Advances in industrial microbiome based on microbial consortium for biorefinery

Li-Li Jiang , Jin-Jie Zhou , Chun-Shan Quan , Zhi-Long Xiu

Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 11

PDF
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 11 DOI: 10.1186/s40643-017-0141-0
Review

Advances in industrial microbiome based on microbial consortium for biorefinery

Author information +
History +
PDF

Abstract

One of the important targets of industrial biotechnology is using cheap biomass resources. The traditional strategy is microbial fermentations with single strain. However, cheap biomass normally contains so complex compositions and impurities that it is very difficult for single microorganism to utilize availably. In order to completely utilize the substrates and produce multiple products in one process, industrial microbiome based on microbial consortium draws more and more attention. In this review, we first briefly described some examples of existing industrial bioprocesses involving microbial consortia. Comparison of 1,3-propanediol production by mixed and pure cultures were then introduced, and interaction relationships between cells in microbial consortium were summarized. Finally, the outlook on how to design and apply microbial consortium in the future was also proposed.

Keywords

Industrial microbiome / Microbial consortia / Biorefinery / Biomass / Bio-based chemicals / Biofuels

Cite this article

Download citation ▾
Li-Li Jiang, Jin-Jie Zhou, Chun-Shan Quan, Zhi-Long Xiu. Advances in industrial microbiome based on microbial consortium for biorefinery. Bioresources and Bioprocessing, 2017, 4(1): 11 DOI:10.1186/s40643-017-0141-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alivisatos AP, Blaser MJ, Brodie EL, Chun M, Dangl JL, Donohue TJ, Dorrestein PC, Gilbert JA, Green JL, Jansson JK, Knight R, Maxon ME, McFall-Ngai MJ, Miller JF, Pollard KS, Ruby EG, Taha SA. A unified initiative to harness Earth’s microbiomes. Science, 2015, 350(6260): 507-508.

[2]

Bader J, Mast-Gerlach E, Popovic MK, Bajpai R, Stahl U. Relevance of microbial coculture fermentations in biotechnology. J Appl Microbiol, 2010, 109(2): 371-387.

[3]

Bassler BL, Greenberg EP, Stevens AM. Cross-species induction of luminescence in the quorum sensing bacterium Vibrio harveyi. J Bacteriol, 1997, 179(12): 4043-4045.

[4]

Bernstein HC, Carlson RP. Microbial consortia engineering for cellular factories: in vitro to in silico systems. Comput Struct Biotechnol J, 2012, 3(4): 1-8.

[5]

Bizukojc M, Dietz D, Sun JB, Zeng AP. Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer Clostridium butyricum and a methanogenic archeon Methanosarcina mazei under anaerobic conditions. Bioprocess Biosyst Eng, 2010, 33: 507-523.

[6]

Brenner K, You L, Arnold FH. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol, 2008, 26(9): 483-489.

[7]

Chatzifragkou A, Aggelis G, Komaitis M, Zeng AP, Papanikolaou S. Impact of anaerobiosis strategy and bioreactor geometry on the biochemical response of Clostridium butyricum VPI 1718 during 1,3-propanediol fermentation. Bioresourc Technol, 2011, 102(22): 10625-10632.

[8]

Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Science, 2015, 350(6261): 663-666.

[9]

Dias JM, Lemos PC, Serafim LS, Oliveira C, Eiroa M, Albuquerque MG, Ramos AM, Oliveira R, Reis MA. Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol Biosci, 2006, 6(11): 885-906.

[10]

Diaz EE, Stams AJM, Amils R, Sanz JL. Phenotypic properties and microbial diversity of methanogenic granules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater. Appl Environ Microbiol, 2006, 72(7): 4942-4949.

[11]

Dietz D, Zeng AP. Efficient production of 1,3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium. Bioprocess Biosyst Eng, 2014, 37(2): 225-233.

[12]

Diggle SP, Griffin AS, Campbell GS, West SA. Cooperation and conflict in quorum-sensing bacterial populations. Nature, 2007, 450(7168): 411-414.

[13]

Du R, Yan JB, Li SZ, Zhang L, Zhang S, Li J, Zhao G, Qi P. Cellulosic ethanol production by natural bacterial consortia is enhanced by Pseudoxanthomonas taiwanensis. Biotechnol Biofuels, 2015, 8(1): 1-10.

[14]

Dubilier N, McFall-Ngai M, Zhao LP. Great a global microbiome effort. Nature, 2015, 526(7575): 631-634.

[15]

Dürre P. Biobutanol: an attractive biofuel. Biotechnol J, 2007, 2(12): 1525-1534.

[16]

Eiteman MA, Lee SA, Altman E. A co-fermentation strategy to consume sugar mixtures effectively. J Biol Eng, 2008, 2(1): 3-11.

[17]

Escalante AE, Rebolleda-Gómez M, Benítez M, Travisano M. Ecological perspectives on synthetic biology: insights from microbial population biology. Front Microbiol, 2015, 6(143): 1-10.

[18]

Federle MJ, Bassler BL. Interspecies communication in bacteria. J Clin Invest, 2003, 112(9): 1291-1299.

[19]

Gallardo R, Faria C, Rodrigues LR, Pereira MA, Alves MM. Anaerobic granular sludge as a biocatalyst for 1,3-propanediol production from glycerol in continuous bioreactors. Bioresour Technol, 2014, 155(4): 28-33.

[20]

Gambino M, Cappitelli F. Mini-review: biofilm responses to oxidative stress. Biofouling, 2016, 32(2): 167-178.

[21]

Goers L, Freemont P, Polizzi KM. Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface, 2014, 11(96): 1058-1069.

[22]

Gu Y, Jiang Y, Wu H, Liu X, Li Z, Li J, Xiao H, Shen Z, Dong H, Yang Y, Li Y, Jiang W, Yang S. Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer. Biotechnol J, 2011, 6(11): 1348-1357.

[23]

Hammerschmidt K, Rose CJ, Kerr B, Rainey PB. Life cycles, fitness decoupling and the evolution of multicellularity. Nature, 2014, 515(7525): 75-79.

[24]

Hibbing M, Fuqua C, Parsek M, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol, 2010, 8(1): 15-25.

[25]

Jiang L, Liu H, Mu Y, Sun Y, Xiu Z (2016) High tolerance to glycerol and high production of 1,3-propanediol in batch fermentations by microbial consortium from marine sludge. Eng Life Sci 1–10. doi:10.1002/elsc.201600215

[26]

Johnson DT, Taconi KA. The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog, 2007, 26(4): 338-348.

[27]

Jolly J, Hitzmann B, Ramalingam S, Ramachandran KB. Biosynthesis of 1,3-propanediol from glycerol with Lactobacillus reuteri: effect of operating variables. J Biosci Bioeng, 2014, 118(2): 188-194.

[28]

Jun SA, Moon C, Kang CH, Kong SW, Sang BI, Um Y. Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Appl Biochem Biotechnol, 2010, 161(161): 491-501.

[29]

Kamm B, Schonicke P, Hille C. Green biorefinery—industrial implementation. Food Chem, 2016, 197: 1341-1345.

[30]

Kanjilal B, Noshadi I, Bautista EJ, Srivastava R, Parnas RS. Batch, design optimization, and DNA sequencing study for continuous 1,3-propanediol production from waste glycerol by a soil-based inoculum. Appl Microbiol Biotechnol, 2015, 99(5): 2105-2117.

[31]

Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol Ecol, 2004, 51(1): 133-142.

[32]

Lee HS, Krajmalinik-Brown R, Zhang H, Rittmann BE. An electron-flow model can predict complex redox reactions in mixed-culture fermentative BioH2: microbial ecology evidence. Biotechnol Bioeng, 2009, 104(4): 687-697.

[33]

Lemos PC, Serafim LS, Reis MA (2006) Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. J Biotechnol 122(2):226-238

[34]

Li CL, Fang HHP. Fermentation hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol, 2007, 37(1): 1-39.

[35]

Lin L, Li T, Dai S, Yu JL, Chen XQ, Wang LY, Wang YG, Hua YJ, Tian B. Autoinducer-2 signaling is involved in regulation of stress-related genes of Deinococcus radiodurans. Arch Microbiol, 2016, 198(1): 43-51.

[36]

Liu B, Christiansen K, Parnas R, Xu Z, Li B. Optimizing the production of hydrogen and 1,3-propanediol in anaerobic fermentation of biodiesel glycerol. Int J Hydrogen Energy, 2013, 38(8): 3196-3205.

[37]

Metsoviti M, Paramithiotis S, Drosinos EH, Galiotou-Panayotou M, Nychas G-JE, Zeng A-P, Papanikolaou S. Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol. Eng Life Sci, 2012, 12(1): 57-68.

[38]

Metsoviti M, Paraskevaidi K, Koutinas A, Zeng A-P, Papanikolaou S. Production of 1,3-propanediol, 2,3-butanediol and ethanol by a newly isolated Klebsiella oxytoca strain growing on biodiesel-derived glycerol based media. Process Biochem, 2012, 47(12): 1872-1882.

[39]

Metsoviti M, Zeng AP, Koutinas AA, Papanikolaou S. Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J Biotechnol, 2013, 163(4): 408-418.

[40]

Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol, 2001, 55: 165-199.

[41]

Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci, 2013, 110(36): 14592-14597.

[42]

Moita R, Freches A, Lemos PC. Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res, 2014, 58(3): 9-20.

[43]

Nakamura CE, Whited GM. Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol, 2003, 14(5): 454-459.

[44]

Nishio N, Nakashimada Y. Recent development of anaerobic digestion processes for energy recovery from wastes. J Biosci Bioeng, 2007, 103(2): 105-112.

[45]

Nowak MA. Five rules for the evolution of cooperation. Science, 2006, 314(5805): 1560-1563.

[46]

Oh SE, Ginkel SV, Logan BE. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol, 2003, 37(22): 5186-5190.

[47]

Olson DG, Mcbride JE, Shaw AJ, Lynd LR. Recent progress in consolidated bioprocessing. Curr Opin Biotechnol, 2012, 23(3): 396-405.

[48]

Park H, Yeo S, Jia Y, Lee J, Yang J, Park S, Shin H, Holzapfel W. Autoinducer-2 associated inhibition by Lactobacillus sakei NR28 reduces virulence of enterohaemorrhagic Escherichia coli O157:H7. Food Control, 2014, 45: 62-69.

[49]

Parsek MR, Greenberg EP. Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci, 2000, 97(16): 8789-8793.

[50]

Pereira MC, Thompson JA, Xavier KB. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev, 2013, 37(2): 156-181.

[51]

Raghunandan K, McHunu S, Kumar A, Kumar KS, Govender A, Permaul K, Singh S. Biodegradation of glycerol using bacterial isolates from soil under aerobic conditions. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2014, 49(1): 85-92.

[52]

Rahul M, Matti K, Ville S. Bioconversion of crude glycerol from biodiesel production to hydrogen. Int J Hydrogen Energy, 2012, 37(17): 12198-12204.

[53]

Rodriguez A, Wojtusik M, Ripoll V, Santos VE, Garcia-Ochoa F. 1,3-Propanediol production from glycerol with a novel biocatalyst Shimwellia blattae ATCC 33430: operational conditions and kinetics in batch cultivations. Bioresour Technol, 2015, 200: 830-837.

[54]

Röske I, Sabra W, Nacke H, Daniel R, Zeng AP, Antranikian G, Sahm K. Microbial community composition and dynamics in high-temperature biogas reactors using industrial bioethanol waste as substrate. Appl Microbial Biotechnol, 2014, 98(21): 9095-9106.

[55]

Sabra W, Zeng AP. Mixed microbial cultures for industrial biotechnology: success, chance and challenges, 2014, 7, Grunwald: Industrial Biocatalysis.

[56]

Sabra W, Dietz D, Tjahjasari D, Zeng AP. Biosystems analysis and engineering of microbial consortia for industrial biotechnology. Eng Life Sci, 2010, 10(5): 407-421.

[57]

Sabra W, Dietz D, Zeng AP. Substrate limited co-culture for efficient roduction of propionic acid from flour hydrolysate. Appl Microbiol Biotechnol, 2013, 97: 5771-5777.

[58]

Sabra W, Röske I, Sahm K, Antranikian G, Zeng AP. Metabolic and microbial characterization of high-temperature biogas reactors treating stillage from an industrial bioethanol process. Eng Life Sci, 2015, 15(7): 743-750.

[59]

Schertzer JW, Boulette ML, Whiteley M. More than a signal: non-signaling properties of quorum sensing molecules. Trends Microbiol, 2009, 17(5): 189-195.

[60]

Selembo PA, Perez JM, Lloyd WA, Logan BE. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. Int J Hydrogen Energy, 2009, 34(13): 5373-5381.

[61]

Shou W, Ram S, Vilar JMG. Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci USA, 2007, 104(6): 1877-1882.

[62]

Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, Brewer HM, Purvine SO, Wright AT, Theodorou MK, Grigoriev IV, Regev A, Thompson DA, O’Malley MA. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science, 2016, 351(6278): 1192-1195.

[63]

Spiegelman D, Whissell G, Greer CW. A survey of the methods for the characterization of microbial consortia and communities. Can J Microbiol, 2005, 51(5): 355-386.

[64]

Stolyar S, Dien SV, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA. Metabolic modeling of a mutualistic microbial community. Mol Syst Biol, 2007, 3(1): 92-106.

[65]

Streit WR, Daniel R, Jaeger KE. Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms. Curr Opin Biotechnol, 2004, 15(4): 285-290.

[66]

Sun LH, Song ZY, Sun YQ, Xiu ZL. Dynamic behavior of glycerol–glucose co-fermentation for 1,3-propanediol production by Klebsiella pneumoniae DSM 2026 under micro-aerobic conditions. World J Microbiol Biotechnol, 2010, 26(8): 1401-1407.

[67]

Szymanowska-Powalowska D, Piatkowska J, Leja K. Microbial purification of postfermentation medium after 1,3-PD production from raw glycerol. Biomed Res Int, 2013, 1: 949107-949114.

[68]

Tabasco R, García-Cayuela T, Peláez C, Requena T. Lactobacillus acidophilus La-5 increases lactacin B production when it senses live target bacteria. Int J Food Microbiol, 2009, 132(2–3): 109-116.

[69]

Temudo MF, Muyzer G, Kleerebezem R, van Loosdrecht MC. Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source. Appl Microbiol Biotechnol, 2008, 80(6): 1121-1130.

[70]

Teusink B, Wiersma A, Molenaar D, Francke C, de Vos WM, Siezen RJ, Smid EJ. Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model. J Biol Chem, 2006, 281(52): 40041-40048.

[71]

Vandamme P, Coenye T. Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol, 2004, 54(6): 2285-2289.

[72]

Wen ZQ, Wu MB, Lin YJ, Yang LR, Lin JP, Cen PL. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microb Cell Fact, 2014, 13(1): 1-11.

[73]

Wilkens E, Ringel AK, Hortig D, Willke T, Vorlop KD. High-level production of 1, 3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol, 2012, 93(3): 1057-1063.

[74]

Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiol, 2007, 153(12): 3923-3938.

[75]

Xiu ZL, Zeng AP. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol, 2008, 78(6): 917-926.

[76]

Xiu ZL, Liu HF, Chen Y, Jiang LL, Sun YQ (2015) A method of fermentation of 1,3-propanediol from glycerol by mixed culture: CN, 104774879A

[77]

Yang G, Tian JS, Li JL. Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol, 2007, 73(5): 1017-1024.

[78]

Yim G, Wang HHM, Davies J. The truth about antibiotics. Int J Med Microbiol, 2006, 296: 163-170.

[79]

Yim G, Wang HMH, Davies J. Antibiotics as signalling molecules. Philos Trans R Soc London B Biol Sci, 2007, 362: 1195-1200.

[80]

Zeng AP, Sabra W. Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol, 2011, 22(6): 749-757.

[81]

Zhang J, Liu J, Shi Z, Liu L, Chen J. Manipulation of B. megaterium growth for efficient 2-KLG production by K. vulgare. Process Biochem, 2010, 45(4): 602-606.

[82]

Zuroff TR, Curtis WR. Developing symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biotechnol, 2012, 93: 1423-1435.

Funding

China National Natural Science Foundation(21476042)

Open Fund of Key Laboratory of Biotechnology and Bioresources Utilization

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/