Techno-economic analysis of extraction-based separation systems for acetone, butanol, and ethanol recovery and purification
Víctor Hugo Grisales Díaz , Gerard Olivar Tost
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 12
Techno-economic analysis of extraction-based separation systems for acetone, butanol, and ethanol recovery and purification
Dual extraction, high-temperature extraction, mixture extraction, and oleyl alcohol extraction have been proposed in the literature for acetone, butanol, and ethanol (ABE) production. However, energy and economic evaluation under similar assumptions of extraction-based separation systems are necessary. Hence, the new process proposed in this work, direct steam distillation (DSD), for regeneration of high-boiling extractants was compared with several extraction-based separation systems.
The evaluation was performed under similar assumptions through simulation in Aspen Plus V7.3® software. Two end distillation systems (number of non-ideal stages between 70 and 80) were studied. Heat integration and vacuum operation of some units were proposed reducing the energy requirements.
Energy requirement of hybrid processes, substrate concentration of 200 g/l, was between 6.4 and 8.3 MJ-fuel/kg-ABE. The minimum energy requirements of extraction-based separation systems, feeding a water concentration in the substrate equivalent to extractant selectivity, and ideal assumptions were between 2.6 and 3.5 MJ-fuel/kg-ABE, respectively. The efficiencies of recovery systems for baseline case and ideal evaluation were 0.53–0.57 and 0.81–0.84, respectively.
The main advantages of DSD were the operation of the regeneration column at atmospheric pressure, the utilization of low-pressure steam, and the low energy requirements of preheating. The in situ recovery processes, DSD, and mixture extraction with conventional regeneration were the approaches with the lowest energy requirements and total annualized costs.
Extractive fermentation / Dual extraction / High-temperature extraction / Energy evaluation / Biobutanol
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Ezeji TC, Qureshi N, Blaschek HP (2005) Process for continuous solvent production. US Patent US2005/0089979, 28 Apr 2005 |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
Grady MC, Parten WD, Vrana B, Xu YT, Zaher JJ (2013) Recovery of butanol from a mixture of butanol, water, and an organic extractant. US Patent 8,373,009 B2, 12 Feb 2013 |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
Xu YT, Parten WD (2011) Recovery of butanol from a mixture of butanol, water, and an organic extractant. US Patent 2011/0162954 A1, 7 July 2011 |
| [47] |
|
| [48] |
Zauba (2015) India’s import and export data |
/
| 〈 |
|
〉 |