Characterization and overexpression of a novel keratinase from Bacillus polyfermenticus B4 in recombinant Bacillus subtilis

Yu-Ze Dong , Wen-Shous Chang , Po Ting Chen

Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 47

PDF
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 47 DOI: 10.1186/s40643-017-0177-1
Research

Characterization and overexpression of a novel keratinase from Bacillus polyfermenticus B4 in recombinant Bacillus subtilis

Author information +
History +
PDF

Abstract

Background

Keratins, insoluble proteins with a robust structure, are a major component of epidermal tissue and appendages such as hair, feathers, nails, and walls. Keratinous waste mainly emanates from poultry and leather industries, thereby severely contaminating the environment. Keratinase can lyse proteins with robust cross-linked structures, such as keratin, and can hence be used in animal feed, fertilizer, detergent, leather, pharmaceutical, and cosmetic industries. Bacillus polyfermenticus B4, isolated from feather compost, secretes keratinase to metabolize feathers. Hence, this study aimed to investigate the enzymatic characteristics and recombinant production of keratinase from B. polyfermenticus B4.

Methods

A novel keratinase KerP was isolated from B. polyfermenticus B4 and overexpressed in B. subtilis PT5, via the T7 promoter.

Results

The highest keratinolytic activity of recombinant KerP was observed at pH 9.0 and 60 °C. Enzyme activity was enhanced with Fe2+, Mn2+, and SDS, and inhibited by Zn2+, Ni2+, EDTA, PMSF, and β-mercaptoethanol. KerP production was the highest at 473 ± 20 U/mL with B. subtilis aprE signal peptide using LB broth.

Conclusions

The novel keratinase KerP has potential industrial applications, particularly in the treatment of keratinous waste.

Keywords

Keratinase / Bacillus polyfermenticus / Keratinous waste / Characterization / Overexpression / Bacillus subtilis

Cite this article

Download citation ▾
Yu-Ze Dong, Wen-Shous Chang, Po Ting Chen. Characterization and overexpression of a novel keratinase from Bacillus polyfermenticus B4 in recombinant Bacillus subtilis. Bioresources and Bioprocessing, 2017, 4(1): 47 DOI:10.1186/s40643-017-0177-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bhange K, Chaturvedi V, Bhatt R. Ameliorating effects of chicken feathers in plant growth promotion activity by a keratinolytic strain of Bacillus subtilis PF1. Bioresour Bioprocess, 2016, 3(1): 13.

[2]

Brandelli A. Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol, 2008, 1(2): 105-116.

[3]

Brandelli A, Daroit DJ, Riffel A. Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol, 2010, 85(6): 1735-1750.

[4]

Bressollier P, Letourneau F, Urdaci M, Verneuil B. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl Environ Microbiol, 1999, 65(6): 2570-2576.

[5]

Brockmeier U, Caspers M, Freudl R, Jockwer A, Noll T, Eggert T. Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. J Mol Biol, 2006, 362(3): 393-402.

[6]

Chao YP, Chiang CJ, Hung WB. Stringent regulation and high-level expression of heterologous genes in Escherichia coli using T7 system controllable by the araBAD promoter. Biotechnol Prog, 2002, 18(2): 394-400.

[7]

Chen PT, Chiang CJ, Chao YP. Strategy to approach stable production of recombinant nattokinase in Bacillus subtilis. Biotechnol Prog, 2007, 23(4): 808-813.

[8]

Chen PT, Shaw J-F, Chao Y-P, David Ho T-H, Yu S-M. Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in Bacillus subtilis. J Agric Food Chem, 2010, 58(9): 5392-5399.

[9]

Chen PT, Chen Y-C, Lin Y-Y, Su H-H. Strategy for efficient production of recombinant Staphylococcus epidermidis lipase in Bacillus subtilis. Biochem Eng J, 2015, 103: 152-157.

[10]

Coulombe PA, Omary MB. ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol, 2002, 14(1): 110-122.

[11]

de Boer Sietske A, Diderichsen B. On the safety of Bacillus subtilis and B. amyloliquefaciens: a review. Appl Microbiol Biotechnol, 1991, 36(1): 1-4.

[12]

Fakhfakh-Zouari N, Haddar A, Hmidet N, Frikha F, Nasri M. Application of statistical experimental design for optimization of keratinases production by Bacillus pumilus A1 grown on chicken feather and some biochemical properties. Process Biochem, 2010, 45(5): 617-626.

[13]

Gupta R, Ramnani P. Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol, 2006, 70(1): 21.

[14]

Gupta R, Rajput R, Sharma R, Gupta N. Biotechnological applications and prospective market of microbial keratinases. Appl Microbiol Biotechnol, 2013, 97(23): 9931-9940.

[15]

Haddar HO, Zaghloul TI, Saeed HM. Biodegradation of native feather keratin by Bacillus subtilis recombinant strains. Biodegradation, 2009, 20(5): 687.

[16]

Harwood CR. Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol, 1992, 10: 247-256.

[17]

Khardenavis AA, Kapley A, Purohit HJ. Processing of poultry feathers by alkaline keratin hydrolyzing enzyme from Serratia sp. HPC 1383. Waste Manag, 2009, 29(4): 1409-1415.

[18]

Kim S-J, Chun J, Bae KS, Kim Y-C. Polyphasic assignment of an aromatic-degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. nov. Int J Syst Evol Microbiol, 2000, 50(4): 1641-1647.

[19]

Korniłłowicz-Kowalska T, Bohacz J. Biodegradation of keratin waste: theory and practical aspects. Waste Manag, 2011, 31(8): 1689-1701.

[20]

Kreplak L, Doucet J, Dumas P, Briki F. New aspects of the α-helix to β-sheet transition in stretched hard α-keratin fibers. Biophys J, 2004, 87(1): 640-647.

[21]

Li W, Zhou X, Lu P. Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis. Res Microbiol, 2004, 155(8): 605-610.

[22]

Lin X, Kelemen DW, Miller ES, Shih J. Nucleotide sequence and expression of kerA, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1. Appl Environ Microbiol, 1995, 61(4): 1469-1474.

[23]

Lin X, Wong S, Miller E, Shih J. Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. subtilis. J Ind Microbiol Biotechnol, 1997, 19(2): 134-138.

[24]

Liu B, Zhang J, Gu L, Du G, Chen J, Liao X. Comparative analysis of bacterial expression systems for keratinase production. Appl Biochem Biotechnol, 2014, 173(5): 1222-1235.

[25]

Olajuyigbe FM, Falade AM. Purification and partial characterization of serine alkaline metalloprotease from Bacillus brevis MWB-01. Bioresour Bioprocess, 2014, 1(1): 8.

[26]

Onifade A, Al-Sane N, Al-Musallam A, Al-Zarban S. A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol, 1998, 66(1): 1-11.

[27]

Pohl S, Harwood CR. Heterologous protein secretion by Bacillus species: from the cradle to the grave. Adv Appl Microbiol, 2010, 73: 1-25.

[28]

Radha S, Gunasekaran P. Sustained expression of keratinase gene under PxylA and PamyL promoters in the recombinant Bacillus megaterium MS941. Bioresour Technol, 2008, 99(13): 5528-5537.

[29]

Sangali S, Brandelli A. Isolation and characterization of a novel feather-degrading bacterial strain. Appl Biochem Biotechnol, 2000, 87(1): 17-24.

[30]

Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Can J Microbiol, 2004, 50(1): 1-17.

[31]

Schrooyen PM, Dijkstra PJ, Oberthür RC, Bantjes A, Feijen J. Partially carboxymethylated feather keratins. 2. Thermal and mechanical properties of films. J Agric Food Chem, 2001, 49(1): 221-230.

[32]

Sookkheo B, Sinchaikul S, Phutrakul S, Chen S-T. Purification and characterization of the highly thermostable proteases from Bacillus stearothermophilus TLS33. Protein Expr Purif, 2000, 20(2): 142-151.

[33]

Su C, Gong J-S, Zhang R-X, Tao L-Y, Dou W-F, Zhang D-D, Li H, Lu Z-M, Xu Z-H, Shi J-S. A novel alkaline surfactant-stable keratinase with superior feather-degrading potential based on library screening strategy. Int J Biol Macromol, 2017, 95: 404-411.

[34]

Su P-C, Hsueh W-C, Chang W-S, Chen PT. Enhancement of chitosanase secretion by Bacillus subtilis for production of chitosan oligosaccharides. J Taiwan Inst Chem Eng, 2017, 79: 49-54.

[35]

Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, Dubois J-YF, Westers H, Zanen G, Quax WJ. Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev, 2004, 68(2): 207-233.

[36]

Vermelho AB, Mazotto AM, de Melo ACN, Vieira FHC, Duarte TR, Macrae A, Nishikawa MM, da Silva Bon EP. Identification of a Candida parapsilosis strain producing extracellular serine peptidase with keratinolytic activity. Mycopathologia, 2010, 169(1): 57.

[37]

Wang X, Parsons C. Effect of processing systems on protein quality of feather meals and hog hair meals. Poult Sci, 1997, 76(3): 491-496.

[38]

Westers L, Westers H, Quax WJ. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta, 2004, 1694(1): 299-310.

[39]

Zaghloul TI, Embaby AM, Elmahdy AR. Key determinants affecting sheep wool biodegradation directed by a keratinase-producing Bacillus subtilis recombinant strain. Biodegradation, 2011, 22(1): 111-128.

[40]

Zhang R-X, Gong J-S, Su C, Zhang D-D, Tian H, Dou W-F, Li H, Shi J-S, Xu Z-H. Biochemical characterization of a novel surfactant-stable serine keratinase with no collagenase activity from Brevibacillus parabrevis CGMCC 10798. Int J Biol Macromol, 2016, 93: 843-851.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/