Biofibres from biofuel industrial byproduct—Pongamia pinnata seed hull

Puttaswamy Manjula , Govindan Srinikethan , K. Vidya Shetty

Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 14

PDF
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 14 DOI: 10.1186/s40643-017-0144-x
Research

Biofibres from biofuel industrial byproduct—Pongamia pinnata seed hull

Author information +
History +
PDF

Abstract

Background

Biodiesel production using Pongamia pinnata (P. pinnata) seeds results in large amount of unused seed hull. These seed hulls serve as a potential source for cellulose fibres which can be exploited as reinforcement in composites.

Methods

These seed hulls were processed using chlorination and alkaline extraction process in order to isolate cellulose fibres. Scanning electron microscopy (SEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR) analysis demonstrated the morphological changes in the fibre structure.

Results

Cellulose microfibres of diameter 6–8 µm, hydrodynamic diameter of 58.4 nm and length of 535 nm were isolated. Thermal stability was enhanced by 70 °C and crystallinity index (CI) by 19.8% ensuring isolation of crystalline cellulose fibres.

Conclusion

The sequential chlorination and alkaline treatment stemmed to the isolation of cellulose fibres from P. pinnata seed hull. The isolated cellulose fibres possessed enhanced morphological, thermal, and crystalline properties in comparison with P. pinnata seed hull. These cellulose microfibres may potentially find application as biofillers in biodegradable composites by augmenting their properties.

Keywords

Cellulose microfibres / Pongamia pinnata seed hull / Hemicellulose / Lignin / Chlorination

Cite this article

Download citation ▾
Puttaswamy Manjula, Govindan Srinikethan, K. Vidya Shetty. Biofibres from biofuel industrial byproduct—Pongamia pinnata seed hull. Bioresources and Bioprocessing, 2017, 4(1): 14 DOI:10.1186/s40643-017-0144-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe K, Yano H. Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose, 2009, 16: 1017-1023.

[2]

Abidin NAMZ, Aziz FA, Radiman S, Ismail A, Yunus WMZW, Nor NM, Sohaimi RM, Sulaiman AZ, Halim NA, Darius DDI. Isolation of microfibrillated cellulose (MFC) from local hardwood waste, Resak (Vatica spp.). Mater Sci Forum, 2015, 846: 679-682.

[3]

Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R. Extraction of nanocellulose fibrils from lignocellulosic fibers: a novel approach. Carbohydr Polym, 2011, 86(4): 1468-1475.

[4]

Alemdar A, Sain M. Isolation and characterization of nanofibers from agricultural residues—wheat straw and soyhulls. Bioresour Technol, 2008, 99(6): 1664-1671.

[5]

Bhattacharya D, Germinario LT, Winter WT. Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym, 2008, 73: 371-377.

[6]

Bondeson D, Mathew A, Oksman K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 2006, 13: 171-180.

[7]

Chen Y, Liu C, Chang PR, Anderson DP, Huneault MA. Pea starch-based composite films with pea hull fibers and pea hull fiber-derived nanowhiskers. Polym Eng Sci, 2009, 49(2): 369-378.

[8]

Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym, 2011, 83: 1804-1811.

[9]

Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M. Isolation of nanocellulose from pineapple leaf fibers by steam explosion. Carbohydr Polym, 2010, 81: 720-725.

[10]

de Carvalho Mendes CA, Ferreira MS, Furtado CRG, de Sousa AMF. Isolation and characterization of nanocrystalline cellulose from corn husk. Mater Lett, 2015, 148: 26-29.

[11]

Demirbas A. Heavy metal adsorption onto agro based waste materials: a review. J Hazard Mater, 2009, 157(2–3): 220-229.

[12]

Dinand E, Chanzy H, Vignon RM. Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloid, 1999, 13(3): 275-283.

[13]

Du C, Li H, Li B, Liu M, Zhan H. Characteristics and properties of cellulose nanofibers prepared by TEMPO oxidation of corn husk. BioResources, 2016, 11(2): 5276-5284.

[14]

Dufresne A, Cavaille JY, Vignon MR. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci, 1997, 64: 1185-1194.

[15]

Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT. Cellulose microfibers produced from banana plant wastes: isolation and characterization. Carbohydr Polym, 2010, 80: 852-859.

[16]

Espino E, Cakir M, Domenek S, Román-Gutiérrez AD, Belgacem N, Bras J. Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Ind Crops Prod, 2014, 62: 552-559.

[17]

Fiore V, Scalici T, Valenza A. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr Polym, 2014, 106: 77-83.

[18]

Haafiza MKM, Eichhornc SJ, Hassana A, Jawaid M. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym, 2013, 93(2): 628-634.

[19]

Halonen H, Larsson PT, Iversen T. Mercerized cellulose biocomposites: a study of influence of mercerization on cellulose supramolecular structure, water retention value and tensile properties. Cellulose, 2013, 20: 57-65.

[20]

Horiba knowledgebase (2017) Horiba Instruments, Inc. https://www.horiba.com/fileadmin/uploads/Scientific/eMag/PSA/Guidebook/pdf/PSA_Guidebook.pdf. Accessed 05 Nov 2016

[21]

Hou X, Sun F, Zhang L, Luo J, Lu D, Yang Y. Chemical-free extraction of cotton stalk fibers by steam flash explosion. BioResources, 2014, 9(4): 6950-6967.

[22]

Hubbe MA, Rojas OJ, Lucia LA, Sain M. Cellulosic nanocomposites: a review. BioResources, 2008, 3: 929-980.

[23]

Johar N, Ahmad I, Dufresnec A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod, 2012, 37: 93-99.

[24]

Julie CCS, George N, Narayanankutty SK. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym, 2016

[25]

Kalita E, Nath BK, Deb P, Agan F, Islam MR, Saikia K. High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization. Carbohydr Polym, 2015, 122: 308-313.

[26]

Kaushik A, Singh M. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res, 2011, 346(1): 76-85.

[27]

Kavitha B, Kumar KS, Narsimlu N. Synthesis and characterization of polyaniline nano-fibers. Indian J Pure Appl Phys, 2013, 51: 207-209.

[28]

Li R, Fei J, Cai Y, Li Y, Fengand J, Yao J. Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym, 2009, 76(1): 94-99.

[29]

Li W, Zhang Y, Li J, Zhou Y, Li R, Zhou W. Characterization of cellulose from banana pseudo-stem by heterogeneous liquefaction. Carbohydr Polym, 2015, 132: 513-519.

[30]

Luduena L, Fasce D, Alverez VA, Stefani PM. Nanocellulose from rice husk following alkaline treatment to remove silica. BioResources, 2011, 6(2): 1440-1453.

[31]

Maheswari UC, Obi Reddy K, Muzenda E, Guduri BR, Varada Rajulu A (2012) Extraction and characterization of cellulose microfibrils from agricultural residue—Cocos nucifera L. Biomass Bioenerg 46: 555–563. doi 10.1016/j.biombioe.2012.06.039. http://www.sciencedirect.com/science/journal/0961953446:555–563

[32]

Mandal A, Chakrabarty D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym, 2011, 86: 1291-1299.

[33]

Mangal R, Saxena NS, Sreekala MS, Thomas S, Singh K. Thermal properties of pineapple leaf fiber reinforced composites. Mater Sci Eng, 2003, 339: 281-285.

[34]

Moran JI, Alvarez VA, Cyras VP. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 2008, 15: 149-159.

[35]

Motaung TE, Mtibe A. Alkali treatment and cellulose nanowhiskers extracted from maize stalk residues. Mater Sci Appl, 2015, 6: 1022-1032.

[36]

Nadeem R, Ansari TM, Akhtar K, Khalid AM. Pb (II) sorption by pyrolysed Pongamia pinnata pods carbon (PPPC). Chem Eng J, 2009, 152: 54-63.

[37]

Novo LP, Bras J, García A, Belgacem N, Curvelo AA. Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng, 2015, 3: 2839-2846.

[38]

Oun AA, Rhim JW. Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: effect of isolation method. Mater Lett, 2016, 168: 146-150.

[39]

Qiao C, Chen G, Zhang J, Yao J. Structure and rheological properties of cellulose nanocrystals suspension. Food Hydrocolloid, 2016, 55: 19-25.

[40]

Reddy N, Yang Y. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol, 2005, 23(1): 22-27.

[41]

Reddy N, Yang Y. Natural cellulose fibers from soybean straw. Bioresour Technol, 2009, 100: 3593-3598.

[42]

Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym, 2010, 81(1): 83-92.

[43]

Rosa SM, Rehman N, de Miranda MIG, Nachtigall SM, Bica CI. Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym, 2012, 87: 1131-1138.

[44]

Saelee K, Yingkamhaeng N, Nimchua T, Sukyai P (2014) Extraction and characterization of cellulose from sugarcane bagasse by using environmental friendly method. In: Proceedings of The 26th Annual Meeting of the Thai Society for Biotechnology and International Conference, Mae Fah Lunag University (School of Science), Thailand, 26–29 November 2014

[45]

Saurabh CK, Mustapha A, Masri MM, Owolabi AF, Syakir MI, Dungani R, Paridah MT, Jawaid M, Khalil HPSA. Isolation and characterization of cellulose nanofibers from Gigantochloa scortechinii as a reinforcement material. J Nanomater, 2016

[46]

Sheltami RM, Abdullaha I, Ahmada I, Dufresnec A, Kargarzadeha H. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym, 2012, 88: 772-779.

[47]

Shin HK, Jeun JP, Kim HB, Kang PH. Isolation of cellulose fibers from kenaf using electron beam. Radiat Phys Chem, 2012, 81: 936-940.

[48]

Shwetha KC, Nagarajappa DP, Mamatha M. Removal of copper from simulated wastewater using Pongamia pinnata seed shell as adsorbent. Int J Eng Res Appl, 2014, 4(6): 271-282.

[49]

Srinivas CH, Srinivasu D, Kavitha B, Narsimlu N, Siva Kumar K. Synthesis and characterization of nano size conducting polyaniline. IOSR J Appl Phys, 2012, 1(5): 12-15.

[50]

Sun JX, Sun XF, Sun RC, Su YQ. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr Polym, 2004, 56: 195-204.

[51]

Sun JX, Sun XF, Zhao H, Sun RC. Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stabil, 2004, 84: 331-339.

[52]

Sun XF, Sun RC, Su Y, Sun JX. Comparative study of crude and purified cellulose from wheat straw. J Agric Food Chem, 2004, 52(4): 839-847.

[53]

Sun XF, Sun RC, Fowler P, Baird MS. Isolation and characterisation of cellulose obtained by a two-stage treatment with organosolv and cyanamide activated hydrogen peroxide from wheat straw. Carbohydr Polym, 2004, 55: 379-391.

[54]

Xie J, Hse CY, De Hoop CF, Hu T, Qi J, Shupe TF. Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohydr Polym, 2016, 151: 725-734.

[55]

Yadav PP, Ahmed G, Maurya R. Furanoflavonoids from Pongamia pinnata fruit. Phytochemistry, 2004, 65(4): 439-443.

[56]

Zhong C, Wang C, Huang F, Jia H, Wei P. Wheat straw cellulose dissolution and isolation by tetra-n-butylammonium hydroxide. Carbohydr Polym, 2013, 94: 38-45.

[57]

Zuluaga R, Putaux JL, Cruz J, Velez J, Mondragon I, Ganan P. Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym, 2009, 76: 51-59.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/