Mycoremediation potential of Pleurotus species for heavy metals: a review
Meena Kapahi , Sarita Sachdeva
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 32
Mycoremediation potential of Pleurotus species for heavy metals: a review
Mycoremediation is one of the biotechniques that recruits fungi to remove toxic pollutants from environment in an efficient and economical manner. Mushrooms, macro-fungi, are among the nature’s most important mycoremediators. Pleurotus species (also called oyster mushrooms) are considered to be the most popular and widely cultivated varieties worldwide and this might be attributed to their low production cost and higher yields. Apart from their nutritive and therapeutic properties, Pleurotus species have high biosorption potential due to their extensive biomass, i.e. mycelial production. The genus has been reported to accumulate high levels of heavy metals. The current state-of-the art review mainly summarises previous investigations carried out by researchers on different roles and mechanisms played by Pleurotus species on heavy metals mycoremediation.
Pleurotus species / Heavy metals / Biosorption / Mycoremediation / Laccase / Manganese peroxidase
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
Danış Ü (2010) Biosorption of copper(II) from aqueous solutions by Pleurotus cornucopiae. BALWOIS 2010, Ohrid, Republic of Macedonia, 25–29 May 2010 |
| [28] |
|
| [29] |
|
| [30] |
de Almeida LK, Burgess JE (2013) Biosorption and bioaccumulation of copper and lead by Phanerochaete and Pleurotus ostreatus. http://www.ewisa.co.za/literature/files/182_133%20Burgess.pdf. Accessed 20 June 2016 |
| [31] |
|
| [32] |
Drzewiecka K, Siwulski M, Mleczek M, Golinski P (2010) The Influence of elevated heavy metals content in substrate on morphology and physiology of King Oyster mushroom (Pleurotus eryngii) effects on human health. In: 15th International conference on heavy metals in the environment. http://www.chem.pg.gda.pl/ichmet/ |
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
Huo C-L, Shang Y-Y, Zheng J-J, He R-X, He XS (2011) The adsorption effect of three mushroom powder on Cu2+ of low concentration. In: International symposium on water resource and environmental protection, 20–22 May 2011. doi: 10.1109/ISWREP.2011.5893731 |
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
Liew HH, Tay CC, Yong SK, Surif S, Abdul Talib S (2010) Biosorption characteristics of lead [Pb(II)] by Pleurotus ostreatus biomass. In: Abstracts of the proceedings of international conference on science and social research (CSSR), Kuala Lumpur, 2010 |
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
Tay CC, Redzwan G, Liew HH, Yong SK, Surif S, Abdul-Talib S Copper (II) (2010) Biosorption characteristic of Pleurotus spent mushroom compost. In: International conference on science and social research (CSSR 2010), Kuala Lumpur, Malaysia, Dec 5–7, 2010 |
| [96] |
Tay CC, Liew HH, Yong SK, Surif S, Abdul-Talib S (2009) Biosorption of lead(II) from aqueous solutions by Pleurotus as a toxicity biosorbent. In: Environmental science and technology conference (ESTEC2009), Kuala Terengganu Malaysia, Dec 7–8, 2009 |
| [97] |
|
| [98] |
|
| [99] |
Tay CC, Liew HH, Abdul-Talib S, Redzwan G (2016) Bi-metal biosorption using Pleurotus ostreatus spent mushroom substrate (PSMS) as a biosorbent: isotherm, kinetic, thermodynamic studies and mechanism. Desalination Water Treat 57(20). http://www.tandfonline.com/action/showCitFormats?. doi: http://dx.doi.org/10.1080/19443994.2015.1027957 |
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
Xu F, Liu X, Chen Y, Zhang K, Xu H (2016) Self-assembly modified-mushroom nano composite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed. Sci Rep 6. 26201. doi: 10.1038/srep26201. http://www.nature.com/articles/srep26201 |
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
/
| 〈 |
|
〉 |