Synthesis of patterned enzyme–metal–organic framework composites by ink-jet printing
Miao Hou , Haotian Zhao , Yi Feng , Jun Ge
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 40
Synthesis of patterned enzyme–metal–organic framework composites by ink-jet printing
This report explores the possibility of synthesizing enzyme–metal–organic framework (MOF) composites by ink-jet printing.
This study demonstrates that the direct synthesis of patterned enzyme–metal–organic framework (MOF) composites on various substrates including paper and polymeric films can be readily achieved by ink-jet printing bio-inks containing protein molecules, metal ions, and organic ligands loaded, respectively, in different cartridges. The formed Cytochrome c (Cyt c)–MOF composites on filter paper by ink-jet printing can be used for rapid detection of hydrogen peroxide in solution.
This technique opens possibilities of scalable, controllable, and designable fabrication of functional protein–MOF hybrid surface with promising applications in future bio-related application fields such as biosensing, wearable bioelectronics, artificial biomimetic membranes, and tissue engineering.
Immobilized enzyme / Metal–organic frameworks / Ink-jet printing
| [1] |
|
| [2] |
Code of Federal Regulations 21CFR178.1005 (2017). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm. Accessed 1 Apr 2017 |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
/
| 〈 |
|
〉 |