Review on the current status of polymer degradation: a microbial approach

Vinay Mohan Pathak, Navneet

Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 15.

Bioresources and Bioprocessing All Journals
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 15. DOI: 10.1186/s40643-017-0145-9
Review

Review on the current status of polymer degradation: a microbial approach

Author information +
History +

Abstract

Inertness and the indiscriminate use of synthetic polymers leading to increased land and water pollution are of great concern. Plastic is the most useful synthetic polymer, employed in wide range of applications viz. the packaging industries, agriculture, household practices, etc. Unpredicted use of synthetic polymers is leading towards the accumulation of increased solid waste in the natural environment. This affects the natural system and creates various environmental hazards. Plastics are seen as an environmental threat because they are difficult to degrade. This review describes the occurrence and distribution of microbes that are involved in the degradation of both natural and synthetic polymers. Much interest is generated by the degradation of existing plastics using microorganisms. It seems that biological agents and their metabolic enzymes can be exploited as a potent tool for polymer degradation. Bacterial and fungal species are the most abundant biological agents found in nature and have distinct degradation abilities for natural and synthetic polymers. Among the huge microbial population associated with polymer degradation, Pseudomonas aeruginosa, Pseudomonas stutzeri, Streptomyces badius, Streptomyces setonii, Rhodococcus ruber, Comamonas acidovorans, Clostridium thermocellum and Butyrivibrio fibrisolvens are the dominant bacterial species. Similarly, Aspergillus niger, Aspergillus flavus, Fusarium lini, Pycnoporus cinnabarinus and Mucor rouxii are prevalent fungal species.

Keywords

Polymer / Microbial degradation / Bacteria / Fungi / Natural polymers / Synthetic polymers / Polysaccharide / Hydrolytic enzyme / Pollution / Organic pollutants / Waste management / Biofilm / Surfactants / LDPE / Aerobic degradation / Anaerobic degradation / UV irradiation / Manmade compound / Plastic waste / SEM / Sturm test / FT-IR

Cite this article

Download citation ▾
Vinay Mohan Pathak, Navneet. Review on the current status of polymer degradation: a microbial approach. Bioresources and Bioprocessing, 2017, 4(1): 15 https://doi.org/10.1186/s40643-017-0145-9

References

[]
Abrusci C, Pablos JL, Corrales T, López-Marín J, Marín I, Catalina F. Biodegradation of photo-degraded mulching films based on polyethylenes and stearates of calcium and iron as pro-oxidant additives. Int Biodeterior Biodegrad, 2011, 65(3): 451-459.
CrossRef Google scholar
[]
Aburas MMA. Degradation of poly (3-hydroxybuthyrate) using Aspergillus oryzae obtained from uncultivated soil. Life Sci J, 2016, 13(3): 51-56.
[]
Agrawal N, Shahi SK. An environmental cleanup strategy-Microbial transformation of xenobiotic compounds. Int J Curr Microbiol App Sci, 2015, 4(4): 429-461.
[]
Akola J, Jones RO. Branching reactions in polycarbonate: a density functional study. Macromolecules, 2003, 36: 1355-1360.
CrossRef Google scholar
[]
Akutsu Y, Kambe TN, Nomura N, Nakahara T. Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Appl Environ Microbiol, 1998, 64(1): 62-67.
[]
Ali MI, Ahmed S, Robson G, Javed I, Ali N, Atiq N, Hameed A. Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. J Basic Microbiol, 2014, 54: 18-27.
CrossRef Google scholar
[]
Álvarez C, Reyes-Sosa FM, Díez B. Enzymatic hydrolysis of biomass from wood. Microbiol Biotechnol, 2016, 9(2): 149-156.
CrossRef Google scholar
[]
Ambika DK, Lakshmi BKM, Hemalatha KPJ. Degradation of low density polythene by Achromobacter denitrificans strain s1, a novel marine isolate. Int J Rec Sci Res, 2015, 6(7): 5454-5464.
[]
Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV. Biodegradation of polyethylene and polypropylene. Ind J Biotechnol, 2008, 7(1): 9-22.
[]
Arvanitoyannis I, Biliaderis CG, Ogawa H, Kawasaki N. Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: part 1. Carbohydr Polym, 1998, 36(2): 89-104.
CrossRef Google scholar
[]
Augusta J, Muller RJ, Widdecke H. A rapid evaluation plate-test for the biodegradability of plastics. Appl Microbiol Biotechnol, 1993, 3: 673-678.
CrossRef Google scholar
[]
Averous L, Pollet E (2012) Biodegradable polymers. Environ Sil Nano Biol Gre Energy Technol: 13–39
[]
Azevedo HS, Reis RL. Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate Biodegradable systems in tissue engineering and regenerative medicine, 2005, Boca Raton: CRC Press, 177-201.
[]
Babul RP, O’Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Prog Biomater, 2013, 2(8): 1-16.
[]
Barlaz MA, Ham RK, Schaefer DM. Mass-balance analysis of anaerobically decomposed refuse. J Environ Eng, 1989, 115(6): 1088-1102.
CrossRef Google scholar
[]
Barnes DK. Biodiversity: invasions by marine life on plastic debris. Nature, 2002, 416(6883): 808-809.
CrossRef Google scholar
[]
Basnett P, Knowles JC, Pishbin F, Smith C, Keshavarz T, Boccaccini AR, Roy I. Novel biodegradable and biocompatible poly (3-hydroxyoctanoate)/bacterial cellulose composites. Adv Eng Mater, 2012, 14(6): 330-343.
CrossRef Google scholar
[]
Basnett P, Ching KY, Stolz M, Knowles JC, Boccaccini AR, Smith C, Locke IC, Keshavarz T, Roy I. Novel poly (3-hydroxyoctanoate)/poly (3-hydroxybutyrate) blends for medical applications. React Funct Polym, 2013, 73: 1340-1348.
CrossRef Google scholar
[]
Benedic CV, Cameron JA, Huang SJ. Polycaprolactone degradation by mixed and pure cultures of bacteria and a yeast. J Appl Polym Sci, 1983, 28(1): 335-342.
CrossRef Google scholar
[]
Berlemont R, Martiny AC. Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol, 2013, 79(5): 1545-1554.
CrossRef Google scholar
[]
Bhardwaj H, Gupta R, Tiwari A. Microbial population associated with plastic degradation. Sci Rep, 2012, 1(2): 1-4.
[]
Bhardwaj H, Gupta R, Tiwari A. Communities of microbial enzymes associated with biodegradation of plastics. J Polym Environ, 2012, 21(2): 575-579.
CrossRef Google scholar
[]
Bhatia M, Girdhar A, Tiwari A, Nayarisseri A. Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach. SpringerPlus, 2014, 3(497): 1-10.
[]
Bhatnagar S, Kumari R. Bioremediation: a sustainable tool for environmental management—a review. Ann Rev Res Biol, 2013, 3(4): 974-993.
[]
Blouzard JC, Bourgeois C, De Philip P, Valette O, Bélaïch A, Tardif C, Belaich JP, Pagès S. Enzyme diversity of the cellulolytic system produced by Clostridium cellulolyticum explored by two-dimensional analysis: identification of seven genes encoding new dockerin-containing proteins. J Bact, 2007, 189(6): 2300-2309.
CrossRef Google scholar
[]
Bode HB, Zeeck A, Plückhahn K, Jendrossek D. Physiological and chemical investigations into microbial degradation of synthetic poly (cis-1, 4-isoprene). Appl Environ Microbiol, 2000, 66(9): 3680-3685.
CrossRef Google scholar
[]
Bogino PC, Oliva MDLM, Sorroche FG, Giordano W. The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci, 2013, 14(8): 15838-15859.
CrossRef Google scholar
[]
Bonartsev AP, Myshkina VL, Nikolaeva DA, Furina EK, Makhina TA, Livshits VA, Boskhomdzhiev AP, Ivanov EA, Iordanskii AL, Bonartseva GA. Biosynthesis, biodegradation, and application of poly (3-hydroxybutyrate) and its copolymers-natural polyesters produced by diazotrophic bacteria. Commun Curr Res Educ Top Trends Appl Microbiol, 2007, 1: 295-307.
[]
Bonhommea S, Cuerb A, Delort AM, Lemairea J, Sancelmeb M, Scott G. Environmental biodegradation of polyethylene. Polym Degrad Stab, 2003, 81: 441-452.
CrossRef Google scholar
[]
Bonilla CEP, Perilla JE. The past, present and near future of materials for use in biodegradable orthopaedic implants. Ing Investig, 2011, 31(2): 124-133.
[]
Brune A, Frenzel P, Cypionka H. Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev, 2000, 24(5): 691-710.
CrossRef Google scholar
[]
Bryers JD, Jarvis RA, Lebo J, Prudencio A, Kyriakides TR, Uhrich K. Biodegradation of poly (anhydride-esters) into non-steroidal anti-inflammatory drugs and their effect on Pseudomonas aeruginosa biofilms in vitro and on the foreign-body response in vivo. Biomaterials, 2006, 27(29): 5039-5048.
CrossRef Google scholar
[]
Calabia BP, Tokiwa Y. Microbial degradation of poly (D-3-hydroxybutyrate) by a new thermophilic Streptomyces isolate. Biotechnol Lett, 2004, 26(1): 15-19.
CrossRef Google scholar
[]
Carrier M, Serani AL, Absalon C, Aymonier C, Mench M. Degradation pathways of holocellulose, lignin and a-cellulose from Pteris vittata fronds in sub- and super critical conditions. Biomass Bioenergy, 2012, 43: 65-71.
CrossRef Google scholar
[]
Caruso G. Plastic degrading microorganisms as a tool for bioremediation of plastic contamination in aquatic environments. J Pollut Eff Cont, 2015, 3(3): 1-2.
CrossRef Google scholar
[]
Carvalheiro F, Duarte LC, Girio FM. Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res, 2008, 67: 849-864.
[]
Cazemier AE. (Hemi) cellulose degradation by microorganisms from the intestinal tract of arthropods, 1969, Ponsen & Looijen: Wageningen, 1-135.
[]
Chahal PS, Chahal DS, André G. Cellulase production profile of Trichoderma reesei on different cellulosic substrates at various pH levels. J Ferment Bioeng, 1992, 74(2): 126-128.
CrossRef Google scholar
[]
Chaisu K, Siripholvat V, Chiu CH. New method of rapid and simple colorimetric assay for detecting the enzymatic degradation of poly lactic acid plastic films. Int J Life Sci Biotechnol Pharm, 2015, 4(1): 57-61.
[]
Chandra R, Rustgi R. Biodegradable polymers. Perg, 1998, 23: 1273-1335.
[]
Chang HM, Wang ZH, Luo HN, Xu M, Ren XY, Zheng GX, Wu BJ, Zhang XH, Lu XY, Chen F, Jing XH, Wang L. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering. Braz J Med Bio Res, 2014, 47(7): 533-539.
CrossRef Google scholar
[]
Chao HSI, Hovatter TW. Preparation and characterization of polyphenylene ether and nylon-6 block co polymer. Polym Bull, 1987, 17: 423-430.
[]
Charoenpanich J, Tani A, Moriwaki N, Kimbara K, Kawai F. Dual regulation of a polyethylene glycol degradative operon by AraC-type and GalR-type regulators in Sphingopyxis macrogoltabida strain 103. Microbiology, 2006, 152(10): 3025-3034.
CrossRef Google scholar
[]
Cheah K, Cook WD. Structure-property relationships of blends of polycarbonate. Polym Eng Sci, 2003, 43(11): 1727-1739.
CrossRef Google scholar
[]
Chen J, Zhang Y, Du GC, Hua ZZ, Zhu Y. Biodegradation of polyvinyl alcohol by a mixed microbial culture. Enzyme Microbiol Technol, 2007, 40(7): 1686-1691.
CrossRef Google scholar
[]
Chrissafis K, Paraskevopoulos KM, Bikiaris DN. Thermal degradation mechanism of poly (ethylene succinate) and poly (butylene succinate): comparative study. Thermochim Act, 2005, 43(2): 142-150.
CrossRef Google scholar
[]
Chrissafis K, Paraskevopoulos KM, Bikiaris DN. Effect of molecular weight on thermal degradation mechanism of the biodegradable polyester poly (ethylene succinate). Thermochim Acta, 2006, 440(2): 166-175.
CrossRef Google scholar
[]
Coen JA, Dehority BA. Degradation and utilization of hemicellulose from intact forages by pure cultures of rumen bacteria. Appl Microbiol, 1970, 20(3): 362-368.
[]
Copinet A, Bertrand C, Govindin S, Coma V, Couturier Y. Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere, 2004, 55(5): 763-773.
CrossRef Google scholar
[]
Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, Etxabe AG, Goodell BG, Jellison J, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JE, Zimmer M. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol, 2015, 29: 108-119.
CrossRef Google scholar
[]
Danis O, Ogan A, Tatlican P, Attar A, Cakmakci E, Mertoglu B, Birbir M. Preparation of poly (3-hydroxybutyrate-co-hydroxyvalerate) films from halophilic archaea and their potential use in drug delivery. Extr., 2015
[]
Das MP, Kumar S. An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biote, 2015, 5(1): 81-86.
[]
Datta A (2007) M.Sc. Thesis. B.E. University of Pune, Pune
[]
Devi RS, Kannan VR, Nivas D, Kannan K, Chandru S, Antony AR. Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar. India Marine Pollut Bull, 2015, 96(1): 32-40.
CrossRef Google scholar
[]
Dey U, Mondal NK, Das K, Dutta S. An approach to polymer degradation through microbes. J Pharm, 2012, 2(3): 385-388.
[]
Dhar M, Sepkovic DW, Hirani V, Magnusson RP, Lasker JM. Omega oxidation of 3-hydroxy fatty acids by the human CYP4F gene subfamily enzyme CYP4F11. J Lipid Res, 2008, 49: 612-624.
CrossRef Google scholar
[]
Dimarogona M, Topakas E, Christakopoulos P. Cellulose degradation by oxidative enzymes. Comput Struct Biotechnol J, 2012, 2(3): 1-8.
CrossRef Google scholar
[]
Duddu MK, Tripura KL, Guntuku G, Divya DS. Biodegradation of low density polyethylene (LDPE) by a new biosurfactant-producing thermophilic Streptomyces coelicoflavus NBRC 15399T. Afr J Biotechnol, 2015, 14(4): 327-340.
CrossRef Google scholar
[]
Dussud C, Ghiglione JF (2014) Bacterial degradation of synthetic plastics. In CIESM Workshop Monogr (No. 46)
[]
Eubeler JP, Zok S, Bernhard M, Knepper TP. Environmental biodegradation of synthetic polymers I. Test methodologies and procedures. TrAC Trends Anal Chem, 2009, 28(9): 1057-1072.
CrossRef Google scholar
[]
Fernandez-Fueyo E, Ruiz-Dueñas FJ, López-Lucendo MF, Pérez-Boada M, Rencoret J, Gutiérrez A, Pisabarro AG, Ramírez L, Martínez AT. A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus. Biotechnol Biofuels, 2016, 9(49): 1-18.
[]
Feuilloley P, Cesar G, Benguigui L, Grohens Y, Pillin I, Bewa H, Lefaux S, Jama M. Degradation of polyethylene designed for agricultural purposes. J Polym Environ, 2005, 13(4): 349-355.
CrossRef Google scholar
[]
Fisher AB, Fong SS. Lignin biodegradation and industrial implications. AIMS Bioeng, 2014, 1(2): 92-112.
CrossRef Google scholar
[]
Flavel BS, Shapter JG, Quinton JS. Nanosphere lithography using thermal evaporation of gold, 2006, New York: IEEE, 578-581.
[]
Fontanella S, Bonhomme S, Koutny M, Husarova L, Brusson JM, Courdavault JP, Pitterif S, Samuelg G, Pichonh G, Lemairea J, Delort AM. Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym Degrad Stab, 2010, 95(6): 1011-1021.
CrossRef Google scholar
[]
Foster LJR, Tighe BJ. Centrifugally spun polyhydroxybutyrate fibres: accelerated hydrolytic degradation studies. Polym Degrad Stab, 2005, 87(1): 1-10.
CrossRef Google scholar
[]
French CE (2009) Synthetic biology and biomass conversion: a match made in heaven? J R Soc Interface: 1–12
[]
Frings J, Schramm E, Schink B. Enzymes involved in anaerobic polyethylene glycol degradation by Pelobacter venetianus and Bacteroides strain PG1. Appl Environ Microbiol, 1992, 58(7): 2164-2167.
[]
Fukae R, Fujii T, Takeo M, Yamamoto T, Sato T, Maeda Y, Sangen O. Biodegradation of poly (vinyl alcohol) with high isotacticity. Polym J, 1994, 26(12): 1381-1386.
CrossRef Google scholar
[]
Gajanand E, Soni LK, Dixit VK. Biodegradable polymers: a smart strategy for today’s crucial needs. Crit Rev Pharm Sci, 2014, 3(1): 1-70.
[]
Gajendiran A, Krishnamoorthy S, Abraham J. Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biote, 2016, 6(1): 1-6.
[]
Gallert C, Winter J. Bacterial metabolism in wastewater treatment systems, 2005, Weinheim: Wiley-VCH, 1-48.
[]
Garlotta D. A literature review of poly (lactic acid). J Polym Environ, 2002, 9(2): 63-84.
CrossRef Google scholar
[]
Gautam R, Bassi AS, Yanful EK, Cullen E. Biodegradation of automotive waste polyester polyurethane foam using Pseudomonas chlororaphis ATCC55729. Int Biodeterior Biodegrad, 2007, 60(4): 245-249.
CrossRef Google scholar
[]
Gerard T, Budtova T, Podshivalov A, Bronnikov S. Polylactide/poly (hydroxybutyrate-co-hydroxyvalerate) blends: morphology and mechanical properties. Expr Polym Lett, 2014, 8(8): 609-617.
CrossRef Google scholar
[]
Giudicianni P, Cardone G, Ragucci R. Cellulose, hemicellulose and lignin slow steam pyrolysis: thermal decomposition of biomass components mixtures. J Anal Appl Pyrolysis, 2013, 100: 213-222.
CrossRef Google scholar
[]
Grover A, Gupta A, Chandra S, Kumari A, Khurana SP. Polythene and environment. Int J Environ Sci, 2015, 5(6): 1091-1105.
[]
Gu JD. Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior Biodegrad, 2003, 52(2): 69-91.
CrossRef Google scholar
[]
Gu JD, Mitchell R. Biodeterioration. “The Prokaryotes”, 2006, New York: Springer, 864-903.
[]
Guo W, Duan J, Geng W, Feng J, Wang S, Song C. Comparison of medium-chain-length polyhydroxyalkanoates synthases from Pseudomonas mendocina NK-01 with the same substrate specificity. Microbiol Res, 2013, 168: 231-237.
CrossRef Google scholar
[]
Hadad D, Geresh S, Sivan A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol, 2005, 98(5): 1093-1100.
CrossRef Google scholar
[]
Hasegawa T, Mikuni T. Higher-order structural analysis of nylon-66 nanofibers prepared by carbon dioxide laser supersonic drawing and exhibiting near-equilibrium melting temperature. J Appl Polym Sci, 2014, 40361: 1-8.
[]
Hatakka A. Biodegradation of lignin, 2005, Helsinki: University of Helsinki, Viikki Biocenter, 129-145.
[]
Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner JK, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman HN, Osman S, Lu Z, Nostrand JDV, Deng P, Zhou J, Mason OU. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science, 2010, 330(6001): 204-208.
CrossRef Google scholar
[]
Hidayat A, Tachibana S. Characterization of polylactic acid (PLA)/kenaf composite degradation by immobilized mycelia of Pleurotus ostreatus. Int Biodeterior Biodegrad, 2012, 71: 50-54.
CrossRef Google scholar
[]
Hirota-Mamoto R, Nagai R, Tachibana S, Yasuda M, Tani A, Kimbara K, Kawai F. Cloning and expression of the gene for periplasmic poly (vinyl alcohol) dehydrogenase from Sphingomonas sp. strain 113P3, a novel-type quinohaemoprotein alcohol dehydrogenase. Microbiology, 2006, 152(7): 1941-1949.
CrossRef Google scholar
[]
Hoang KC, Tseng M, Shu WJ. Degradation of polyethylene succinate (PES) by a new thermophilic Microbispora strain. Biodegradation, 2007, 18(3): 333-342.
CrossRef Google scholar
[]
Horn SJ, Kolstad GV, Westereng B, Eijsink VG. Novel enzymes for the degradation of cellulose. Biotechnol Biofuel, 2012, 5(45): 1-12.
[]
Howard GT. Biodegradation of polyurethane: a review. Int Biodeterior Biodegrad, 2002, 49: 245-252.
CrossRef Google scholar
[]
Howard GT (2012) Polyurethane biodegradation. Microbiol Degrade Xenobiot. 371–394
[]
Howard GT, Mackie RI, Cann IKO, Ohene-Adjei S, Aboudehen KS, Duos BG, Childers GW. Effect of insertional mutations in the pueA and pueB genes encoding two polyurethanases in Pseudomonas chlororaphis contained within a gene cluster. J Appl Microbiol, 2007, 103(6): 2074-2083.
CrossRef Google scholar
[]
Hu X, Mamoto R, Shimomura Y, Kimbara K, Kawai F. Cell surface structure enhancing uptake of polyvinyl alcohol (PVA) is induced by PVA in the PVA-utilizing Sphingopyxis sp. strain 113P3. Arch Microbiol, 2007, 188(3): 235-241.
CrossRef Google scholar
[]
Huang YL, Li QB, Deng X, Lu YH, Liao XK, Hong MY, Wang Y. Aerobic and anaerobic biodegradation of polyethylene glycols using sludge microbes. Process Biochem, 2005, 40(1): 207-211.
CrossRef Google scholar
[]
Husarova L, Machovsky M, Gerych P, Houser J, Koutny M. Aerobic biodegradation of calcium carbonate filled polyethylene film containing pro-oxidant additives. Polym Degrad Stab, 2010, 95(9): 1794-1799.
CrossRef Google scholar
[]
Husarova L, Ruzicka J, Marusincova H, Koutny M. 2010b. Use of temperature gradient gel electrophoresis for the investigation of poly (vinyl alcohol) biodegradation. Develop Energy Environ Econom: 157–159
[]
Ianuzzo D, Patel P, Chen V, Obrien P, Willams C. Hydrolysis of polyesters by lipases. Nature, 1977, 270: 76-78.
CrossRef Google scholar
[]
Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun, 2000, 21(3): 117-132.
CrossRef Google scholar
[]
Iovino R, Zullo R, Rao MA, Cassar L, Gianfreda L. Biodegradation of poly (lactic acid)/starch/coir biocomposites under controlled composting conditions. Polym Degrad Stab, 2008, 93(1): 147-157.
CrossRef Google scholar
[]
Ishii N, Inoue Y, Shimada KI, Tezuka Y, Mitomo H, Kasuya KI. Fungal degradation of poly (ethylene succinate). Polym Degrad Stab, 2007, 92(1): 44-52.
CrossRef Google scholar
[]
Jeffrie TW (1994) Biodegradation of lignin and hemicelluloses. Biochem Microbiol Degrad: 233–277
[]
Jeon IY, Baek JB. Nanocomposites derived from polymers and inorganic nanoparticles. Materials, 2010, 3: 3654-3674.
CrossRef Google scholar
[]
Jirage AS, Baravkar VS, Kate VK, Payghan SA, Disouza JI. Poly-β-hydroxybutyrate: intriguing biopolymer in biomedical applications and pharma formulation trends. Int J Pharm Biol Arch, 2011, 4(6): 1107-1118.
[]
Jonsson LJ, Martín C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol, 2016, 199: 103-112.
CrossRef Google scholar
[]
Junnarkar N, Pandhi N, Raiyani N, Bhatt N, Raiyani R. Production of LiP by Phanerochaete chrysosporium MTCC 787 through solid state fermentation of wheat straw and assessing its activity against reactive black B. Int J Adv Res, 2016, 4(1): 812-819.
[]
Kadouri D, Burdman S, Jurkevitch E, Okon Y. Identification and isolation of genes involved in poly (β-hydroxybutyrate) biosynthesis in Azospirillum brasilense and characterization of a phbC mutant. Appl Environ Microbiol, 2002, 68(6): 2943-2949.
CrossRef Google scholar
[]
Kale SK, Deshmukh AG, Dudhare MS, Patil VB. Microbial degradation of plastic: a review. J Biochem Technol, 2015, 6(2): 952-961.
[]
Kameshwar AKS, Qin W. Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms. Int J Biol Sci, 2016, 12: 156-171.
CrossRef Google scholar
[]
Karimi K, Taherzadeh MJ. A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol, 2016, 200: 1008-1018.
CrossRef Google scholar
[]
Kathiresan K. Polythene and plastics-degrading microbes from the mangrove soil. Rev Biol Trop, 2003, 51(3): 629-634.
[]
Kato S, Chino K, Kamimura N, Masai E, Yumoto I, Kamagata Y. Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil. Sci Rep, 2015, 5: 1-11.
[]
Kawai F. The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms. Biosci Biotechnol Biochem, 2010, 74(9): 1743-1759.
CrossRef Google scholar
[]
Kawai F, Hu X. Biochemistry of microbial polyvinyl alcohol degradation. Appl Microbiol Biotechnol, 2009, 84(2): 227-237.
CrossRef Google scholar
[]
Khoramnejadian S. Microbial degradation of starch based polypropylene. J Pure Appl Microbiol, 2013, 7(4): 2857-2860.
[]
Kokare CR, Chakraborty S, Khopade AN, Mahadik KR. Biofilm: importance and applications. Ind J Biotechnol, 2009, 8(2): 159-168.
[]
Kolybaba M, Tabil LG, Panigrahi S, Crerar WJ, Powell T, Wang B (2003) Biodegradable polymers: past, present, and future. Soc Eng Agric Food Biol Syst: 1–15
[]
Korotkova N, Lidstrom ME. Connection between Poly-β-Hydroxybutyrate Biosynthesis and Growth on C1 and C2 Compounds in the Methylotroph Methylobacterium extorquens AM1. J Bact, 2001, 183(3): 1038-1046.
CrossRef Google scholar
[]
Koutny M, Lemaire J, Delort AM. Biodegradation of polyethylene films with prooxidant additives. Chemosphere, 2006, 64(8): 1243-1252.
CrossRef Google scholar
[]
Koutsos V (2009) Polymeric materials: an introduction. ICE Man Constr Mater: 571–597
[]
Kubokawa H, Hatakeyama T. Melting behavior of nylon 6 fiber in textiles. J Therm Anal Calorim, 2002, 70: 723-732.
CrossRef Google scholar
[]
Kumar AA, Karthick K, Arumugam KP. Biodegradable polymers and its applications. Int J Biosci Biochem Bioinform, 2011, 1(3): 173-176.
[]
Kunioka M, Ninomiya F, Funabashi M. Biodegradation of poly (lactic acid) powders proposed as the reference test materials for the international standard of biodegradation evaluation methods. Polym Degrad Stab, 2006, 91(9): 1919-1928.
CrossRef Google scholar
[]
Kwon HJ, Jung CH, Hwang IT, Choi JH, Nho YC. Surface functionalization of poly (ethylene terephthalate) for biomolecule immobilization by ion implantation. J Korea Phys Soc, 2009, 54(5): 2071-2075.
[]
Larking DM, Crawford RJ, Christie GBY, Lonergan GT. Enhanced degradation of polyvinyl alcohol by Pycnoporus cinnabarinus after pretreatment with fenton’s reagent. Appl Environ Microbiol, 1999, 65(4): 1798-1800.
[]
Larroque M, Barriot R, Bottin A, Barre A, Rougé P, Dumas B, Gaulin E. The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses. BMC Genom, 2012, 13(605): 1-15.
[]
Leja K, Lewandowicz G. Polymer biodegradation and biodegradable polymers—a review. Pol J Environ Stud, 2010, 19(2): 255-266.
[]
Leschine SB. Cellulose degradation in anaerobic environments. Annu Rev Microbiol, 1995, 49: 399-426.
CrossRef Google scholar
[]
Li R. Environmental degradation of wood–HDPE composite. Polym Degrad Stab, 2000, 70(2): 135-145.
CrossRef Google scholar
[]
Liang TW, Jen SN, Nguyen AD, Wang SL. Application of chitinous materials in production and purification of a poly (l-lactic acid) depolymerase from Pseudomonas tamsuii TKU015. Polymers, 2016, 8(98): 2-11.
[]
Lim HA, Raku T, Tokiwa Y. Hydrolysis of polyesters by serine proteases. Biotechnol Lett, 2005, 27(7): 459-464.
CrossRef Google scholar
[]
Liu Q, Luo G, Zhou XR, Chen GQ. Biosynthesisofpoly (3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoatesby b-oxidation pathway inhibited Pseudomonas putida. Metab Eng, 2011, 13: 11-17.
CrossRef Google scholar
[]
Liu C, Zeng JB, Li SL, He YS, Wang YZ. Improvement of biocompatibility and biodegradability of poly (ethylene succinate) by incorporation of poly (ethylene glycol) segments. Polymers, 2012, 53(2): 481-489.
CrossRef Google scholar
[]
Liu Q, Zhang H, Deng B, Zhao X (2014) Poly (3-hydroxybutyrate) and poly (3 hydroxybutyrate-co-3-hydroxyvalerate): structure, property, and fiber. Int J Polym Sci: 1–11
[]
Lopez-Mondéjar R, Zühlke D, Větrovský T, Becher D, Riedel K, Baldrian P. Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuel, 2016, 9(104): 1-12.
[]
Loredo-Treviño A, García G, Velasco-Téllez A, Rodríguez-Herrera R, Aguilar CN. Polyurethane foam as substrate for fungal strains. Adv Biosci Biotechnol, 2011, 2(2): 52-58.
CrossRef Google scholar
[]
Ma A, Wong Q. Identification of esterase in Aspergillus flavus during degradation of polyester polyurethane. Can Young Sci J, 2013, 2(2013): 24-31.
[]
Ma J, Zhang K, Liao H, Hector SB, Shi X, Li J, Liu B, Xu T, Tong C, Liu X, Zhu Y. Genomic and secretomic insight into lignocellulolytic system of an endophytic bacterium Pantoea ananatis Sd-1. Biotechnol Biofuel, 2016, 9(25): 1-15.
[]
Maamar H, Valette O, Fierobe HP, Bélaich A, Bélaich JP, Tardif C. Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1. Mol Microbial, 2004, 51(2): 589-598.
CrossRef Google scholar
[]
Mabrouk MM, Sabry SA. Degradation of poly (3-hydroxybutyrate) and its copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by a marine Streptomyces sp. SNG9. Microbiol Res, 2001, 156(4): 323-335.
CrossRef Google scholar
[]
Mahalakshmi V, Siddiq A, Andrew SN. Analysis of polyethylene degrading potentials of microorganisms isolated from compost soil. Int J Pharm Biol Arch, 2012, 3(5): 1190-1196.
[]
Marusincova H, Husárová L, Růžička J, Ingr M, Navrátil V, Buňková L, Koutny M. Polyvinyl alcohol biodegradation under denitrifying conditions. Int Biodeterior Biodegrad., 2013, 84: 21-28.
CrossRef Google scholar
[]
Masaki K, Kamini NR, Ikeda H, Iefuji H. Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Appl Envir Microbiol., 2005, 71(11): 7548-7550.
CrossRef Google scholar
[]
Matsumura S, Shimura Y, Terayama K, Kiyohara T. Effects of molecular weight and stereoregularity on biodegradation of poly (vinyl alcohol) by Alcaligenes faecalis. Biotechnol Lett, 1994, 16(11): 1205-1210.
CrossRef Google scholar
[]
Mcalpine SR, Lindsley CW, Hodges JC, Leonard DM, Filzen GF. Determination of functional group distribution within rasta resins utilizing optical analysis. J Comb Chem, 2001, 3(1): 1-5.
CrossRef Google scholar
[]
Mccallum TJ, Kontopoulou M, Park CB, Muliawan EB, Hatzikiriakos SG. The rheological and physical properties of linear and branched polypropylene blends. Polym Eng Sci, 2007, 47: 1133-1140.
CrossRef Google scholar
[]
Mehmood CT, Qazi IA, Hashmi I, Bhargava S, Deepa S. Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii. Int Biodeterior Biodegrad, 2016
[]
Menon V, Prakash G, Rao M. Value added products from hemicellulose: biotechnological perspective, 2010, Pune: Division of Biochemical Sciences, National Chemical Laboratory, 1-58.
[]
Merrettig-Bruns U, Jelen E. Anaerobic biodegradation of detergent surfactants. Material, 2009, 2(1): 181-206.
CrossRef Google scholar
[]
Mohan SK, Srivastava T. Microbial deterioration and degradation of polymeric materials. J Biochem Technol, 2011, 2(4): 210-215.
[]
Mooney A, Ward PG, O’Connor KE. Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications. Appl Microbiol Biotechnol, 2006, 72(1): 1-10.
CrossRef Google scholar
[]
Moore CJ. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ Res, 2008, 108: 131-139.
CrossRef Google scholar
[]
Motiwalla MJ, Punyarthi PP, Mehta MK, D’Souza JS, Kelkar-Mane V. Studies on degradation efficiency of polycaprolactone by a naturally-occurring bacterium. J Environ Biol, 2013, 34: 43-49.
[]
Muenmee S, Chiemchaisri W, Chiemchaisri C. Microbial consortium involving biological methane oxidation in relation to the biodegradation of waste plastics in a solid waste disposal open dump site. Int Biodeterior Biodegrad, 2015, 102: 172-181.
CrossRef Google scholar
[]
Muenmee S, Chiemchaisri W, Chiemchaisri C. Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill. Int Biodeterior Biodegrad, 2016
[]
Mumtaz T, Khan MR, Hassan MA. Study of environmental biodegradation of LDPE films in soil using optical and scanning electron microscopy. Micron, 2010, 41(5): 430-438.
CrossRef Google scholar
[]
Murphy CA, Cameron JA, Huang SJ, Vinopal RT. Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol, 1996, 62(2): 456-460.
[]
Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Onuma F, Nakahara T. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl Microbiol Biotechnol, 1999, 51(2): 134-140.
CrossRef Google scholar
[]
Nakayama K, Furumiya A, Okamot T, Yag K, Kaito A, Choe CR, Wu L, Zhang G, Xiu L, Liu D, Masuda T, Nakajima A. Structure and mechanical weight polyethylene deformed near melting temperature properties of ultra-high molecular. Pur Appl Chem, 1991, 63(12): 1793-1804.
CrossRef Google scholar
[]
Nerland IL, Halsband C, Allan I, Thomas KV (2014). Microplastics in marine environments: occurrence, distribution and effects (Re.no.6754-2014). Norwegian Institute for Water Research, Oslo, pp 1–71. http://www.miljodirektoratet.no/Documents/publikasjoner/M319/M319.pdf. Accessed 31 Dec 2014
[]
Nishida H, Tokiwa Y. Distribution of poly (β-hydroxybutyrate) and poly (ε-caprolactone) aerobic degrading microorganisms in different environments. J Environ Polym Degrad, 1993, 1(3): 227-233.
CrossRef Google scholar
[]
Nurbas M, Kutsal T. Production of PHB and p (HB-co-HV) biopolymers by using Alcaligenes eutrophus. Iran Polym J, 2004, 13(1): 45-51.
[]
Nwachkwu S, Obidi O, Odocha C. Occurrence and recalcitrance of polyethylene bag waste in nigerian soils. Afr J Biotechnol, 2010, 9(37): 6096-6104.
[]
Obradors N, Aguilar J. Efficient biodegradation of high-molecular-weight polyethylene glycols by pure Cultures of Pseudomonas stutzeri. Appl Environ Microbiol, 1991, 57(8): 2383-2388.
[]
Oda Y, Asari H, Urakami T, Tonomura K. Microbial degradation of poly (3-hydroxcybutyrate) and polycaprolactone by filamentous fungi. J Ferment Bioengine, 1995, 80(3): 265-269.
CrossRef Google scholar
[]
Odusanya SA, Nkwogu JV, Alu N, Udo GE, Ajao JA, Osinkolu GA, Uzomah AC. Preliminary studies on microbial degradation of plastics used in packaging potable water in Nigeria. Niger Food J, 2013, 31(2): 63-72.
CrossRef Google scholar
[]
Ohta T, Tani A, Kimbara K, Kawai F. A novel nicotinoprotein aldehyde dehydrogenase involved in polyethylene glycol degradation. Appl Microbiol Biotechnol, 2005, 68(5): 639-646.
CrossRef Google scholar
[]
Ohtsubo Y, Nagata Y, Numata M, Tsuchikane K, Hosoyama A, Yamazoe A, Tsuda M, Fujita N, Kawai F. Complete genome sequence of Sphingopyxis macrogoltabida type strain NBRC 15033, originally isolated as a polyethylene glycol degrader. Genome Announc, 2015, 3(6): e01401-e01415.
[]
Ohura T, Kasuya KI, Doi Y. Cloning and characterization of the polyhydroxybutyrate depolymerase gene of Pseudomonas stutzeri and analysis of the function of substrate-binding domains. Appl Environ Microbiol, 1999, 65(1): 189-197.
[]
Ojo OA. Molecular strategies of microbial adaptation to xenobiotics in natural environment. Biotechnol Mol Biol Rev, 2007, 2(1): 1-13.
[]
Ojumu TV, Yu J, Solomon BO. Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr J Biotechnol, 2004, 3(1): 18-24.
CrossRef Google scholar
[]
Orr IG, Hadar Y, Sivan A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Btechnol, 2004, 65(1): 97-104.
[]
O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol, 2000, 54(1): 49-79.
CrossRef Google scholar
[]
Pajak J, Ziemski M, Nowak B. Poly (vinyl alcohol)—biodegradable vinyl material. CHEM Nauka-Tech-Rynek, 2010, 64(7–8): 523-530.
[]
Patil R, Bagde US. Enrichment and isolation of microbial strains degrading bioplastic polyvinyl alcohol and time course study of their degradation potential. Afr J Biotechnol, 2015, 14(27): 2216-2226.
CrossRef Google scholar
[]
Pereira JH, Heins RA, Gall DL, McAndrew RP, Deng K, Holland KC, Donohue TJ, Noguera DR, Simmons BA, Sale KL, Ralph J. Structural and biochemical characterization of the early and late enzymes in the lignin β-Aryl ether cleavage pathway from Sphingobium sp. SYK-6. J Chem, 2016, 291(19): 10228-10238.
[]
Perez J, Dorada JM, Rubia TDL. Biodegradation and biological treatments of cellulose, hemicelluloses and lignin: an overview. Int Microbiol, 2002, 5: 53-63.
CrossRef Google scholar
[]
Perez LAB, Rodriguez DN, Rodriguez FJM, Hsiao B, Orta CAA, Sics I. Molecular weight and crystallization temperature effects on poly (ethylene terephthalate) (PET) homopolymers, an isothermal crystallization analysis. Polymers, 2014, 6: 583-600.
CrossRef Google scholar
[]
Petre M, Zarnea G, Adrian P, Gheorghiu E. Biodegradation and bioconversion of cellulose wastes using bacterial and fungal cells immobilized in radiopolymerized hydrogels. Resour Conserv Recycl, 1999, 27: 309-332.
CrossRef Google scholar
[]
Pometto AL, Lee B, Johnson KE. Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species. Appl Environ Microbiol, 1992, 58(2): 731-733.
[]
Prakash B, Veeregowda BM, Krishnappa G. Biofilms: a survival strategy of bacteria. Curr Sci, 2003, 85(9): 1299-1307.
[]
Pramila R, Padmavathy K, Ramesh KV, Mahalakshmi K. Brevibacillus parabrevis, Acinetobacter baumannii and Pseudomonas citronellolis-Potential candidates for biodegradation of low density polyethylene (LDPE). Afr J Bacteriol Res, 2012, 4(1): 9-14.
[]
Pranamuda H, Tokiwa Y, Tanaka H. Polylactide degradation by an Amycolatopsis sp. Appl Environ Microbiol, 1997, 63(4): 1637-1640.
[]
Prema S, Uma MDP. Degradation of poly lactide plastic by mesophilic bacteria isolated from compost. Int J Res Purif Appl Microbiol, 2013, 3(4): 121-126.
[]
Premraj R, Doble M. Biodegradation of polymer. Ind J Biotechnol, 2005, 4: 186-193.
[]
Psomiadou E, Arvanitoyannis I, Biliaderis CG, Ogawa H, Kawasaki N. Biodegradable films made from low density polyethylene (LDPE), wheat starch and soluble starch for food packaging applications Part 2. Carbohydr Polym, 1997, 33(4): 227-242.
CrossRef Google scholar
[]
Puri N, Kumar B, Tyagi H. Utilization of recycled wastes as ingredients in concrete mix. Int J Innov Technol Explor Eng, 2013, 2(2): 74-78.
[]
Qiu Z, Ikehara T, Nishi T. Crystallization behaviour of biodegradable poly (ethylene succinate) from the amorphous state. Polymers, 2003, 44(18): 5429-5437.
CrossRef Google scholar
[]
Raghul SS, Bhat SG, Chandrasekaran M, Francis V, Thachil ET. Biodegradation of polyvinyl alcohol-low linear density polyethylene-blended plastic film by consortium of marine benthic vibrios. Int J Environ Sci Technol, 2013, 11(7): 1827-1834.
CrossRef Google scholar
[]
Rameshwari R, Meenakshisundaram M. A review on downstream processing of bacterial thermoplastic-polyhydroxyalkanoate. Int J Purif Appl Biosci, 2014, 2(2): 68-80.
[]
Ravachol J, Borne R, Tardif C, De Philip P, Fierobe HP. Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum. J Biol Chem, 2014, 289(11): 7335-7348.
CrossRef Google scholar
[]
Restrepo-Flórez JM, Bassi A, Thompson MR. Microbial degradation and deterioration of polyethylene-a review. Int Biodeterior Biodegrad, 2014, 88: 83-90.
CrossRef Google scholar
[]
Rong D, Usui K, Morohoshi T, Kato N, Zhou M, Ikeda T. Symbiotic degradation of polyvinyl alcohol by Novosphingobium sp. and Xanthobacter flavus. J Environ Biotechnol, 2009, 9(2): 131-134.
[]
Ruiyun Z, Xiaolie L, Qunhua W, Dezhu M. Melting behavior of low ethylene content polypropylene copolymer with and without nucleating agents. Chem J Polym Sci, 1994, 12(3): 246-255.
[]
Salgado CL, Sanchez EMS, Zavaglia CAC, Granja PT. Biocompatibility and biodegradation of polycaprolactone-sebacic acid blended gels. J Biomed Mater Res, 2011, 100A(1): 243-251.
CrossRef Google scholar
[]
Saloheimo M, Pakula TM. The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology, 2012, 158(1): 46-57.
CrossRef Google scholar
[]
Sangale MK, Shahnawaz M, Ade AB. A review on biodegradation of polythene: the microbial approach. J Bioremed Biodegrad, 2012, 3(10): 1-9.
CrossRef Google scholar
[]
Sangwan P, Wu DY. New insights into polylactide biodegradation from molecular ecological techniques. Macromol Biosci, 2008, 8(4): 304-315.
CrossRef Google scholar
[]
Santo M, Weitsman R, Sivan A. The role of the copper-binding enzyme–laccase—in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegrad, 2013, 84: 204-210.
CrossRef Google scholar
[]
Sarjit A, Tan SM, Dykes GA. Surface modification of materials to encourage beneficial biofilm formation. AIMS Bioeng, 2015, 2(4): 404-422.
CrossRef Google scholar
[]
Sathiskumar PS, Madras G. Synthesis, characterization, degradation of biodegradable castor oil based polyesters. Polym Degrad Stab, 2011, 96(9): 1695-1704.
CrossRef Google scholar
[]
Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol, 2010, 61: 263-289.
CrossRef Google scholar
[]
Schink B, Janssen PH, Frings J. Microbial degradation of natural and of new synthetic polymers. FEMS Microbiol Rev, 1992, 103(2/4): 311-316.
CrossRef Google scholar
[]
Sekiguchi T, Saika A, Nomura K, Watanabe T, Fujimoto Y, Enoki M, Sato T, Kato C, Kanehiro H. Biodegradation of aliphatic polyesters soaked in deep seawaters and isolation of poly (ɛ-caprolactone)-degrading bacteria. Polym Degrad Stab, 2011, 96(7): 1397-1403.
CrossRef Google scholar
[]
Sen SK, Raut S. Microbial degradation of low density polyethylene (LDPE): a review. J Environ Chem Eng, 2015, 3: 462-473.
CrossRef Google scholar
[]
Seretoudi G, Bikiaris D, Panayiotou C. Synthesis, characterization and biodegradability of poly (ethylene succinate)/poly (ε-caprolactone) block copolymers. Polymers, 2002, 43(20): 5405-5415.
CrossRef Google scholar
[]
Shah AA, Hasan F, Hameed A, Ahmed S. Isolation and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) degrading bacteria and purification of PHBV depolymerase from newly isolated Bacillus sp. AF3. Int Biodeterior Biodegrad, 2007, 60(2): 109-115.
CrossRef Google scholar
[]
Shah AA, Hasan F, Akhter JI, Hameed A, Ahmed S. Degradation of polyurethane by novel bacterial consortium isolated from soil. Anal Microbiol, 2008, 58(3): 381-386.
CrossRef Google scholar
[]
Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: a comprehensive review. Biotechnol Adv, 2008, 26(3): 246-265.
CrossRef Google scholar
[]
Shah AA, Hasan F, Hameed A. Degradation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by a newly isolated Actinomadura sp. AF-555, from soil. Int Biodeterior Biodegrad, 2010, 64(4): 281-285.
CrossRef Google scholar
[]
Shahnawaz M, Sangale MK, Ade AB (2016) Rhizosphere of Avicennia marina (Forsk.) Vierh. as a landmark for polythene degrading bacteria. Environ Sci Poll Res: 1–15
[]
Shanks R, Kong I. Thermoplastic elastomers, 137–154. Applied sciences, 2012, Melbourne: RMIT University.
[]
Sharma M, Dhingra HK. Poly-β-hydroxybutyrate: a biodegradable polyester, biosynthesis and biodegradation. Br Microbiol Res J, 2016, 14(3): 1-11.
CrossRef Google scholar
[]
Sharma S, Rafailovich MH, Sokolov J, Liu Y, Schwarz SA, Eisenberg A. Dewetting properties of polystyrene homopolymer thin films on grafted polystyrene brush surfaces. High Perform Polym, 2000, 12: 581-586.
CrossRef Google scholar
[]
Sharma BK, Saha A, Rahaman L, Bhattacharjee S, Tribedi P. Silver inhibits the biofilm formation of Pseudomonas aeruginosa. Adv Microbiol, 2015, 5(10): 677.
CrossRef Google scholar
[]
Sheik S, Chandrashekar KR, Swarccccoop K, Somashekarappa HM. Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeterior Biodegrad, 2015, 105: 21-29.
CrossRef Google scholar
[]
Shimao M. Biodegradation of plastics. Curr Opin Biotechnol, 2001, 12(3): 242-247.
CrossRef Google scholar
[]
Shimao M, Tamogami T, Kishida S, Harayama S. The gene pvaB encodes oxidized polyvinyl alcohol hydrolase of Pseudomonas sp. strain VM15C and forms an operon with the polyvinyl alcohol dehydrogenase gene pvaA. Microbiology., 2000, 146(3): 649-657.
CrossRef Google scholar
[]
Simoes M, Simões LC, Vieira MJ. A review of current and emergent biofilm control strategies. LWT-Food Sci Technol, 2010, 43(4): 573-583.
CrossRef Google scholar
[]
Singh B, Sharma N. Mechanistic implications of plastic degradation. Polym Degrad Stab, 2008, 93: 561-584.
CrossRef Google scholar
[]
Sivan A. New perspectives in plastic biodegradation. Curr Opin Biotechnol, 2011, 22: 422-426.
CrossRef Google scholar
[]
Sivan A, Szanto M, Pavlov V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol, 2006, 72(2): 346-352.
CrossRef Google scholar
[]
Slade PE, . Thermal analysis of polyurethane elastomers. J Polym Sci, 1964, 6: 27-32.
[]
Smith R. Biodegradable polymers for industrial applications, 2005, Boca Raton: CRC Press, 1-516.
CrossRef Google scholar
[]
Song JJ, Yoon SC, Yu SM, Lenz RW. Differential scanning calorimetric study of poly (3-hydroxyoctanoate) inclusions in bacterial cells. Int J Biol Macromol, 1998, 23: 165-173.
CrossRef Google scholar
[]
Song JH, Murphy RJ, Narayan R, Davies GBH. Biodegradable and compostable alternatives to conventional plastics. Philos Trans R Soc Biol, 2009, 364: 2127-2139.
CrossRef Google scholar
[]
Souza WRD. Microbial degradation of lignocellulosic biomass, 2013, West Palm Beach: InTech, 207-247.
[]
Sridevi V, Lakshmi MVVC, Manasa M, Sravani M. Metabolic pathways for the biodegradation of phenol. Int J Eng Sci Adv Technol, 2012, 2: 695-705.
[]
Stern RV, Howard GT. The polyester polyurethanase gene (pueA) from Pseudomonas chlororaphis encodes a lipase. FEMS Microbiol Lett, 2000, 185(2): 163-168.
CrossRef Google scholar
[]
Sugimoto M, Tanabe M, Hataya M, Enokibara S, Duine JA, Kawai F. The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide. J Bact, 2001, 183(22): 6694-6698.
CrossRef Google scholar
[]
Sukhumaporn S, Tokuyama S, Kitpreechavanich V. Poly (L-Lactide)-degrading enzyme production by Actinomadura keratinilytica T16-1 in 3 L airlift bioreactor and its degradation ability for biological. J Microbiol Biotechnol, 2012, 22(1): 92-99.
CrossRef Google scholar
[]
Summers JW (1996) A review of vinyl technology for non-scientists in the vinyl industry. Regional technical meeting, fort Mitchell. Soc Plas Eng. https://www.researchgate.net/publication/237644319
[]
Summers JW. The melting temperature (or not melting) of poly (vinyl chloride). J Vinyl Addit Technol, 2008, 14: 105-109.
CrossRef Google scholar
[]
Sun J, Tian C, Diamond S, Glass NL. Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Eukaryot Cell, 2012, 11(4): 482-493.
CrossRef Google scholar
[]
Suyama T, Tokiwa Y, Ouichanpagdee P, Kanagawa T, Kamagata Y. Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl Environ Microbiol, 1998, 64(12): 5008-5011.
[]
Sweileh BA, Hiari YMA, Kailani MH, Mohammad HA. Synthesis and characterization of polycarbonates by melt phase interchange reactions of alkylene and arylene diacetates with alkylene and arylene diphenyl dicarbonates. Molecules, 2010, 15: 3661-3682.
CrossRef Google scholar
[]
Takanashi M, Nomura Y, Yoshida Y, Inoue S. Functional polycarbonate by copolymerization of carbon dioxide and epoxide: synthesis and hydrolysis. Makromol Chem, 1982, 183: 2085-2092.
CrossRef Google scholar
[]
Tani A, Charoenpanich J, Mori T, Takeichi M, Kimbara K, Kawai F. Structure and conservation of a polyethylene glycol-degradative operon in sphingomonads. Microbiology, 2007, 153(2): 338-346.
CrossRef Google scholar
[]
Tezuka Y, Ishii N, Kasuya KI, Mitomo H. Degradation of poly (ethylene succinate) by mesophilic bacteria. Poly Degrad Stab, 2004, 84(1): 115-121.
CrossRef Google scholar
[]
Thomas BT, Olanrewaju-Kehinde DSK, Popoola OD, James ES. Degradation of Plastic and Polythene materials by some selected microorganisms isolated from soil. World Appl Sci J., 2015, 33(12): 1888-1891.
[]
Tobin E. Microstructuralism and macromolecules: the case of moonlighting proteins. Found Chem, 2010
[]
Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. Biodegradability of plastics. Int J Mol Sci, 2009, 10(9): 3722-3742.
CrossRef Google scholar
[]
Tomita K, Kuroki Y, Nagai K. Isolation of thermophiles degrading poly (l-lactic acid). J Biosci Bioeng, 1999, 87(6): 752-755.
CrossRef Google scholar
[]
Tribedi P, Sil AK. Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environ Sci Poll Res., 2013, 20(6): 4146-4153.
CrossRef Google scholar
[]
Tribedi P, Sil AK. Cell surface hydrophobicity: a key component in the degradation of polyethylene succinate by Pseudomonas sp. AKS2. J Appl Microbiol, 2013, 116(2): 295-303.
CrossRef Google scholar
[]
Tribedi P, Sil AK. Founder effect uncovers a new axis in polyethylene succinate bioremediation during biostimulation. FEMS Microbial Lett, 2013, 346(2): 113-120.
CrossRef Google scholar
[]
Tribedi P, Gupta AD, Sil AK. Adaptation of Pseudomonas sp. AKS2 in biofilm on low-density polyethylene surface: an effective strategy for efficient survival and polymer degradation. Bioresour Bioproc, 2015, 2(14): 1-10.
[]
Tripathi D (2002) Practical guide to polypropylene. Rapid Technol Lim: 1–104
[]
Tseng M, Hoang KC, Yang MK, Yang SF, Chu WS. Polyester-degrading thermophilic actinomycetes isolated from different environment in Taiwan. Biodegradation, 2007, 18(5): 579-583.
CrossRef Google scholar
[]
Tsujiyama SI, Nitta T, Maoka T. Biodegradation of polyvinyl alcohol by Flammulina velutipes in an unsubmerged culture. J Biosci Bioeng, 2011, 112(1): 58-62.
CrossRef Google scholar
[]
Turesin F, Gumusyazici Z, Kok FN, Gursel I, Alaaddinolu NG, Hasirci V. Biosynthesis of polyhydroxybutyrate and its copolymers and their use in controlled drug release. Turk J Med Sci, 2000, 30: 535-541.
[]
Upreti MC, Srivastava RB. A potential Aspergillus species for biodegradation of polymeric materials. Curr Sci, 2003, 84(11): 1399-1402.
[]
Velde KV, Kiekens P. Biopolymers: overview of several properties and consequences on their applications. Polym Test, 2002, 121: 433-442.
CrossRef Google scholar
[]
Volova TG, Boyandin AN, Vasiliev AD, Karpov VA, Prudnikova SV, Mishukova OV, Boyarskikh UA, Filipenko ML, Rudnev VP, Xuân BB, Dũng VV, Gitelson II. Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab, 2010, 95(12): 2350-2359.
CrossRef Google scholar
[]
Vu B, Chen M, Crawford RJ, Ivanova EP. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules, 2009, 14(7): 2535-2554.
CrossRef Google scholar
[]
Walker TR, Reid K, Arnould JP, Croxall JP. Marine debris surveys at Bird Island, South Georgia 1990–1995. Mar Poll Bull, 1997, 34(1): 61-65.
CrossRef Google scholar
[]
Wan IY, Mcgrathz JE, Kashiwagi T (1995) Triaryphosphine oxide containing nylon 6, 6 copolymer. Am Chem Soc: 31–40
[]
Weng YX, Wang XL, Wang YZ. Biodegradation behavior of PHAs with different chemical structures under controlled composting conditions. Polym Test, 2011, 30(4): 372-380.
CrossRef Google scholar
[]
Werner K, Pommer L, Brostrom M. Thermal decomposition of hemicelluloses. J Anal Appl Pyro, 2014, 110: 130-137.
CrossRef Google scholar
[]
Wilkes CE, Daniels CA, Summers JW. PVC hand book, 2005, Bangkok: Hansar, 315-335.
[]
Woodruff MA, Hutmacher DW. The return of a forgotten polymer–polycaprolactone in the 21st century. Prog Polym Sci, 2010
[]
Wu H, Qiu Z. Synthesis, crystallization kinetics and morphology of novel poly (ethylene succinate-co-ethylene adipate) copolymers. Cryst Eng Comm, 2012, 14(10): 3586-3595.
CrossRef Google scholar
[]
Xie Y, Kohls D, Noda I, Schaefer DW, Yvonne A, Akpalu YA. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) nanocomposites with optimal mechanical properties. Polymers, 2009, 50: 4656-4670.
CrossRef Google scholar
[]
Xu Q, Resch MG, Podkaminer K, Yang S, Baker JO, Donohoe BS, Wilson C, Klingeman DM, Olson DG, Giannone RJ, Hettich RL, Brown SD, Lynd LR, Bayer EA, Himmel ME, Bomble YJ. Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities. Sci Adv, 2016, 2(e1501254): 1-12.
[]
Yagi H, Ninomiya F, Funabashi M, Kunioka M. Anaerobic biodegradation tests of poly (lactic acid) and polycaprolactone using new evaluation system for methane fermentation in anaerobic sludge. Poly Degrad Stab, 2009, 94(9): 1397-1404.
CrossRef Google scholar
[]
Yagi H, Ninomiya F, Funabashi M, Kunioka M. Mesophilic anaerobic biodegradation test and analysis of eubacteria and archaea involved in anaerobic biodegradation of four specified biodegradable polyesters. Poly Degrad Stab, 2014, 110: 278-283.
CrossRef Google scholar
[]
Yam KL. The Wiley encyclopedia of packaging technology (third edition), 2009, New York: Wiley, 1-1353.
CrossRef Google scholar
[]
Yoon MG, Jeon HJ, Kim MN. Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. J Bioremed Biodegrad, 2012, 3(4): 1-8.
[]
Zafar U (2013) Ph.D. Thesis. The University of Manchester, Manchester
[]
Zafar U, Houlden A, Robson GD. Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures. Appl Environ Microbiol, 2013, 79(23): 7313-7324.
CrossRef Google scholar
[]
Zafar U, Nzeram P, Langarica-Fuentes A, Houlden A, Heyworth A, Saiani A, Robson GD. Biodegradation of polyester polyurethane during commercial composting and analysis of associated fungal communities. Bioresour Technol, 2014, 158: 374-377.
CrossRef Google scholar
[]
Zembouai I, Bruzaud S, Kaci M, Benhamida A, Corre YM, Grohens Y, Taguet A, Cuesta JML. Poly (3-hydroxybutyrate-co-3-Hydroxyvalerate)/polylactide blends: thermal stability, flammability and thermo-mechanical behavior. J Polym Environ, 2014, 22: 131-139.
CrossRef Google scholar
[]
Zhang W, Cheng X, Liu X, Xiang M. Genome studies on nematophagous and entomogenous fungi in China. J Fungi, 2016, 2(9): 1-14.
[]
Zheng Y, Yanful EK. A review of plastic waste biodegradation. Crit Rev Biotechnol, 2005, 25: 243-250.
CrossRef Google scholar
Funding
UGC New Delhi(UGC-India (No.F. 25-1/2013-14(BSR)/11- 13/2008(BSR)))

13

Accesses

566

Citations

12

Altmetric

Detail

Sections
Recommended

/