Comprehensive reconstruction and evaluation of Pichia pastoris genome-scale metabolic model that accounts for 1243 ORFs

Rui Ye , Mingzhi Huang , Hongzhong Lu , Jiangchao Qian , Weilu Lin , Ju Chu , Yingping Zhuang , Siliang Zhang

Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 22

PDF
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 22 DOI: 10.1186/s40643-017-0152-x
Research

Comprehensive reconstruction and evaluation of Pichia pastoris genome-scale metabolic model that accounts for 1243 ORFs

Author information +
History +
PDF

Abstract

Background

Pichia pastoris is one of the most important cell factories for production of industrial enzymes and heterogenous proteins. The genome-scale metabolic model of high quality is crucial for comprehensive understanding of the P. pastoris metabolism.

Methods

In this paper, we upgraded P. pastoris genome-scale metabolic model based on the combination of latest genome annotations and literatures. Then the performance of the new model was evaluated using the Cobra Toolbox v2.0.

Results

Compared with the recently published model iMT1026, the reaction number in the new model iRY1243 was increased from 2035 to 2407 and the metabolite number was increased from 1018 to 1094. Accordingly, the unique ORF number was increased from 1026 to 1243. To improve the metabolic functions of P. pastoris genome-scale metabolic model, the biosynthesis pathways of vitamins and cofactors were carefully added. iRY1243 showed good performances when predicting the growth capability on most of the reported carbon and nitrogen sources, the metabolic flux distribution with glucose as a sole carbon source, the essential and partially essential genes, and the effects of gene deletion or overexpression on cell growth and S-adenosyl-l-methionine production.

Conclusion

iRY1243 is an upgraded P. pastoris genome-scale metabolic model with significant improvements in the metabolic coverage and prediction ability, and thus it will be a potential platform for further systematic investigation of P. pastoris metabolism.

Keywords

Genome-scale metabolic model / Pichia pastoris / Multi-omics / β-Galactosidase

Cite this article

Download citation ▾
Rui Ye, Mingzhi Huang, Hongzhong Lu, Jiangchao Qian, Weilu Lin, Ju Chu, Yingping Zhuang, Siliang Zhang. Comprehensive reconstruction and evaluation of Pichia pastoris genome-scale metabolic model that accounts for 1243 ORFs. Bioresources and Bioprocessing, 2017, 4(1): 22 DOI:10.1186/s40643-017-0152-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol, 2014, 98(12): 5301-5317.

[2]

Angione C, Conway M, Lio P. Multiplex methods provide effective integration of multi-omic data in genome-scale models. BMC Bioinform, 2016, 17: 83.

[3]

Baumann K, Maurer M, Dragosits M, Cos O, Ferrer P, Mattanovich D. Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins. Biotechnol Bioeng, 2008, 100(1): 177-183.

[4]

Bhataya A, Schmidt-Dannert C, Lee PC. Metabolic engineering of Pichia pastoris X-33 for lycopene production. Process Biochem, 2009, 44(10): 1095-1102.

[5]

Bordbar A, Monk JM, King ZA, Palsson BO. Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet, 2014, 15(2): 107-120.

[6]

Carnicer M, Baumann K, Toplitz I, Sanchez-Ferrando F, Mattanovich D, Ferrer P, Albiol J. Macromolecular and elemental composition analysis and extracellular metabolite balances of Pichia pastoris growing at different oxygen levels. Microb Cell Fact, 2009, 8: 65.

[7]

Carnicer M, ten Pierick A, van Dam J, Heijnen JJ, Albiol J, van Gulik W, Ferrer P. Quantitative metabolomics analysis of amino acid metabolism in recombinant Pichia pastoris under different oxygen availability conditions. Microb Cell Fact, 2012, 11: 83.

[8]

Caspeta L, Shoaie S, Agren R, Nookaew I, Nielsen J. Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials. BMC Syst Biol, 2012, 6: 24.

[9]

Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev, 2000, 24(1): 45-66.

[10]

Chung BKS, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, Lee H, Lee DY. Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microb Cell Fact, 2010, 9: 50.

[11]

De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, de Peer YV, Callewaert N. Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol, 2009, 27(6): 561-566.

[12]

Famili I, Forster J, Nielson J, Palsson BO. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci USA, 2003, 100(23): 13134-13139.

[13]

Feist AM, Palsson BO. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol, 2008, 26(6): 659-667.

[14]

Feist AM, Palsson BO. The biomass objective function. Curr Opin Microbiol, 2010, 13(3): 344-349.

[15]

Fong SS, Marciniak JY, Palsson BO. Description and interpretation of adaptive evolution of Escherichia coli K-12 MG1655 by using a genome-scale in silico metabolic model. J Bacteriol, 2003, 185(21): 6400-6408.

[16]

Hsieh LS, Yeh CS, Pan HC, Cheng CY, Yang CC, Lee PD. Cloning and expression of a phenylalanine ammonia-lyase gene (BoPAL2) from Bambusa oldhamii in Escherichia coli and Pichia pastoris. Protein Expr Purif, 2010, 71(2): 224-230.

[17]

Irani ZA, Kerkhoven EJ, Shojaosadati SA, Nielsen J. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins. Biotechnol Bioeng, 2016, 113(5): 961-969.

[18]

Kim TY, Sohn SB, Bin Kim Y, Kim WJ, Lee SY. Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol, 2012, 23(4): 617-623.

[19]

Klompmaker SH, Kilic A, Baerends RJ, Veenhuis M, van der Klei IJ. Activation of a peroxisomal Pichia pastoris d-amino acid oxidase, which uses d-alanine as a preferred substrate, depends on pyruvate carboxylase. FEMS Yeast Res, 2010, 10(6): 708-716.

[20]

Kuberl A, Schneider J, Thallinger GG, Anderl I, Wibberg D, Hajek T, Jaenicke S, Brinkrolf K, Goesmann A, Szczepanowski R, Puhler A, Schwab H, Glieder A, Pichler H. High-quality genome sequence of Pichia pastoris CBS7435. J Biotechnol, 2011, 154(4): 312-320.

[21]

Maaheimo H, Fiaux J, Cakar ZP, Bailey JE, Sauer U, Szyperski T. Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional C-13 labeling of common amino acids. Eur J Biochem, 2001, 268(8): 2464-2479.

[22]

Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system. Yeast, 2005, 22(4): 249-270.

[23]

Mattanovich D, Callewaert N, Rouze P, Lin YC, Graf A, Redl A, Tiels P, Gasser B, De Schutter K. Open access to sequence: browsing the Pichia pastoris genome. Microb Cell Fact, 2009, 8: 53.

[24]

Menendez J, Delgado J, Gancedo C. Isolation of the Pichia pastoris PYC1 gene encoding pyruvate carboxylase and identification of a suppressor of the pyc phenotype. Yeast, 1998, 14(7): 647-654.

[25]

Morozkina EV, Vavilova EA, Zatcepin SS, Klyachko EV, Yagudin TA, Chulkin AM, Dudich IV, Semenkova LN, Churilova IV, Benevolensky SV. Engineering of a system for the production of mutant human alpha-fetoprotein in the methylotrophic yeast Pichia pastoris. Appl Biochem Microbiol, 2016, 52(2): 170-175.

[26]

Nie YS, Huang MZ, Lu JJ, Qian JC, Lin WL, Chu J, Zhuang YP, Zhang SL. Impacts of high beta-galactosidase expression on central metabolism of recombinant Pichia pastoris GS115 using glucose as sole carbon source via C-13 metabolic flux analysis. J Biotechnol, 2014, 187: 124-134.

[27]

Nocon J, Steiger MG, Pfeffer M, Sohn SB, Kim TY, Maurer M, Russmayer H, Pflugl S, Ask M, Haberhauer-Troyer C, Ortmayr K, Hann S, Koellensperger G, Gasser B, Lee SY, Mattanovich D. Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production. Metab Eng, 2014, 24: 129-138.

[28]

Orth JD, Thiele I, Palsson BO. What is flux balance analysis?. Nat Biotechnol, 2010, 28(3): 245-248.

[29]

Pan PC, Hua Q. Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica. PLoS ONE, 2012, 7(12): e51535.

[30]

Saha R, Chowdhury A, Maranas CD. Recent advances in the reconstruction of metabolic models and integration of omics data. Curr Opin Biotechnol, 2014, 29: 39-45.

[31]

Sanchez CEG, Garcia CAV, Saez RGT. Predictive potential of flux balance analysis of Saccharomyces cerevisiae using as optimization function combinations of cell compartmental objectives. PLoS ONE, 2012, 7(8): e43006.

[32]

Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc, 2011, 6(9): 1290-1307.

[33]

Sohn SB, Graf AB, Kim TY, Gasser B, Maurer M, Ferrer P, Mattanovich D, Lee SY. Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production. Biotechnol J, 2010, 5(7): 705-715.

[34]

Sola A, Maaheimo H, Ylonen K, Ferrer P, Szyperski T. Amino acid biosynthesis and metabolic flux profiling of Pichia pastoris. Eur J Biochem, 2004, 271(12): 2462-2470.

[35]

Thiele I, Palsson BO. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc, 2010, 5(1): 93-121.

[36]

Tomas-Gamisans M, Ferrer P, Albiol J. Integration and validation of the genome-scale metabolic models of Pichia pastoris: a comprehensive update of protein glycosylation pathways, lipid and energy metabolism. PLoS ONE, 2016, 11(1): e0148031.

[37]

Verduyn C, Stouthamer AH, Scheffers WA, van Dijken JP. A theoretical evaluation of growth yields of yeasts. Antonie Van Leeuwenhoek, 1991, 59(1): 49-63.

[38]

Zhang X, Liu J, Yu X, Wang F, Yi L, Li Z, Liu Y, Ma L. High-level expression of human arginase I in Pichia pastoris and its immobilization on chitosan to produce l-ornithine. BMC Biotechnol, 2015, 15: 66.

Funding

National Basic Research Program of China(2013CB733600)

National Natural Science Foundation of China(201276081)

National Key Technology Support Program of China(2011BAF02B05)

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/