Mycoremediation potential of Pleurotus species for heavy metals: a review

Meena Kapahi , Sarita Sachdeva

Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 32

PDF
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 32 DOI: 10.1186/s40643-017-0162-8
Review

Mycoremediation potential of Pleurotus species for heavy metals: a review

Author information +
History +
PDF

Abstract

Mycoremediation is one of the biotechniques that recruits fungi to remove toxic pollutants from environment in an efficient and economical manner. Mushrooms, macro-fungi, are among the nature’s most important mycoremediators. Pleurotus species (also called oyster mushrooms) are considered to be the most popular and widely cultivated varieties worldwide and this might be attributed to their low production cost and higher yields. Apart from their nutritive and therapeutic properties, Pleurotus species have high biosorption potential due to their extensive biomass, i.e. mycelial production. The genus has been reported to accumulate high levels of heavy metals. The current state-of-the art review mainly summarises previous investigations carried out by researchers on different roles and mechanisms played by Pleurotus species on heavy metals mycoremediation.

Keywords

Pleurotus species / Heavy metals / Biosorption / Mycoremediation / Laccase / Manganese peroxidase

Cite this article

Download citation ▾
Meena Kapahi, Sarita Sachdeva. Mycoremediation potential of Pleurotus species for heavy metals: a review. Bioresources and Bioprocessing, 2017, 4(1): 32 DOI:10.1186/s40643-017-0162-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adebayo AO. Investigation on Pleurotus ferulae potential for the sorption of Pb(II) from aqueous solution. Bull Chem Soc Ethiop, 2013, 27: 25-34.

[2]

Adenipekun CO. Bioremediation of engine-oil polluted soil by Pleurotus tuber-regium Singer, a Nigerian white-rot fungus. Afr J Biotechnol, 2008, 7: 55-58.

[3]

Adenipekun CO, Ogunjobi AA, Ogunseye AO. Management of polluted soils by a white-rot fungus: Pleurotus pulmonarius. Assumption Univ J Technol, 2011, 15: 57-61.

[4]

Adhikari T, Manna MC, Singh MV, Wanjari RH. Bioremediation measure to minimize heavy metals accumulation in soils and crops irrigated with city effluent. J Food Agric Environ, 2004, 2(1): 266-270.

[5]

Agrahar-Murugkar D, Subbuakshmi G. Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chem, 2005, 89: 599-603.

[6]

Ahalya N, Ramachandra TV, Kanamadi RD. Biosorption of heavy metals. Res J Chem Environ, 2003, 7(4): 71-79.

[7]

Akpaja EO, Nwogu NA, Odibo EA. Effect of some heavy metals on the growth and development of Pleurotus tuber-regium. Mycosphere, 2012, 3: 57-60.

[8]

Akyüz M, Kirbað S. Element contents of Pleurotus eryngii (DC. ex Fr.) Quel. var. eryngii grown on some various agro-wastes. Ekoloji, 2010, 19(74): 10-14.

[9]

Anand P, Isar J, Saran S, Saxena RK. Bioaccumulation of copper by Trichodermaviride. Bioresour Technol, 2006, 97: 1018-1025.

[10]

Arbanah M, Miradatul Najwa MR, Ku Halim KH. Biosorption of Cr(III), Fe(II), Cu(II), Zn(II) ions from liquid laboratory chemical waste by Pleurotus ostreatus. Int J Biotechnol Wellness Ind, 2012, 1: 152-162.

[11]

Arbanah M, Miradatul Najwa MR, Ku Halim KH. Utilization of Pleurotus ostreatus in the removal of Cr(VI) from chemical laboratory waste. Int Refreed J Eng Sci, 2013, 2(4): 29-39.

[12]

Arica MY, Arpa C, Kaya B. Comparative biosorption of mercuric ions from aquatic systems by immobilized live and heat-inactivated Trametes versicolor and Pleurotus sajur-caju. Bioresour Technol, 2003, 89: 145-154.

[13]

Ayangbenro Babalola. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health, 2017, 14: 94.

[14]

Aziz HA, Adlan MN, Ariffin KS. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresour Technol, 2015, 99(6): 1578-1583.

[15]

Baldrian P, Gabriel J. Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol Lett, 2002, 206: 69-74.

[16]

Baldrian P, Gabriel J. Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol Lett, 2003, 220: 235-240.

[17]

Baldrian P, In Der Wiesche C, Gabriel J, Nerud F, Zadrazˇil F. Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol, 2000, 66: 2471-2478.

[18]

Banerjee A, Nayak D. Biosorption of no-carrier-added radio-nuclides by calcium alginate beads using ‘tracer packet’ technique. Bioresour Technol, 2007, 98: 2771-2774.

[19]

Barcan VS, Kovnatsky EF, Smetannikova MS. Absorption of heavy metals in wild berries and edible mushrooms in an area affected by smelter emissions. Water Air Soil Pollut, 1998, 103: 173-195.

[20]

Barros L, Baptista P, Estevinho LM, Ferreira ICFR. Bioactive properties of the medicinal mushroom Leucopaxillus giganteus mycelium obtained in the presence of different nitrogen sources. Food Chem, 2007, 105: 179-186.

[21]

Boamponsem GA, Obeng AK, Osei-Kwateng M, Badu AO. Accumulation of heavy metals by Pleurotus ostreatus from soils of metal scrap sites. Int J Curr Res Rev, 2013, 5(4): 01-09.

[22]

Bressa G, Coma L, Costa P. Bioaccumulation of Hg in the mushroom Pleurotus ostreatus. Ecotoxicol Environ Safe, 1988, 16: 85-89.

[23]

Brunnert H, Zadraz ̆il F. The translocation of mercury and cadmium into the fruiting bodies of six higher fungi. A comparative study on species specificity in five lignocellulolytic fungi and the cultivated mushroom Agaricus bosporus. Eur J Appl Micorbiol Biotechnol, 1983, 17: 358-364.

[24]

Carol D, Kingsley SJ, Vincent S. Hexavalent chromium removal from aqueous solutions by Pleurotus ostreatus spent biomass. Int J Eng Sci Technol, 2012, 4(1): 7-22.

[25]

Cihangir N, Saglam N. Removal of cadmium by Pleurotus sajor-caju basidiomycetes. Acta Biotechnol, 1999, 19: 171-177.

[26]

Collins PJ, Dobson A. Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol, 1997, 63: 3444-3450.

[27]

Danış Ü (2010) Biosorption of copper(II) from aqueous solutions by Pleurotus cornucopiae. BALWOIS 2010, Ohrid, Republic of Macedonia, 25–29 May 2010

[28]

Das N. Heavy metals biosorption by mushrooms. Indian J Natl Prod Resour, 2005, 4: 454-459.

[29]

Das N, Charumathi D, Vimala R. Effect of pretreatment on Cd2+ biosorption by mycelia biomass of Pleurotus florida. Afr J Biotechnol, 2007, 6: 2555-2558.

[30]

de Almeida LK, Burgess JE (2013) Biosorption and bioaccumulation of copper and lead by Phanerochaete and Pleurotus ostreatus. http://www.ewisa.co.za/literature/files/182_133%20Burgess.pdf. Accessed 20 June 2016

[31]

Deng L, Zhang Y, Qin J, Wang X, Zhu X. Biosorption of Cr(VI) from aqueous solutions by nonliving green algae Cladophora albida. Miner Eng, 2009, 22: 372-377.

[32]

Drzewiecka K, Siwulski M, Mleczek M, Golinski P (2010) The Influence of elevated heavy metals content in substrate on morphology and physiology of King Oyster mushroom (Pleurotus eryngii) effects on human health. In: 15th International conference on heavy metals in the environment. http://www.chem.pg.gda.pl/ichmet/

[33]

Dulay RMR, De Castro MAEG, Coloma NB, Bernardo AP, Cruz AGD, Tiniola RC, Kalaw SP, Reyes RG. Effects and myco-remediation of lead (Pb) in five Pleurotus mushrooms. Int J Biol Pharm Allied Sci, 2015, 4(3): 1664-1677.

[34]

Favero N, Bressa G, Costa P. Response of Pleurotus ostreatus to cadmium exposure. Ecotoxicol Environ Safe, 1990, 20(1): 1-6.

[35]

Favero N, Costa P, Paolo Rocco G. Role of copper in cadmium metabolism in the basidiomycetes Pleurotus ostreatus. Comp Biochem Physiol Part C Comp Pharmacol, 1990, 97(2): 297-303.

[36]

Favero N, Costa P, Massimino ML. In vitro cadmium uptake by basidiomycetes Pleurotus ostreatus. Biotechnol Lett, 1991, 13: 701-704.

[37]

Fawzy EM, Abdel-Motaal FF, EL-zayat SA. Biosorption of heavy metals onto different eco-friendly substrates. J Toxicol Environ Health Sci, 2017, 9(5): 35-44.

[38]

Firdousi SA. Bioaccumulation and bio-absorptions of heavy metals by the mushroom from the soil. J Med Chem Drug Discov, 2017, 2(3): 25-33.

[39]

Fontes Vieira PA, Gontijo DC, Vieira BC, Fontes EAF, Soares de Assunção L, Leite JPV, Oliveira MGdA, Kasuya MCM. Antioxidant activities, total phenolics and metal contents in Pleurotus ostreatus mushrooms enriched with iron, zinc or lithium. LWT Food Sci Technol, 2013, 54(2): 421-425.

[40]

Frutos I, García-Delgado C, Gárate A, Eymar E. Biosorption of heavy metals by organic carbon from spent mushroom substrates and their raw materials. Int J Environ Sci Technol, 2016, 13(11): 2713-2720.

[41]

Gabriel J, Capelari M, Rychlovský P, Krenželok M, Zadražil F. Influence of cadmium on the growth of Agrocybe perfecta and two Pleurotus spp. and translocation from polluted substrate and soil to fruit bodies. Toxicol Environ Chem, 1996, 56: 141-146.

[42]

Gunatilake SK. Methods of removing heavy metals from industrial wastewater. J Multidiscip Eng Sci Stud, 2015, 1(1): 12-18.

[43]

Henini G, Laidani Y, Fatiha Souahi F. Study of adsorption of copper on biomass Pleurotus mutilus and the possibility of its regeneration by desorption. Energy Proced, 2011, 6: 441-448.

[44]

Hlihor RM, Bulgariu L, Sobariu DL, Diaconu M, Tavares T, Gavrilescu M. Recent advances in biosorption of heavy metals: support tools for biosorption equilibrium, kinetics and mechanism. Rev Roum Chim, 2014, 59: 527-538.

[45]

Huo C-L, Shang Y-Y, Zheng J-J, He R-X, He XS (2011) The adsorption effect of three mushroom powder on Cu2+ of low concentration. In: International symposium on water resource and environmental protection, 20–22 May 2011. doi: 10.1109/ISWREP.2011.5893731

[46]

Ita BN, Essien JP, Ebong GA. Heavy metal levels in fruiting bodies of edible and non-edible mushrooms from the Niger delta region of Nigeria. J Agric Soc Sci, 2006, 2: 84-87.

[47]

Ita BN, Ebong GA, Essien JP, Eduok SI. Bioaccumulation potential of heavy metals in edible fungal sporocarps from the Niger delta region of Nigeria. Pak J Nutr, 2008, 7: 93-97.

[48]

Jain SK, Gujral GS, Jha NK, Vasudevan P. Heavy metal uptake by Pleurotus sajor-caju from metal-enriched duckweed substrate. Biol Wastes, 1988, 24: 275-282.

[49]

Jain SK, Gujral GS, Vasudevan P, Jha NK. Uptake of heavy metals by Azolla pinnata and their translocation onto the fruit bodies of Pleurotus sajor-caju. J Ferment Bioeng, 1989, 68(1): 64-67.

[50]

Javaid A, Bajwa R. Biosorption of Cr(III) ions from tannery wastewater by Pleurotus ostreatus. Mycopathologia, 2007, 5: 71-79.

[51]

Javaid A, Bajwa R. Biosorption of electroplating heavy metals by some basiodiomycetes. Mycopathologia, 2008, 6: 1-6.

[52]

Javaid A, Bajwa R, Shafique U, Anwar J. Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenergy, 2011, 35: 1675-1682.

[53]

Jiang Y, Hao R, Yang S. Equilibrium and kinetic studies on biosorption of Pb(II) by common edible macrofungi: a comparative study. Can J Microbiol, 2016, 62(4): 329-337.

[54]

Jiang Y, Has R, Yang S. Natural bioaccumulation of heavy metals onto common edible macrofungi and equilibrium and kinetic studies on biosorption of Pb(II) to them. Acta Nat Univ Pekin, 2017, 53(1): 125-134.

[55]

Joo JH, Hussein KA, Hassan SHA. Biosorptive capacity of Cd(II) and Pb(II) by lyophilized cells of Pleurotus eryngii. Korean J Soil Sci Fert, 2011, 44: 615-624.

[56]

Joutey NT, Savel H, Bahafid W, EI Ghachtouli N. Mechanism of hexavalent chromum resistance and removal by microorganisms. Rev Environ Contam Toxicol, 2015, 233: 45-69.

[57]

Kalac P, Svoboda L. A review of trace element concentrations in edible mushrooms. Food Chem, 2000, 69: 273-281.

[58]

Kamarudzaman AN, Tay CC, Amir A, Talib SA. Biosorption of Mn(II) ions from aqueous solution by Pleurotus spent mushroom compost in a fixed-bed column. Proc Soc Behav Sci, 2015, 195: 2709-2716.

[59]

Kapoor A, Viraraghavan T. Biosorption of heavy metals on Aspergillus niger effect of pretreatment. Bioresour Technol, 1998, 63: 109-113.

[60]

Khitous M, Moussous S, Selatnia A, Kherat M. Biosorption of Cd(II) by Pleurotus mutilus biomass in fixed-bed column: experimental and breakthrough curve analysis. Desalination Water Treat, 2015, 57(35): 16559-16570.

[61]

Kim HY, Yoon DH, Lee WH, Han SK, Shrestha B, Kim CH, Lim MH, Chang W, Lim S, Choi S, Song WO, Sung JM, Hwang KC, Kim TW. Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-jB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage. J Ethnopharmacol, 2007, 114: 307-315.

[62]

Klein JM, Anziliero S, Camassola M, Grisa AMC, Brandalise RN, Zeni M. Evaluation of metal biosorption by the fungus Pleurotus sajor-caju on modified polyethylene films. J Bioremed Biodeg, 2012, 3: 152.

[63]

Kocaoba S, Arısoy M. The use of a white rot fungi (Pleurotus ostreatus) immobilized on Amberlite XAD-4 as a new biosorbent in trace metal determination. Bioresour Technol, 2011, 102: 8035-8039.

[64]

Kulshreshtha S, Mathur N, Bhatnagar P. Mushroom as a product and their role in mycoremediation. AMB Express, 2014, 4: 29.

[65]

Lamrood PY, Ralegankar SD. Biosorption of Cu, Zn, Fe, Cd, Pb and Ni by non treated biomass of some edible mushrooms. Asian J Exp Biol, 2013, 4(2): 190-195.

[66]

Liew HH, Tay CC, Yong SK, Surif S, Abdul Talib S (2010) Biosorption characteristics of lead [Pb(II)] by Pleurotus ostreatus biomass. In: Abstracts of the proceedings of international conference on science and social research (CSSR), Kuala Lumpur, 2010

[67]

Majeed A, Jilani MI, Nadeem R, Hanif MA, Ansari TM. Novel studies for the development of hybrid biosorbent. Int J Chem Biochem Sci, 2012, 2: 78-82.

[68]

Majeed A, Jilani MI, Nadeem R, Hanif MA, Ansari TM. Adsorption of Pb(II) using novel Pleurotus sajor-caju and sunflower hybrid biosorbent. Environ Prot Eng, 2014, 40(2): 5-15.

[69]

Mandal TK, Baldrian P, Gabriel J, Nerud F, Zadraz ̆il F. Effect of mercury on the growth of wood-rotting basidiomycetes Pleurotus ostreatus, Pycnoporus cinnabarinus and Serpula lacrymans. Chemosphere, 1998, 36(3): 435-440.

[70]

Manzi P, Aguzzi A, Pizzoferrato L. Nutritional value of mushrooms widely consumed in Italy. Food Chem, 2001, 73: 321-325.

[71]

Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci, 2016, 7: 1-14.

[72]

Nnorom IC, Jarzyńska G, Falandysz J, Drewnowska M, Okoye I, Oji-Nnorom CG. Occurrence and accumulation of mercury in two species of wild grown Pleurotus mushrooms from southeastern Nigeria. Ecotoxicol Environ Safe, 2012, 84: 78-83.

[73]

Nnorom IC, Jarzyńska G, Drewnowska M, Dryżałowska A, Kojta A, Pankavec S, Falandysz J. Major and trace elements in sclerotium of Pleurotus tuber-regium (Ósū) mushroom—dietary intake and risk in southeastern Nigeria. J Food Compos Anal, 2013, 29(1): 73-81.

[74]

Ogbo EM, Okhuoya JA. Bio-absorption of some heavy metals by Pleurotus tuber-regium Fr. Singer (an edible mushroom) from crude oil polluted soils amended with fertilizers and cellulosic wastes. Int J Soil Sci, 2011, 6: 34-48.

[75]

Oghenekaro AO, Okhuoya JA, Akpaja EO. Growth of Pleurotus tuberregium (Fr) Singer on some heavy metal-supplemented substrates. Afr J Microbiol Res, 2008, 2: 268-271.

[76]

Osman MS, Bandyopadhyay M. Bioseparation of lead ions from wastewater by using a fungus P. ostreatus. J Civil Eng, 1999, 27: 183-196.

[77]

Oyetayo VO, Adebayo AO, Ibileye A. Assessment of the biosorption potential of heavy metals by Pleurotus tuber-regium. Int J Adv Biol Res, 2012, 2: 293-297.

[78]

Özdemir S, Okumuşa V, Kılınçb E, Bilgetekinc H, Dündara A, Ziyadanogˇullarıb B. Pleurotus eryngii immobilized Amberlite XAD-16 as a solid-phase biosorbent for preconcentrations of Cd2+ and Co2+ and their determination by ICP-OES. Talanta, 2012, 99: 502-506.

[79]

Palmieri G, Giardina P, Bianco C, Bianca F, Sannia G. Copper induction of lactase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Environ Microbiol, 2000, 66(3): 920-924.

[80]

Prakash V. Mycoremediation of environmental pollutants. Int J Chem Tech Res, 2017, 10(3): 149-155.

[81]

Prasad ASA, Varatharaju G, Anushri C, Dhivyasree S. Biosorption of lead by Pleurotus florida and Trichoderma viride. Br Biotechnol J, 2013, 3(1): 66-78.

[82]

Puentes-Cárdenas IJ, Pedroza-Rodríguez AM, Navarrete-López M, Villegas-Garrido TL, Cristiani-Urbina E. Biosorption of trivalent chromium from aqueous solutions by Pleurotus ostreatus biomass. Environ Eng Manag J, 2012, 11(10): 1741-1752.

[83]

Purkayastha RP, Mitra AK, Bhattacharyya B. Uptake and toxicological effects of some heavy metals on Pleurotus sajor-caju (Fr.) Singer. Ecotoxicol Environ Safe, 1994, 27: 7-13.

[84]

Qazilbash AA. Isolation and characterization of heavy metal tolerant biota from industrially polluted soils and their role in bioremediation. Biol Sci, 2004, 41: 210-256.

[85]

Quarcoo A, Adotey G. Determination of heavy metals in Pleurotus ostreatus (Oyster mushroom) and Termitomyces clypeatus (Termite mushroom) sold on selected markets in Accra, Ghana. Mycosphere, 2013, 4(5): 960-967.

[86]

Radulescu C, Stihi C, Busuioc G, Gheboianu AI, Popescu IV. Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. Bull Environ Contam Toxicol, 2010, 84: 641-646.

[87]

Raj DD, Mohan B, Vidya Shetty BM. Mushrooms in the remediation of heavy metals from soil. Int J Environ Pollut Control Manag, 2011, 3(1): 89-101.

[88]

Ruiz-Duenas FJ, Guille´n F, Camarero S, Pe´rez-Boada M, Martı´nez MJ, Martı´nez AT. Regulation of peroxidase transcript levels in liquid cultures of the ligninolytic fungus Pleurotus eryngii. Appl Environ Microbiol, 1999, 65: 4458-4463.

[89]

Salman HA, Ibrahim MI, Tarek MM, Abbas HS. Biosorption of heavy metals—a review. J Chem Sci Technol, 2014, 3(4): 74-102.

[90]

Sarikurkcu C, Tepe B, Yamac M. Evaluation of the antioxidant activity of four edible mushrooms from the Central Anatolia, Eskisehir—Turkey: Lactarius deterrimus, Suillus collitinus, Boletus edulis, Xerocomus chrysenteron. Bioresour Technol, 2008, 99: 6651-6655.

[91]

Singh J, Kant K, Sharma HB, Rana KS. Bioaccumulation of cadmium in tissues of Cirrihna mrigala and Catla catla. Asian J Exp Sci, 2008, 22: 411-414.

[92]

Soden DM, Dobson ADW. Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology, 2001, 147: 1755-1763.

[93]

Suseem SR, Mary Saral A. Biosorption of heavy metals using Pleurotus eous. J Chem Pharm Res, 2014, 6(7): 2163-2168.

[94]

Synytsya A, Mickova K, Synytsya A, Jablonsky I, Spevacek J, Erban V. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: structure and potential prebiotic activity. Carbohydr Polym, 2009, 76: 548-556.

[95]

Tay CC, Redzwan G, Liew HH, Yong SK, Surif S, Abdul-Talib S Copper (II) (2010) Biosorption characteristic of Pleurotus spent mushroom compost. In: International conference on science and social research (CSSR 2010), Kuala Lumpur, Malaysia, Dec 5–7, 2010

[96]

Tay CC, Liew HH, Yong SK, Surif S, Abdul-Talib S (2009) Biosorption of lead(II) from aqueous solutions by Pleurotus as a toxicity biosorbent. In: Environmental science and technology conference (ESTEC2009), Kuala Terengganu Malaysia, Dec 7–8, 2009

[97]

Tay CC, Liew HH, Yin C-Y, Abdul-Talib S, Surif S, Abdullah A, Yong SK. Biosorption of cadmium ions using Pleurotus ostreatus: growth kinetics, isotherm study and biosorption mechanism. Kor J Chem Eng, 2011, 28(3): 825-830.

[98]

Tay CC, Redzwan G, Liew HH, Yong SK, Surif S, Abdul-Talib S. Fundamental behavior for biosorption of divalence cations by Pleurotus mushroom spent-substrate. Malays J Sci, 2012, 31: 40-44.

[99]

Tay CC, Liew HH, Abdul-Talib S, Redzwan G (2016) Bi-metal biosorption using Pleurotus ostreatus spent mushroom substrate (PSMS) as a biosorbent: isotherm, kinetic, thermodynamic studies and mechanism. Desalination Water Treat 57(20). http://www.tandfonline.com/action/showCitFormats?. doi: http://dx.doi.org/10.1080/19443994.2015.1027957

[100]

Velásquez L, Dussan J. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater, 2009, 167: 713-716.

[101]

Vimala R, Das N. Mechanism of Cd(II) adsorption by macrofungus Pleurotus platypus. J Environ Sci, 2011, 23: 288-293.

[102]

Vimala R, Charumathi D, Nilanjana Das. Packed bed column studies on Cd(II) removal from industrial wastewater by macrofungs Pleurotus platypus. Desalination, 2011, 275: 291-296.

[103]

Wu M, Xu Y, Ding W, Li Y, Xu H. Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by tween 80 and saponin. Appl Microbiol Biotechnol, 2016, 100: 7249-7261.

[104]

Xiangliang P, Jianlong W, Daoyong Z. Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process Bio Chem, 2005, 40: 2799-2803.

[105]

Xiangliang P, Jianlong W, Daoyong Z. Biosorption of Co(II) by immobilised Pleurotus ostreatus. Int J Environ Pollut, 2009, 37: 289-298.

[106]

Xu F, Liu X, Chen Y, Zhang K, Xu H (2016) Self-assembly modified-mushroom nano composite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed. Sci Rep 6. 26201. doi: 10.1038/srep26201. http://www.nature.com/articles/srep26201

[107]

Yalçinkaya Y, Arica MY, Soysal L, Bektaş S. Cadmium and mercury uptake by immobilized Pleurotus sapidus. Turk J Chem, 2002, 26(3): 441-452.

[108]

Yang T, Chen M-L, Wang J-H. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. TrAC Trends Anal Chem, 2015, 66: 90-102.

[109]

Yazdani M, Chee KY, Faridah A, Soon GT. An in vitro study on the adsorption, absorption and uptake capacity of Zn by the bioremediator Trichodermaatro viride. Environ Asia, 2010, 3: 53-59.

[110]

Zhu FK, Qu L, Fan WX, Qiao MY, Hao HL, Wang XJ. Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environ Monit Assess, 2010, 30: 61-62.

AI Summary AI Mindmap
PDF

336

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/