Global transcriptional response of Aspergillus niger in the process of glucoamylase fermentation

Yu-fei Sui , Li-ming Ouyang , Ju Chu , Wei-qiang Cao , Li-feng liang , Ying-ping Zhuang , Shu Cheng , Henk Norrman , Si-liang Zhang , Geng-yun zhang

Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 44

PDF
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 44 DOI: 10.1186/s40643-017-0160-x
Research

Global transcriptional response of Aspergillus niger in the process of glucoamylase fermentation

Author information +
History +
PDF

Abstract

Background

In the phase of oxygen limitation during Aspergillus niger fermentation, the cell growth decreased, while the yield of glucoamylase increased continuously and significantly. Explanation on the changes of transcriptome profile during this process may improve our understanding on mechanisms of cell adaption and enzyme production in A. niger.

Results

The transcriptomic data from 4 time points in oxygen limitation process of a glucoamylase production A. niger strain were analyzed. Hierarchical clustering of all samples showed that the strongest transcriptional response occurred between the early and middle stage of oxygen limitation. 515 differentially expressed genes (DEGs) were identified and were clustered into 12 expression patterns. Continuously down-regulated DEGs were significantly enriched in GO terms of the ribosome, translation, and aminoacyl-tRNA biosynthesis, and continuously up-regulated DEGs were mainly involved in GO terms of fatty acid catabolism, N-acetyltransferase activity, lipase activity, and carboxylesterase activity. Pyruvate kinase and asparagine synthetase which related to the biosynthesis of the main amino acid composition of the enzyme were significantly up-regulated. Sterol-regulatory element-binding proteins (SREBP) transcription factor SrbB was one of the most up-regulated proteins, indicating its important roles in hypoxia fermentation of A. niger.

Conclusion

Comparative transcriptome data analysis of the fermentation revealed that the overall reduced biosynthesis of translation machine and fatty acid, acceleration of fatty acid catabolism, and increased synthesis of main amino acid compositions of glucoamylase are the key transcriptional changes during the oxygen limitation fermentation process of A. niger.

Keywords

Aspergillus niger / Glucoamylase / Transcriptome / Metabolic pathways / Oxygen limitation / Fermentation

Cite this article

Download citation ▾
Yu-fei Sui, Li-ming Ouyang, Ju Chu, Wei-qiang Cao, Li-feng liang, Ying-ping Zhuang, Shu Cheng, Henk Norrman, Si-liang Zhang, Geng-yun zhang. Global transcriptional response of Aspergillus niger in the process of glucoamylase fermentation. Bioresources and Bioprocessing, 2017, 4(1): 44 DOI:10.1186/s40643-017-0160-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andersen MR, Salazar MP, Schaap PJ. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res, 2011, 21(6): 885-897.

[2]

Baker SE. Aspergillus niger genomics: past, present and into the future. Med Mycol, 2006, 44(Suppl 1): 17-21.

[3]

Carvalho ND, Jørgensen TR, Arentshorst M, Nitsche BM, van den Hondel CA, Archer DB, Ram AF. Genome-wide expression analysis upon constitutive activation of the HacAbZIP transcription factor in Aspergillus niger reveals a coordinated cellular response to counteract ER stress. BMC Genom, 2012, 13(1): 105.

[4]

Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, Miyasato SR, Binkley J, Orvis J, Shah P, Wymore F, Sherlock G, Wortman JR. The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res, 2014, 42(1): D705-D710.

[5]

Chung D, Barker BM, Carey CC, Merriman B, Werner ER, Lechner BE, Dhingra S, Cheng C, Xu W, Blosser SJ, Morohashi K, Mazurie A, Mitchell TK, Haas H, Mitchell AP, Cramer RA. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLoS Pathog, 2014, 10(11): e1004487.

[6]

Delmas S, Pullan ST, Gaddipati S, Kokolski M, Malla S, Blythe MJ, Ibbett R, Campbell M, Liddell S, Aboobaker A, Tucker GA, Archer DB. Uncovering the genome-wide transcriptional responses of the filamentous fungus Aspergillus niger to lignocellulose using RNA sequencing. PLoS Genet, 2012, 8(8): e1002875.

[7]

Diano A, Bekker-Jensen S, Dynesen J, Nielsen J. Polyol synthesis in Aspergillus niger: influence of oxygen availability, carbon and nitrogen sources on the metabolism. Biotechnol Bioeng, 2006, 94(5): 899-908.

[8]

Diano A, Peeters J, Dynesen J, Nielsen J. Physiology of Aspergillus niger in oxygen-limited continuous cultures: influence of aeration, carbon source concentration and dilution rate. Biotechnol Bioeng, 2009, 103(5): 956.

[9]

Guillemette T, van Peij N, Goosen T, Lanthaler K, Robson GD, van den Hondel CA, Stam H, Archer DB. Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger. BMC Genom, 2007, 8: 158.

[10]

Hagag S, Kubitschek-Barreira P, Neves GW, Amar D, Nierman W, Shalit I, Shamir R, Lopes-Bezerra L, Osherov N. Transcriptional and proteomic analysis of the Aspergillus fumigatus ΔprtT protease-deficient mutant. PLoS ONE, 2012, 7(4): e33604.

[11]

Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009, 4(1): 44-57.

[12]

Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nat Acids Res, 2009, 37(1): 1-13.

[13]

Jørgensen TR, Goosen T, Hondel CA, Ram AF, Iversen JJ. Transcriptomic comparison of Aspergillus niger growing on two different sugars reveals coordinated regulation of the secretory pathway. BMC Genom, 2009, 10(1): 44.

[14]

Jørgensen TR, Nitsche BM, Lamers GE, Arentshorst M, van den Hondel CA, Ram AF. Transcriptomic insights into the physiology of Aspergillus niger approaching a specific growth rate of zero. Appl Environ Microbiol, 2010, 76(16): 5344-5355.

[15]

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27-30.

[16]

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res, 2016, 44: D457-D462.

[17]

Kwon MJ, Jørgensen TR, Nitsche BM, Arentshorst M, Park J, Ram AF, Meyer V. The transcriptomic fingerprint of glucoamylase over-expression in Aspergillus niger. BMC Genom, 2012, 13: 701.

[18]

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform, 2011, 12: 323.

[19]

Lu H, Liu X, Huang M, Xia J, Chu J, Zhuang Y, Zhang S, Noorman H. Integrated isotope-assisted metabolomics and 13 C metabolic flux analysis reveals metabolic flux redistribution for high glucoamylase production by Aspergillus niger. Microb Cell Fact, 2015, 14: 147.

[20]

Maattanen P, Gehring K, Bergeron JJ, Thomas DY. Protein quality control in the ER: the recognition of misfolded proteins. Semin Cell Dev Biol, 2010, 21(5): 500-511.

[21]

Ning L, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG, Haag JD, Gould MN, Stewart RM, Kendziorski C. EBSeq: an empirical Bayes hierarchical model for inference in RNA-Seq experiments. Bioinformatics, 2013, 29(8): 1035-1043.

[22]

Nitsche BM, Jørgensen TR, Akeroyd M, Meyer V, Ram AF. The carbon starvation response of Aspergillus niger during submerged cultivation: insights from the transcriptome and secretome. BMC Genom, 2012, 13: 380.

[23]

Novodvorska M, Hayer K, Pullan ST, Wilson R, Blythe MJ, Stam H, Stratford M, Archer DB. Transcriptional landscape of Aspergillus niger at breaking of conidial dormancy revealed by RNA-sequencing. BMC Genom, 2013, 194(1): 246.

[24]

Park J, Park J, Jang S, Kim S, Kong S, Choi J, Ahn K, Kim J, Lee S, Kim S, Park B, Jung K, Kim S, Kang S, Lee YH. FTFD: an informatics pipeline supporting phylogenomic analysis of fungal transcription factors. Bioinformatics, 2008, 24(7): 1024-1025.

[25]

Pavezzi FC, Carneiro AA, Bocchini-Martins DA, Alves-Prado HF, Ferreira H, Martins PM, Gomes E, da Silva R. Influence of different substrates on the production of a mutant thermostable glucoamylase in submerged fermentation. Appl Biochem Biotechnol, 2011, 163(1): 14-24.

[26]

Pedersen H, Beyer M, Nielsen J. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger. Appl Microbiol Biotechnol, 2000, 53(3): 272-277.

[27]

Pedersen L, Hansen K, Nielsen J, Lantz AE, Thykaer J. Industrial glucoamylase fed-batch benefits from oxygen limitation and high osmolarity. Biotechnol Bioeng, 2012, 109(1): 116-124.

[28]

Pel HJ, de Winde JH, Archer DB, . Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol, 2007, 25(2): 221-231.

[29]

Punt PJ, Schuren FH, Lehmbeck J, Christensen T, Hjort C, van den Hondel CA. Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Fungal Genet Biol, 2008, 45: 1591-1599.

[30]

Sharon H, Hagag S, Osherov N. Transcription factor PrtT controls expression of multiple secreted proteases in the human pathogenic mold Aspergillus fumigatus. Infect Immun, 2009, 77(9): 4051-4060.

[31]

Shi SB, Chen T, Zhao XM. Transcriptome platforms and application to metabolic engineering. Chin J Biotech, 2010, 26(9): 1187-1198 (in Chinese)

[32]

van Leeuwen MR, Krijgsheld P, Wyatt TT, Golovina EA, Menke H, Dekker A, Stark J, Stam H, Bleichrodt R, Wösten HAB, Dijksterhuis J. The effect of natamycin on the transcriptome of conidia of Aspergillus niger. Stud Mycol, 2012, 74(1): 71-85.

[33]

van Munster JM, Daly P, Delmas S, Pullan ST, Blythe MJ, Malla S, Kokolski M, Noltorp EC, Wennberg K, Fetherston R, Beniston R, Yu X, Dupree P, Archer DB. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger. Fungal Genet Biol, 2014, 72: 34-47.

[34]

Yamada T, Letunic I, Okuda S, Kanehisa M, Bork P. iPath2.0: interactive pathway explorer. Nucleic Acids Res, 2011, 39(suppl 2): W412-W415.

Funding

The Basic Research Program of Shenzhen(JCYJ20150629165423751)

State Key Laboratory of Bioreactor Engineering

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/