Electron transport phenomena of electroactive bacteria in microbial fuel cells: a review of Proteus hauseri

I-Son Ng , Chung-Chuan Hsueh , Bor-Yann Chen

Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 53

PDF
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 53 DOI: 10.1186/s40643-017-0183-3
Review

Electron transport phenomena of electroactive bacteria in microbial fuel cells: a review of Proteus hauseri

Author information +
History +
PDF

Abstract

This review tended to decipher the expression of electron transfer capability (e.g., biofilm formation, electron shuttles, swarming motility, dye decolorization, bioelectricity generation) to microbial fuel cells (MFCs). As mixed culture were known to perform better than pure microbial cultures for optimal expression of electrochemically stable activities to pollutant degradation and bioenergy recycling, Proteus hauseri isolated as a “keystone species” to maintain such ecologically stable potential for power generation in MFCs was characterized. P. hauseri expressed outstanding performance of electron transfer (ET)-associated characteristics [e.g., reductive decolorization (RD) and bioelectricity generation (BG)] for electrochemically steered bioremediation even though it is not a nanowire-generating bacterium. This review tended to uncover taxonomic classification, genetic or genomic characteristics, enzymatic functions, and bioelectricity-generating capabilities of Proteus spp. with perspectives for electrochemical practicability. As a matter of fact, using MFCs as a tool to evaluate ET capabilities, dye decolorizer(s) could clearly express excellent performance of simultaneous bioelectricity generation and reductive decolorization (SBG and RD) due to feedback catalysis of residual decolorized metabolites (DMs) as electron shuttles (ESs). Moreover, the presence of reduced intermediates of nitroaromatics or DMs as ESs could synergistically augment efficiency of reductive decolorization and power generation. With swarming mobility, P. hauseri could own significant biofilm-forming capability to sustain ecologically stable consortia for RD and BG. This mini-review evidently provided lost episodes of great significance about bioenergy-steered applications in myriads of fields (e.g., biodegradation, biorefinery, and electro-fermentation).

Keywords

Proteus hauseri / Reductive decolorization / Bioelectricity generation / Bioremediation

Cite this article

Download citation ▾
I-Son Ng, Chung-Chuan Hsueh, Bor-Yann Chen. Electron transport phenomena of electroactive bacteria in microbial fuel cells: a review of Proteus hauseri. Bioresources and Bioprocessing, 2017, 4(1): 53 DOI:10.1186/s40643-017-0183-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armbruster CE, Mobley HL. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol, 2012, 10(11): 743-754.

[2]

Armbruster CE, Hodges SA, Mobley HL. Initiation of swarming motility by Proteus mirabilis occurs in response to specific cues present in urine and requires excess l-glutamine. J Bacteriol, 2013, 195(6): 1305-1319.

[3]

Bajracharya S, Sharma M, Mohanakrishna G, Benneton XD, Strik DPBTB, Sarma PM. An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew Energy, 2016, 98: 153-170.

[4]

Biffinger JC, Byrd JN, Dudley BL, Ringeisen BR. Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosens Bioelectron, 2008, 23: 820-826.

[5]

Briones A, Raskin L. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr Opin Biotechnol, 2003, 14(3): 270-276.

[6]

Brown D, Pagga U. The degradation of dyestuffs: part II behavior of dyestuffs in aerobic biodegradation test. Chemosphere, 1986, 15: 479-491.

[7]

Campo P, Platten W III, Suidan MT, Chai Y, Davis JW. Aerobic biodegradation of amines in industrial saline wastewaters. Chemosphere, 2011, 85(7): 1199-1203.

[8]

Chang JS, Chou C, Lin YC, Lin PJ, Ho JY, Hu TL. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res, 2001, 35: 2841-2850.

[9]

Chen BY. Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochem, 2002, 38(3): 437-446.

[10]

Chen BY. Revealing characteristics of mixed consortia for azo dye decolorization: Lotka-Volterra model and game theory. J Hazard Mater, 2007, 149(2): 508-514.

[11]

Chen BY, Chang JS. Assessment upon species evolution of mixed consortia for azo dye decolorization. J Chin Inst Chem Eng, 2007, 38: 259-266.

[12]

Chen BY, Hsueh CC. Deciphering electron shuttles for bioremediation and beyond. Am J Chem Eng, 2016, 4(5): 114-121.

[13]

Chen BY, Lin CS, Lim HC. Temperature induction of bacteriophage λ; mutants in Escherichia coli. J Biotechnol, 1995, 40: 87-97.

[14]

Chen KC, Huang WT, Wu JY, Houng JY. Microbial decolorization of azo dyes by Proteus mirabilis. J Ind Microbiol Biotechnol, 1999, 23(1): 686-690.

[15]

Chen BY, Utgikar VP, Harmon SM, Tabak HH, Bishop DF, Govind R. Studies on biosorption of zinc(II) and copper(II) on Desulfovibrio desulfuricans. Int Biodeterior Biodegrad, 2000, 46(1): 11-18.

[16]

Chen BY, Chang JS, Chen SY. Bacterial species diversity and dye decolorization of a two-species mixed consortium. Environ Eng Sci, 2004, 20(4): 337-345.

[17]

Chen BY, Zhang MM, Chang CT, Ding Y, Lin KL, Chiou C-S, Hsueh CC, Xu H. Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri. Bioresour Technol, 2010, 101(12): 4737-4741.

[18]

Chen BY, Wang YM, Ng IS. Understanding interactive characteristics of bioelectricity generation and reductive decolorization using Proteus hauseri. Bioresour Technol, 2011, 102(2): 1159-1165.

[19]

Chen BY, Zhang MM, Chamg CT, Ding Y, Chen WM, Hsueh CC. Deciphering azo dye decolorization characteristics by indigenous Proteus hauseri: chemical structure. J Taiwan Inst Chem Eng, 2011, 42: 327-333.

[20]

Chen BY, Hsueh CC, Chen WM, Li WD. Exploring decolorization and halo-tolerance characteristics by indigenous acclimatized bacteria: chemical structure of azo dyes and dose–response assessment. J Taiwan Inst Chem Eng, 2011, 42: 816-825.

[21]

Chen BY, Hong JM, Ng IS, Wang YM, Ni C. Deciphering simultaneous bioelectricity generation and reductive decolorization using mixed-culture microbial fuel cells in salty media. J Taiwan Inst Chem Eng, 2013, 44(3): 446-453.

[22]

Chen BY, Hsueh CC, Liu SQ, Ng IS, Wang YM. Deciphering mediating characteristics of decolorized intermediates for reductive decolorization and bioelectricity generation. Bioresour Technol, 2013, 145: 321-325.

[23]

Chen BY, Hsueh CC, Liu SQ, Hung JY, Qiao Y, Yueh PL, Wang YM. Unveiling characteristics of dye-bearing microbial fuel cells for energy and materials recycling: redox mediators. Int J Hydrog Energy, 2013, 38(35): 15598-15605.

[24]

Chen BY, Xu B, Qin LJ, Lan JCW, Hsueh CC. Exploring redox-mediating characteristics of textile dye-bearing microbial fuel cells: thionin and malachite green. Bioresour Technol, 2014, 169: 277-283.

[25]

Chen BY, Xu B, Yueh PL, Han K, Qin LJ, Hsueh CC. Deciphering electron-shuttling characteristics of thionine-based textile dyes in microbial fuel cells. J Taiwan Inst Chem Eng, 2015, 51: 63-70.

[26]

Chen BY, Ma CM, Han K, Yueh PL, Qin LJ, Hsueh CC. Influence of textile dye and decolorized metabolites on microbial fuel cell-assisted bioremediation. Bioresour Technol, 2016, 200: 1033-1038.

[27]

Chen CT, Wu CC, Chen BY, Hsueh CC. Comparative study on biodecolorization capabilities of indigenous strains to azo dyes. Sci Discov, 2016, 4: 109-115.

[28]

Chen BY, Ma CM, Liao JH, Hsu AW, Hsueh CC. Feasibility study on biostimulation of electron transfer characteristics by edible herbs-extracts. J Taiwan Inst Chem Eng, 2017, 79: 125-133.

[29]

Chen BY, Hsu AW, Wu CC, Hsueh CC. Feasibility study on biostimulation of dye decolorization and bioelectricity generation by using decolorized metabolites of edible flora-extracts. J Taiwan Inst Chem Eng, 2017, 79: 141-150.

[30]

Claus H. Laccases and their occurrence in prokaryotes. Arch Microbiol, 2003, 179(3): 145-150.

[31]

Dawkar VV, Jadhav UU, Ghodake GS, Govindwar SP. Effect of inducers on the decolorization and biodegradation of textile azo dye Navy blue 2GL by Bacillus sp. VUS. Biodegradation, 2009, 20(6): 777-787.

[32]

Dohanyos M, Madera V, Sedlacek M. Removal of organic dyes by activated sludge. Prog Water Technol, 1978, 10(5): 559-575.

[33]

ElMekawy A, Hegab HM, Vanbroekhoven K, Pant D. Techno-productive potential of photosynthetic microbial fuel cells through different configurations. Renew Sust Energy Rev, 2014, 39: 617-627.

[34]

Fortner J, Zhang C, Spain J, Hughes J. Soil column evaluation of factors controlling biodegradation of DNT in the Vadose Zone. Environ Sci Technol, 2003, 37: 3382-3391.

[35]

Han JL, Liu Y, Chang CT, Chen BY, Chen WM, Xu HZ. Exploring characteristics of bioelectricity generation and dye decolorization of mixed and pure bacterial cultures from wine-bearing wastewater treatment. Biodegradation, 2011, 22: 321-333.

[36]

Han JL, Ng IS, Wang Y, Zheng X, Chen WM, Hsueh CC, Liu SQ, Chen BY. Exploring new strains of dye-decolorizing bacteria. J Biosci Bioeng, 2012, 113(4): 508-514.

[37]

Han K, Yueh PL, Qin LJ, Hsueh CC, Chen BY. Deciphering synergistic characteristics of microbial fuel cell-assisted dye decolorization. Bioresour Technol, 2015, 196: 746-751.

[38]

Hassan H, Jin B, Donner E, Vasileiadis S, Saint C, Dai S (2017) Microbial community and bioelectrochemical activities in MFC for degrading phenol and producing electricity: microbial consortia could make differences. Chem Eng J. In press

[39]

He CS, Mu ZX, Yang HY, Wang YZ, Yu HQ. Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: a mini-review. Chemosphere, 2015, 140: 12-17.

[40]

He L, Du P, Chen Y, Lu H, Cheng X, Chang B, Wang Z. Advances in microbial fuel cells for wastewater treatment. Renew Sust Energ Rev, 2017, 71: 388-403.

[41]

Hernández-Fernández FJ, de los Ríos A, Salar-García MJ, Ortiz-Martínez VM, Lozano-Blanco LJ, Toms-Alonso F, Quesada-Medina J. Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Proc Technol, 2015, 138: 284-297.

[42]

Hitz HR, Huber W, Reed RH. The adsorption of dyes on activated sludge. J Soc Dyers Colour, 1978, 94: 71-76.

[43]

Hong JM, Xia YF, Hsueh CC, Chen BY. Unveiling optimal modes of operation for microbial fuel cell-aided dye bioremediation. J Taiwan Inst Chem Eng, 2016, 67: 362-369.

[44]

Hongo M, Iwahara M. Application of electro-energizing method to l-glutamic acid fermentation. J Agri Biol Chem, 1979, 43(10): 2075-2081.

[45]

Hsueh CC, Chen BY. Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola. J Hazard Mater, 2007, 141: 842-849.

[46]

Hsueh CC, Chen BY. Exploring effects of chemical structure on azo dye decolorization characteristics by Pseudomonas luteola. J Hazard Mater, 2008, 154: 703-710.

[47]

Hsueh CC, Chen BY, Yen CY. Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila. J Hazard Mater, 2009, 167: 995-1001.

[48]

Hsueh CC, Wang YM, Chen BY. Metabolite analysis on reductive biodegradation of reactive green 19 in Enterobacter cancerogenus bearing microbial fuel cell (MFC) and non-MFC cultures. J Taiwan Inst Chem Eng, 2014, 45: 436-443.

[49]

Hsueh CC, You LP, Li JY, Chen CT, Wu CC, Chen BY. Feasibility study of reduction of nitroaromatic compounds using indigenous azo dye-decolorizers. J Taiwan Inst Chem Eng, 2016, 64: 180-188.

[50]

Hsueh CC, Chen CT, Hsu AW, Wu CC, Chen BY. Comparative assessment of azo dyes and nitroaromatic compounds reduction using indigenous dye-decolorizing bacteria. J Taiwan Inst Chem Eng, 2017, 79: 134-140.

[51]

Ishii S, Suzuki S, Yamanaka Y, Wu A, Bretschger O. Population dynamics of electrogenic microbial communities in microbial fuel cells started with three different inoculum sources. Bioelectrochemistry, 2017, 117: 74-82.

[52]

Jones H, Park R. The influence of medium composition on the growth and swarming of Proteus. J Gen Microbiol, 1967, 47(3): 369-378.

[53]

Jones BV, Young R, Mahenthiralingam E, Stickler DJ. Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect Immun, 2004, 72(7): 3941-3950.

[54]

Ju KS, Parales RE. Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev, 2010, 74: 250-272.

[55]

Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol, 2010, 8(9): 634-644.

[56]

Kim W, Killam T, Sood V, Surette MG. Swarm-cell differentiation in Salmonella enterica serovar typhimurium results in elevated resistance to multiple antibiotics. J Bacteriol, 2003, 185(10): 3111-3117.

[57]

Knackmuss HJ. Basic knowledge and perspectives of bioelimination of xenobiotic compounds. J Biotechnol, 1996, 51: 287-295.

[58]

Kulkarni M, Chaudhari A. Microbial remediation of nitro-aromatic compounds: an overview. J Environ Manage, 2007, 85: 496-512.

[59]

Kumar R, Singh L, Zularisam AW. Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew Sust Energy Rev, 2016, 56: 1322-1336.

[60]

Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environ Sci Technol, 2006, 40(17): 5181-5192.

[61]

Maier J, Kandelbauer A, Erlacher A, Cavaco-Paulo A, Gübitz GM. A new alkali-thermostable azoreductase from Bacillus sp. strain SF. Appl Environ Microbiol, 2004, 70(2): 837-844.

[62]

Mayer AM, Staples RC. Laccase: new functions for an old enzyme. Phytochemistry, 2002, 60(6): 551-565.

[63]

Misal SA, Humne VT, Lokhande PD, Gawai KR. Biotransformation of nitro aromatic compounds by flavin-free NADH azoreductase. J Bioremed Biodeg, 2015, 6(2): 1.

[64]

Mobley HL, Belas R. Swarming and pathogenicity of Proteus mirabilis in the urinary tract. Trends Microbiol, 1995, 3(7): 280-284.

[65]

Mohan SV, Velvizhi G, Modestra JA, Srikanth S. Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sust Energy Rev, 2014, 40: 779-797.

[66]

Ng IS, Zheng X, Chen BY, Chi X, Lu Y, Chang CS. Proteomics approach to decipher novel genes and enzymes characterization of a bioelectricity-generating and dye-decolorizing bacterium Proteus hauseri ZMd44. Biotechnol Bioprocess Eng, 2013, 18(1): 8-17.

[67]

Ng IS, Xu F, Ye C, Chen BY, Lu Y. Exploring metal effects and synergistic interactions of ferric stimulation on azo-dye decolorization by new indigenous Acinetobacter guillouiae Ax-9 and Rahnella aquatilis DX2b. Bioprocess Biosyst Eng, 2014, 37(2): 217-224.

[68]

Ng IS, Zheng X, Wang N, Chen BY, Zhang X, Lu Y. Copper response of Proteus hauseri based on proteomic and genetic expression and cell morphology analyses. Appl Biochem Biotechnol, 2014, 173(5): 1057-1072.

[69]

Ng IS, Chen TT, Lin R, Zhang X, Ni C, Sun D. Decolorization of textile azo dye and congo red by an isolated strain of the dissimilatory manganese-reducing bacterium Shewanella xiamenensis BC01. Appl Microbiol Biotechnol, 2014, 98: 2297-2308.

[70]

Nimje VR, Chen CY, Chen CC, Jean JS, Chen JL. Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. J Power Sources, 2009, 190(2): 258-263.

[71]

O’Hara CM, Brenner FW, Steigerwalt AG, Hill BC, Holmes B, Grimont P, Hawkey PM, Penner JL, Miller JM, Brenner DJ. Classification of Proteus vulgaris biogroup 3 with recognition of Proteus hauseri sp. nov., nom. rev. and unnamed Proteus genomospecies 4, 5 and 6. Int J Syst Evol Microbiol, 2000, 50(5): 1869-1875.

[72]

Olukanni O, Osuntoki A, Kalyani D, Gbenle G, Govindwar S. Decolorization and biodegradation of reactive blue 13 by Proteus mirabilis LAG. J Hazard Mater, 2010, 184(1): 290-298.

[73]

Pandey A, Singh P, Iyengar L. Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad, 2007, 59(2): 73-84.

[74]

Pant D Van, Bogaert G, Diels L, Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol, 2010, 101(6): 1533-1543.

[75]

Pasti-Grigsby MB, Paszczynski A, Goszczynski S, Crawford DL, Crawford RL. Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl Environ Microbiol, 1992, 58: 3605-3613.

[76]

Pearson MM, Sebaihia M, Churcher C, Quail MA, Seshasayee AS, Luscombe NM, Abdellah Z, Arrosmith C, Atkin B, Chillingworth T, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Walker D, Whithead S, Thomson NR, Rather PN, Parkhill J, Mobley HLT. Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. J Bacteriol, 2008, 190(11): 4027-4037.

[77]

Pearson MM, Yep A, Smith SN, Mobley HL. Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression. Infect Immun, 2011, 79(7): 2619-2631.

[78]

Poore CA, Mobley HL. Differential regulation of the Proteus mirabilis urease gene cluster by UreR and H-NS. Microbiology, 2003, 149(12): 3383-3394.

[79]

Qin LJ, Han K, Yueh PL, Hsueh CC, Chen BY. Interactive influences of decolorized metabolites on electron-transfer characteristics of microbial fuel cells. Biochem Eng J, 2016, 109: 297-304.

[80]

Rabaey K, Rozendal RA. Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat Rev Microbiol, 2010, 8: 706-716.

[81]

Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol, 2005, 23(6): 291-298.

[82]

Rabaey K, Girguis P, Nielsen LK. Metabolic and practical considerations on microbial electrosynthesis. Curr Opin Biotechnol, 2011, 22(3): 371-377.

[83]

Rafii F, Cerniglia CE. Comparison of the azoreductase and nitroreductase from Clostridium perfringens. Appl Environ Microbiol, 1993, 59: 1731-1734.

[84]

Rafii F, Cerniglia CE. Reduction of azo dyes and nitroaromatic compounds by bacterial enzymes from the human intestinal tract. Environ Health Perspect, 1995, 103(5): 17-19.

[85]

Rau J, Stolz A. Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent azo reductases. Appl Environ Microbiol, 2003, 69: 3448-3455.

[86]

Rau J, Knackmuss HJ, Stolz A. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ Sci Technol, 2002, 36: 1497-1504.

[87]

Ren H, Lee HS, Chae J. Miniaturizing microbial fuel cells for potential portable power sources: promises and challenges. Microfluid Nanofluid, 2012, 13(3): 353-381.

[88]

Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol, 2009, 75(11): 3673-3678.

[89]

Richter H, McCarthy K, Nevin KP, Johnson JP, Rotello VM, Lovley DR. Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir, 2008, 24(8): 4376-4379.

[90]

Rodman CA. Removal of colour from textile dye wastes. Text Chem Colorist, 1971, 3: 239.

[91]

Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol, 2008, 26(8): 450-459.

[92]

Rozendal RA, Leone E, Keller J, Rabaey K. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun, 2009, 11(9): 1752-1755.

[93]

Santhanam N, Vivanco JM, Decker SR, Reardon KF. Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol, 2011, 29(10): 480-489.

[94]

Saratale RG, Saratale GD, Chang JS, Govindwar SP. Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng, 2011, 42(1): 138-157.

[95]

Schievano A, Sciarria TP, Vanbroekhoven K, Wever HD, Puig S, Andersen SJ, Rabaey K, Pant D. Electro-fermentation-merging electrochemistry with fermentation in industrial applications. Trends Biotechnol., 2016, 34(11): 866-878.

[96]

Shaul G. Fate of water soluble azo dyes in activated sludge process. Chemosphere, 1991, 22: 107-119.

[97]

Solanki K, Subramanian S, Basu S. Microbial fuel cells for azo dye treatment with electricity generation: a review. Bioresour Technol, 2013, 131: 564-571.

[98]

Squella JA, Sturm JC, Weiss-Lopez B, Bonta M, Nu´n˜ez-Vergara LJ. Electrochemical study of b-nitrostyrene derivatives: steric and electronic effects on their electroreduction. J Electroanal Chem, 1999, 466: 90-98.

[99]

Sun J, Hu YY, Bi Z, Cao YQ. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresour Technol, 2009, 100(13): 3185-3192.

[100]

Sun J, Hu YY, Hou B. Electrochemical characteriztion of the bioanode during simultaneous azo dye decolorization and bioelectricity generation in an air-cathode single chambered microbial fuel cell. Electrochim Acta, 2011, 56(19): 6874-6879.

[101]

Suzuki T, Timofei S, Kurunczi L, Dietze U, Schuurmann G. Correlation of aerobic biodegradability of sulfonated azo dyes with the chemical structure. Chemosphere, 2001, 45: 1-9.

[102]

Van der Zee FP, Cervantes FJ. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv, 2009, 27: 256-277.

[103]

Van der Zee FP, Villaverde S. Combined anaerobic–aerobic treatment of azo dyes—a short review of bioreactor studies. Water Res, 2005, 39(8): 1425-1440.

[104]

Wang N, Ng IS, Chen PT, Li Y, Chen YC, Chen B-Y, Lu Y. Draft genome sequence of the bioelectricity-generating and dye-decolorizing bacterium Proteus hauseri strain ZMd44. Genome Announc, 2014, 2(1): e00992-13.

[105]

Wariishi H, Kabuto M, Mikuni J, Oyadomari M, Tanaka H. Degradation of water-insoluble dyes by microperoxidase-11, an effective and stable peroxidative catalyst in hydrophilic organic media. Biotechnol Prog, 2002, 18(1): 36-42.

[106]

Watson VJ, Logan BE. Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures. Biotechnol Bioeng, 2010, 105(3): 489-498.

[107]

Xu B, Chen BY, Hsueh CC, Qin LJ, Chang CT. Deciphering characteristics of bicyclic aromatics—mediators for reductive decolorization and bioelectricity generation. Bioresour Technol, 2014, 163: 280-286.

[108]

Zhang MM, Chen WM, Chen BY, Chang CT, Hsueh CC, Ding Y, Lin K-L, Xu H. Comparative study on characteristics of azo dye decolorization by indigenous decolorizers. Bioresour Technol, 2010, 101(8): 2651-2656.

[109]

Zhang Q, Jing YH, Shiue A, Chang CT, Chen BY. Deciphering effects of chemical structure on azo dye decolorization/degradation characteristics: bacterial vs. photocatalytic method. J Taiwan Inst Chem Eng, 2012, 43: 760-766.

[110]

Zheng X, Ng IS, Ye C, Chen BY, Lu Y. Copper ion-stimulated McoA-laccase production and enzyme characterization in Proteus hauseri ZMd44. J Biosci Bioeng, 2013, 115(4): 388-393.

[111]

Zimmermann T, Kulla HG, Leisinger T. Properties of purified Orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem, 1982, 129: 197-203.

Funding

Ministry of Science and Technology, Taiwan(MOST106-2621-M-197-001)

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/