Online flow cytometry, an interesting investigation process for monitoring lipid accumulation, dimorphism, and cells’ growth in the oleaginous yeast Yarrowia lipolytica JMY 775

Doria Naila Bouchedja , Sabine Danthine , Tambi Kar , Patrick Fickers , Abdelghani Boudjellal , Frank Delvigne

Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 3

PDF
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 3 DOI: 10.1186/s40643-016-0132-6
Research

Online flow cytometry, an interesting investigation process for monitoring lipid accumulation, dimorphism, and cells’ growth in the oleaginous yeast Yarrowia lipolytica JMY 775

Author information +
History +
PDF

Abstract

This study aims to understand and better control the main biological mechanisms and parameters modulating the various phenomena affecting Yarrowia lipolytica JMY775 and its lipids accumulation. The results obtained in this study stress forward that the use of an original tool, consisting of coupling bioreactors to online flow cytometry, is highly efficient. Throughout 48 h of culturing, this emerging process allowed an online continuous observation of the effects of pH and/or aeration on the cell growth and dimorphism and lipid accumulation by Y. lipolytica. This present study showed clearly that online flow cytometry is an advantageous tool for the real-time monitoring of microbial culture at a single-cell level. Indeed, the present investigation showed for the first time that profiling of the various phenomena and their monitoring upon culture time is now possible by coupling online cytometry with culture bioreactors.

Keywords

Yarrowia lipolytica / Lipid accumulation / Cells’ shape / Cell growth / Online flow cytometry

Cite this article

Download citation ▾
Doria Naila Bouchedja, Sabine Danthine, Tambi Kar, Patrick Fickers, Abdelghani Boudjellal, Frank Delvigne. Online flow cytometry, an interesting investigation process for monitoring lipid accumulation, dimorphism, and cells’ growth in the oleaginous yeast Yarrowia lipolytica JMY 775. Bioresources and Bioprocessing, 2017, 4(1): 3 DOI:10.1186/s40643-016-0132-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aggelis G, Komaitis M, Papanikolaou S, Papadopoulos G. A mathematical model for the study of lipid accumulation in oleaginous microorganisms. I: lipid accumulation during growth of Mucor circinelloides CBS 172-27 on a vegetable oil. Grasas Aceites, 1995, 46: 169-173.

[2]

Alonso FOM, Oliveira EBL, Dellamora-Ortiz GM, Pereira-Meirelles FV. Improvement of lipase production at different stirring speeds and oxygen levels. Braz J Chem Eng, 2005, 22: 9-18.

[3]

Barth G, Gaillardin C. Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev, 1997, 19: 219-237.

[4]

Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol, 2008, 74: 7779-7789.

[5]

Beopoulos A, Chardot T, Nicaud J-M. Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, 2009, 91: 692-696.

[6]

Beopoulos A, Nicaud J-M, Gaillardin C. An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol, 2011, 90: 1193-1206.

[7]

Bradner JR, Nevalainen KMH. Metabolic activity in filamentous fungi can be analysed by flow cytometry. J Microbiol Methods, 2003, 54: 193-201.

[8]

Cervantes-Chávez JA, Kronberg F, Passeron S, Ruiz-Herrera J. Regulatory role of the PKA pathway in dimorphism and mating in Yarrowia lipolytica. Fungal Genet Biol, 2009, 46: 390-399.

[9]

Chen D-C, Beckerich J-M, Gaillardin C. One-step transformation of the dimorphic yeast Yarrowia lipolytica. Appl Microbiol Biotechnol, 1997, 48: 232-235.

[10]

Coelho M, Amaral P, Belo I. Yarrowia lipolytica: an industrial workhorse. Curr Res Technol Educ Top Appl Microbiol Microbial Biotechnol, 2010, 2(2010): 930-994.

[11]

Dias C, Silva C, Freitas C, Reis A, da Silva TL (2016) Effect of medium pH on Rhodosporidium toruloides NCYC 921 Carotenoid and lipid production evaluated by flow cytometry. Applied Biochem Biotechnol: 1–12

[12]

Díaz M, Herrero M, García LA, Quirós C. Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J, 2010, 48: 385-407.

[13]

Fickers P, Benetti P-H, Waché Y, Marty A, Mauersberger S, Smit MS, Nicaud J-M. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res, 2005, 5: 527-543.

[14]

Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y. Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol, 2008, 130: 263-279.

[15]

Guevara-Olvera L, Calvo-Mendez C, Ruiz-Herrera J. The role of polyamine metabolism in dimorphism of Yarrowia lipolytica. Microbiology, 1993, 139: 485-493.

[16]

Izard J, Limberger RJ. Rapid screening method for quantitation of bacterial cell lipids from whole cells. J Microbiol Methods, 2003, 55: 411-418.

[17]

Kar T, Delvigne F, Masson M, Destain J, Thonart P. Investigation of the effect of different extracellular factors on the lipase production by Yarrowia lipolityca on the basis of a scale-down approach. J Ind Microbiol Biotechnol, 2008, 35: 1053-1059.

[18]

Kar T, Delvigne F, Destain J, Thonart P. Dimensionnement et extrapolation des bioréacteurs sur base de paramètres physiologiques: cas de la production de lipase par Yarrowia lipolytica. Biotechnologie Agronomie Société et Environ, 2011, 15: 585.

[19]

Lopes M, Gomes N, Mota M, Belo I. Yarrowia lipolytica growth under increased air pressure: influence on enzyme production. Appl Biochem Biotechnol, 2009, 159: 46-53.

[20]

Makri A, Fakas S, Aggelis G. Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour Technol, 2010, 101: 2351-2358.

[21]

Mlíčková K, Roux E, Athenstaedt K, d’Andrea S, Daum G, Chardot T, Nicaud J-M. Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl Environ Microbiol, 2004, 70: 3918-3924.

[22]

Nicaud J-M. Yarrowia lipolytica. Yeast, 2012, 29: 409-418.

[23]

Papanikolaou S, Aggelis G. Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats. Curr Microbiol, 2003, 46: 0398-0402.

[24]

Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol, 2011, 113: 1031-1051.

[25]

Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol, 2002, 58: 308-312.

[26]

Papanikolaou S, Galiotou-Panayotou M, Chevalot I, Komaitis M, Marc I, Aggelis G. Influence of glucose and saturated free-fatty acid mixtures on citric acid and lipid production by Yarrowia lipolytica. Curr Microbiol, 2006, 52: 134-142.

[27]

Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 2004, 86: 807-815.

[28]

Rodriguez C, Domínguez A. The growth characteristics of Saccharomycopsis lipolytica: morphology and induction of mycelium formation. Can J Microbiol, 1984, 30: 605-612.

[29]

Ruiz-Herrera J, Sentandreu R. Different effectors of dimorphism in Yarrowia lipolytica. Arch Microbiol, 2002, 178: 477-483.

[30]

Subramaniam R, Dufreche S, Zappi M, Bajpai R. Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol, 2010, 37: 1271-1287.

[31]

Szabo R. Dimorphism inYarrowia lipolytica: filament formation is suppressed by nitrogen starvation and inhibition of respiration. Folia Microbiol, 1999, 44: 19-24.

[32]

Szabo R, Štofanı́ková V. Presence of organic sources of nitrogen is critical for filament formation and pH-dependent morphogenesis in Yarrowia lipolytica. FEMS Microbiol Lett, 2002, 206: 45-50.

[33]

Ueckert J, Breeuwer P, Abee T, Stephens P, Von Caron GN, Ter Steeg P. Flow cytometry applications in physiological study and detection of foodborne microorganisms. Int J Food Microbiol, 1995, 28: 317-326.

[34]

Weinhandl K, Winkler M, Glieder A, Camattari A. Carbon source dependent promoters in yeasts. Microb Cell Fact, 2014, 13: 1-17.

[35]

Zinjarde SS, Pant A, Deshapande MV. Dimorphic transition in Yarrowia lipolytica isolated from oil-polluted sea water. Mycol Res, 1998, 102: 553-558.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/