-705.

[88]

Xu P, Xu Y, Li XF, Zhao BY, Zong MH, Lou WY. Enhancing asymmetric reduction of 3-chloropropiophenone with immobilized Acetobacter sp. CCTCC M209061 cells by using deep eutectic solvents as cosolvents. ACS Sustain Chem Eng, 2015, 3(4): 718-724.

[89]

Xu P, Zheng GW, Du PX, Zong MH, Lou WY. Whole-cell biocatalytic processes with ionic liquids. ACS Sustain Chem Eng, 2016, 4(2): 371-386.

[90]

Yang SL, Duan ZQ. Insight into enzymatic synthesis of phosphatidylserine in deep eutectic solvents. Catal Commun, 2016, 82: 16-19.

[91]

Yang TX, Zhao LQ, Wang J, Song SL, Liu HM, Cheng H, Yang Z. Improving whole-cell biocatalysis by addition of deep eutectic solvents and natural deep eutectic solvents. ACS Sustain Chem Eng, 2017, 5(7): 5713-5722.

[92]

Zakrewsky M, Banerjee A, Apte S, Kern TL, Jones MR, Del Sesto RE, Koppisch AT, Fox DT, Mitragotri S. Choline and geranate deep eutectic solvent as a broad-spectrum antiseptic agent for preventive and therapeutic applications. Adv Healthc Mater, 2016, 5(11): 1282-1289.

[93]

Zhang Q, De Oliveira Vigier K, Royer S, Jerome F. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev, 2012, 41(21): 7108-7146.

[94]

Zhang CW, Xia SQ, Ma PS. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour Technol, 2016, 219: 1-5.

[95]

Zhao DB, Liao YC, Zhang ZD. Toxicity of ionic liquids. Clean Soil Air Water, 2007, 35(1): 42-48.

[96]

Zhao H, Baker GA, Holmes S. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org Biomol Chem, 2011, 9(6): 1908-1916.

[97]

Zhao H, Baker GA, Holmes S. Protease activation in glycerol-based deep eutectic solvents. J Mol Catal B Enzym, 2011, 72(3–4): 163-167.

[98]

Zhao H, Zhang C, Crittle TD. Choline-based deep eutectic solvents for enzymatic preparation of biodiesel from soybean oil. J Mol Catal B Enzym, 2013, 85–86: 243-247.

[99]

Zhao BY, Xu P, Yang FX, Wu H, Zong MH, Lou WY. Biocompatible deep eutectic solvents based on choline chloride: characterization and Application to the extraction of rutin from Sophora japonica. ACS Sustain Chem Eng, 2015, 3(11): 2746-2755.

[100]

Zhao KH, Cai YZ, Lin XS, Xiong J, Halling P, Yang Z. Enzymatic synthesis of glucose-based fatty acid esters in bisolvent systems containing ionic liquids or deep eutectic solvents. Molecules, 2016, 21(10): 1294.

[101]

Zhou P, Wang X, Zeng C, Wang W, Yang B, Hollmann F, Wang Y. Deep eutectic solvents enable more robust chemoenzymatic epoxidation reactions. ChemCatChem, 2017, 9(6): 934-936.

[102]

Zhou PF, Wang XP, Yang B, Hollmann F, Wang YH. Chemoenzymatic epoxidation of alkenes with Candida antarctica lipase B and hydrogen peroxide in deep eutectic solvents. RSC Adv, 2017, 7(21): 12518-12523.

Funding

National Natural Science Foundation of China(21676104)

Open Funding Project of the State Key Laboratory of Bioreactor Engineering

Program of State Key Laboratory of Pulp and Paper Engineering(2017ZD05)

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/