Bioengineering Comamonas testosteroni CNB-1: a robust whole-cell biocatalyst for efficient PET microplastic degradation

Zhanqing Cao , Wei Xia , Shilei Wu , Jiale Ma , Xiaoli Zhou , Xiujuan Qian , Anming Xu , Weiliang Dong , Min Jiang

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 94

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 94 DOI: 10.1186/s40643-023-00715-7
Research

Bioengineering Comamonas testosteroni CNB-1: a robust whole-cell biocatalyst for efficient PET microplastic degradation

Author information +
History +
PDF

Abstract

The escalating crisis of polyethylene terephthalate (PET) microplastic contamination in biological wastewater treatment systems is a pressing environmental concern. These microplastics inevitably accumulate in sewage sludge due to the absence of effective removal technologies. Addressing this urgent issue, this study introduces a novel approach using DuraPETase, a potent enzyme with enhanced PET hydrolytic activity at ambient temperatures. Remarkably, this enzyme was successfully secreted from Comamonas testosteroni CNB-1, a dominant species in the active sludge. The secreted DuraPETase showed significant hydrolytic activity toward p-NPB and PET nanoplastics. Furthermore, the CNB-1 derived whole-cell biocatalyst was able to depolymerize PET microplastics under ambient temperature, achieving a degradation efficiency of 9% within 7 days. The CNB-1-based whole biocatalysts were also capable of utilizing PET degradation intermediates, such as terephthalic acid (TPA) and ethylene glycol (EG), and bis(2-hydroxyethyl)-TPA (BHET), for growth. This indicates that it can completely mineralize PET, as opposed to merely breaking it down into smaller molecules. This research highlights the potential of activated sludge as a potent source for insitu microplastic removal.

Cite this article

Download citation ▾
Zhanqing Cao, Wei Xia, Shilei Wu, Jiale Ma, Xiaoli Zhou, Xiujuan Qian, Anming Xu, Weiliang Dong, Min Jiang. Bioengineering Comamonas testosteroni CNB-1: a robust whole-cell biocatalyst for efficient PET microplastic degradation. Bioresources and Bioprocessing, 2023, 10(1): 94 DOI:10.1186/s40643-023-00715-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aksu D, Diallo MM, Şahar U, Uyaniker TA, Ozdemir G. High expression of ring-hydroxylating dioxygenase genes ensure efficient degradation of p-toluate, phthalate, and terephthalate by Comamonas testosteroni strain 3a2. Arch Microbiol, 2021, 203(7): 4101-4112.

[2]

Ateşlier ZBB, Metin K. Production and partial characterization of a novel thermostable esterase from a thermophilic Bacillus sp. Enzyme Microb Technol, 2006, 38(5): 628-635.

[3]

Barth M, Oeser T, Wei R, Then J, Schmidt J, Zimmermann W. Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester hydrolase from Thermobifida fusca. Biochem Eng J, 2015, 93: 222-228.

[4]

Brott S, Pfaff L, Schuricht J, Schwarz J-N, Böttcher D, Badenhorst CPS, Wei R, Bornscheuer UT. Engineering and evaluation of thermostable IsPETase variants for PET degradation. Eng Life Sci, 2022, 22(3–4): 192-203.

[5]

Browne Mark A, Niven Stewart J, Galloway Tamara S, Rowland Steve J, Thompson Richard C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr Biol, 2013, 23(23): 2388-2392.

[6]

Carr SA, Liu J, Tesoro AG. Transport and fate of microplastic particles in wastewater treatment plants. Water Res, 2016, 91: 174-182.

[7]

Chen K, Hu Y, Dong X, Sun Y. Molecular insights into the enhanced performance of EKylated PETase toward PET degradation. ACS Catal, 2021, 11(12): 7358-7370.

[8]

Chen J, Wu J, Sherrell PC, Chen J, Wang H, Zhang W-x, Yang J. How to build a microplastics-free environment: strategies for microplastics degradation and plastics recycling. Adv Sci, 2022, 9(6): 2103764.

[9]

Cui Y, Chen Y, Liu X, Dong S, Ye T, Qiao Y, Mitra R, Han J, Li C, Han X, Liu W, Chen Q, Wei W, Wang X, Du W, Tang S, Xiang H, Liu H, Liang Y, Houk KN, Wu B. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal, 2021, 11(3): 1340-1350.

[10]

Dierkes Robert F, Wypych A, Pérez-García P, Danso D, Chow J, Streit Wolfgang R. An ultra-sensitive comamonas thiooxidans biosensor for the rapid detection of enzymatic polyethylene terephthalate (PET) degradation. Appl Environ Microbiol, 2022, 89(1): e01603-e1622.

[11]

Dong Q, Yuan S, Wu L, Su L, Zhao Q, Wu J, Huang W, Zhou J. Structure-guided engineering of a Thermobifida fusca cutinase for enhanced hydrolysis on natural polyester substrate. Bioresources Bioprocess, 2020, 7(1): 37.

[12]

Hosaka M, Kamimura N, Toribami S, Mori K, Kasai D, Fukuda M, Masai E. Novel tripartite aromatic acid transporter essential for terephthalate uptake in Comamonas sp. strain E6. Appl Environ Microbiol, 2013, 79(19): 6148-6155.

[13]

Huang Z, Wang Y-H, Zhu H-Z, Andrianova Ekaterina P, Jiang C-Y, Li D, Ma L, Feng J, Liu Z-P, Xiang H, Zhulin Igor B, Liu S-J. Cross talk between chemosensory pathways that modulate chemotaxis and biofilm formation. Mbio, 2019

[14]

Knott BC, Erickson E, Allen MD, Gado JE, Graham R, Kearns FL, Pardo I, Topuzlu E, Anderson JJ, Austin HP, Dominick G, Johnson CW, Rorrer NA, Szostkiewicz CJ, Copié V, Payne CM, Woodcock HL, Donohoe BS, Beckham GT, McGeehan JE. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc Natl Acad Sci, 2020, 117(41): 25476-25485.

[15]

Li X, Chen L, Mei Q, Dong B, Dai X, Ding G, Zeng EY. Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res, 2018, 142: 75-85.

[16]

Li X-y, Liu H-t, Wang L-x, Guo H-n, Zhang J, Gao D. Effects of typical sludge treatment on microplastics in China—characteristics, abundance and micro-morphological evidence. Sci Total Environ, 2022, 826.

[17]

Liu L, Jiang C-Y, Liu X-Y, Wu J-F, Han J-G, Liu S-J. Plant–microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environ Microbiol, 2007, 9(2): 465-473.

[18]

Ma Y-F, Zhang Y, Zhang J-Y, Chen D-W, Zhu Y, Zheng H, Wang S-Y, Jiang C-Y, Zhao G-P, Liu S-J. The complete genome of comamonas testosteroni reveals its genetic adaptations to changing environments. Appl Environ Microbiol, 2009, 75(21): 6812-6819.

[19]

Mahon AM, O’Connell B, Healy MG, O’Connor I, Officer R, Nash R, Morrison L. Microplastics in sewage sludge: effects of treatment. Environ Sci Technol, 2017, 51(2): 810-818.

[20]

Murphy F, Ewins C, Carbonnier F, Quinn B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol, 2016, 50(11): 5800-5808.

[21]

Nizzetto L, Futter M, Langaas S. Are agricultural soils dumps for microplastics of urban origin?. Environ Sci Technol, 2016, 50(20): 10777-10779.

[22]

Qiao Y, Hu R, Chen D, Wang L, Wang Z, Yu H, Fu Y, Li C, Dong Z, Weng Y-X, Du W. Fluorescence-activated droplet sorting of PET degrading microorganisms. J Hazard Mater, 2022, 424.

[23]

Rochman CM, Hoh E, Hentschel BT, Kaye S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environ Sci Technol, 2013, 47(3): 1646-1654.

[24]

Scé F, Cano I, Martin C, Beobide G, Castillo Ó, de Pedro I. Comparing conventional and microwave-assisted heating in PET degradation mediated by imidazolium-based halometallate complexes. New J Chem, 2019, 43(8): 3476-3485.

[25]

Sorolla-Rosario D, Llorca-Porcel J, Pérez-Martínez M, Lozano-Castelló D, Bueno-López A. Study of microplastics with semicrystalline and amorphous structure identification by TGA and DSC. J Environ Chem Eng, 2022, 10(1

[26]

Su L, Woodard Ronald W, Chen J, Wu J. Extracellular location of thermobifida fusca cutinase expressed in Escherichia coli BL21(DE3) without mediation of a signal peptide. Appl Environ Microbiol, 2013, 79(14): 4192-4198.

[27]

Sun J, Dai X, Wang Q, van Loosdrecht MCM, Ni BJ. Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res, 2019, 152: 21-37.

[28]

Sun Q, Ren S-Y, Ni H-G. Incidence of microplastics in personal care products: an appreciable part of plastic pollution. Sci Total Environ, 2020, 742.

[29]

Talvitie J, Mikola A, Koistinen A, Setälä O. Solutions to microplastic pollution—removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res, 2017, 123: 401-407.

[30]

Thakur B, Singh J, Singh J, Angmo D, Vig AP. Biodegradation of different types of microplastics: molecular mechanism and degradation efficiency. Sci Total Environ, 2023, 877.

[31]

Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, Kamionka E, Desrousseaux ML, Texier H, Gavalda S, Cot M, Guémard E, Dalibey M, Nomme J, Cioci G, Barbe S, Chateau M, André I, Duquesne S, Marty A. An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 2020, 580(7802): 216-219.

[32]

van der Laan LJW, Bosker T, Peijnenburg WJGM. Deciphering potential implications of dietary microplastics for human health. Nat Rev Gastroenterol Hepatol, 2023, 20(6): 340-341.

[33]

Walter T, Augusta J, Müller R-J, Widdecke H, Klein J. Enzymatic degradation of a model polyester by lipase from Rhizopus delemar. Enzyme Microb Technol, 1995, 17(3): 218-224.

[34]

Wang Y-H, Chen H-H, Huang Z, Li X-J, Zhou N, Liu C, Jiang C-Y, Li D-F, Liu S-J. PapA, a peptidoglycan-associated protein, interacts with OmpC and maintains cell envelope integrity. Environ Microbiol, 2021, 23(2): 600-612.

[35]

Wei R, Oeser T, Then J, Kühn N, Barth M, Schmidt J, Zimmermann W. Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express, 2014, 4(1): 44.

[36]

Wei W, Huang Q-S, Sun J, Wang J-Y, Wu S-L, Ni B-J. Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A. Environ Sci Technol, 2019, 53(5): 2509-2517.

[37]

Wei R, von Haugwitz G, Pfaff L, Mican J, Badenhorst CPS, Liu W, Weber G, Austin HP, Bednar D, Damborsky J, Bornscheuer UT. Mechanism-based design of efficient PET hydrolases. ACS Catal, 2022, 12(6): 3382-3396.

[38]

Wu L, Ning D, Zhang B, Li Y, Zhang P, Shan X, Zhang Q, Brown MR, Li Z, Van Nostrand JD, Ling F, Xiao N, Zhang Y, Vierheilig J, Wells GF, Yang Y, Deng Y, Tu Q, Wang A, Acevedo D, Agullo-Barcelo M, Alvarez PJJ, Alvarez-Cohen L, Andersen GL, de Araujo JC, Boehnke KF, Bond P, Bott CB, Bovio P, Brewster RK, Bux F, Cabezas A, Cabrol L, Chen S, Criddle CS, Deng Y, Etchebehere C, Ford A, Frigon D, Sanabria J, Griffin JS, Gu AZ, Habagil M, Hale L, Hardeman SD, Harmon M, Horn H, Hu Z, Jauffur S, Johnson DR, Keller J, Keucken A, Kumari S, Leal CD, Lebrun LA, Lee J, Lee M, Lee ZMP, Li Y, Li Z, Li M, Li X, Ling F, Liu Y, Luthy RG, Mendonça-Hagler LC, de Menezes FGR, Meyers AJ, Mohebbi A, Nielsen PH, Ning D, Oehmen A, Palmer A, Parameswaran P, Park J, Patsch D, Reginatto V, de los Reyes FL, Rittmann BE, Noyola A, Rossetti S, Shan X, Sidhu J, Sloan WT, Smith K, de Sousa OV, Stahl DA, Stephens K, Tian R, Tiedje JM, Tooker NB, Tu Q, Van Nostrand JD, de los Cobos Vasconcelos D, Vierheilig J, Wagner M, Wakelin S, Wang A, Wang B, Weaver JE, Wells GF, West S, Wilmes P, Woo SG, Wu L, Wu JH, Wu L, Xi C, Xiao N, Xu M, Yan T, Yang Y, Yang M, Young M, Yue H, Zhang B, Zhang P, Zhang Q, Zhang Y, Zhang T, Zhang Q, Zhang W, Zhang Y, Zhou H, Zhou J, Wen X, Curtis TP, He Q, He Z, Brown MR, Zhang T, He Z, Keller J, Nielsen PH, Alvarez PJJ, Criddle CS, Wagner M, Tiedje JM, He Q, Curtis TP, Stahl DA, Alvarez-Cohen L, Rittmann BE, Wen X, Zhou J Global Water Microbiome C. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat Microbiol, 2019, 4(7): 1183-1195.

[39]

Xu A, Zhou J, Blank LM, Jiang M. Future focuses of enzymatic plastic degradation. Trends Microbiol, 2023, 31(7): 668-671.

[40]

Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016, 351(6278): 1196-1199.

[41]

Zhang B, Ning D, Van Nostrand JD, Sun C, Yang Y, Zhou J, Wen X. Biogeography and assembly of microbial communities in wastewater treatment plants in China. Environ Sci Technol, 2020, 54(9): 5884-5892.

[42]

Zhang L, Xie Y, Liu J, Zhong S, Qian Y, Gao P. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. Environ Sci Technol, 2020, 54(7): 4248-4255.

[43]

Zhou Y, Lu Z, Wang X, Selvaraj JN, Zhang G. Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol, 2018, 102(4): 1545-1556.

[44]

Zhu X, Qi J, Cheng L, Zhen G, Lu X, Zhang X. Depolymerization and conversion of waste-activated sludge to value-added bioproducts by fungi. Fuel, 2022, 320.

Funding

National Key R & D Program of China(2019YFA0905500)

National Natural Science Foundation of China(21978129)

Natural Science Foundation of Jiangsu Province of China for Excellent Young Scholars(BK20211591)

Jiangsu National Synergistic Innovation Center for Advanced Materials(XTB2203)

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/