The exceptional optoelectronic properties of lead halide perovskite nanocrystals (PeNCs) in the ultraviolet and visible spectral regions have positioned them as a promising class of semiconductor materials for diverse optoelectronic and photovoltaic applications. However, their limited response to near-infrared (NIR) light due to the intrinsic bandgap (>1.5 eV) has hindered their applications in many advanced technologies. To circumvent this limitation, it is of fundamental significance to integrate PeNCs with lanthanide-doped upconversion nanoparticles (UCNPs) that are capable of efficiently converting low-energy NIR photons into high-energy ultraviolet and visible photons. By leveraging the energy transfer from UCNPs to PeNCs, this synergistic combination can not only expand the NIR responsivity range of PeNCs but also introduce novel emission profiles to upconversion luminescence with multi-dimensional tunability (e.g., wavelength, lifetime, and polarization) under low-to-medium power NIR irradiation, which breaks through the inherent restrictions of individual PeNCs and UCNPs and thereby opens up new opportunities for materials and device engineering. In this review, we focus on the latest advancements in the development of PeNCs-UCNPs nanocomposites, with an emphasis on the controlled synthesis and optical properties design for advanced optoelectronic applications such as full-spectrum solar cells, NIR photodetectors, and multilevel anticounterfeiting. Some future efforts and prospects toward this active research field are also envisioned.
It is crucial to realize the point-of-care (POC) testing of harmful analytes, capable of saving limited agricultural resources, assisting environmental remediation, ensuring food safety, and enabling early disease diagnosis. Compared with other conventional POC sensing strategies, aggregation-based analytical chemistry facilitates the practical-oriented development of POC nanosensors by altering the aggregation status of nanoprobes through the action of multiple aggregationinduced “forces” originating from the targets. Herein, we have proceeded with a comprehensive review focusing on the aggregation-based analytical chemistry in POC nanosensors, covering aggregation-induced “forces”, aggregation-induced signal transductions, aggregation-induced POC nanosensing strategies, and their applications in biomolecular monitoring, food safety analysis, and environmental monitoring. Finally, challenges existing in practical applications have been further proposed to improve their sensing applications, and we expect our review can speed up the development of cost-effective, readily deployable, and time-efficient nanosensors through aggregation-based analytical chemistry.
Myocardial infarction accompanied by diabetes mellitus is accepted as the most serious type of coronary heart disease, and among the current treatment strategies, the precise delivery of protective drugs for inhibiting cardiomyocyte apoptosis is still a challenge. In this study, we developed a biodegradable nanoparticles-based delivery system with excellent macrophage escape, cardiac targeting, and drug release properties to achieve targeted therapy of myocardial infarction. Specifically, a copolymer of p(DMA–MPC–CD) combining self-adhesion, hydration lubrication, and targeting peptide binding site was successfully prepared by free radical copolymerization, and it was self-assembled on the surface of melatonin-loaded dendritic mesoporous silica nanoparticles (bMSNs) following the integration of adamantane-modified cardiac homing peptide (CHP) based on supramolecular host–guest interaction. Importantly, a hydration layer formed around the zwitterionic phosphorylcholine groups of the multifunctional nanoparticles, which was confirmed by the enhancement in hydration lubrication and reduction in coefficient of friction, prevented the nanoparticles from phagocytosis by the macrophages. The in vivo bioluminescence imaging test indicated that the nanoparticles were endowed with satisfied cardiac targeting capability, and the in vivo mice study demonstrated that the intravenous injection of drug-loaded nanoparticles (namely bMSNs–Mel@PDMC–CHP) effectively reduced cardiomyocyte apoptosis, alleviated myocardial interstitial fibrosis, and enhanced cardiac function.
The waste of resources associated with fruit decay is rapidly spreading globally, threatening the interests of relevant practitioners and the health of consumer groups, and demanding precise solutions. Controlling fruit ripening through ethylene regulation is one of the most important strategies for providing high-quality fruits. However, current materials for ethylene regulation still have difficulty realizing their application potential due to high manufacturing costs and performance deficiencies. In this review, the ethylene-controlled release materials for ripening based on molecular encapsulation and the ethylene scavengers for preservation based on mechanisms such as oxidation, photodegradation, and adsorption are presented. We discuss and analyze a wide range of materials in terms of mechanism, performance, potential of applicability, and sustainability. The ethylene release behavior of encapsulating materials depends on the form in which the ethylene binds to the material as well as on environmental factors (humidity and temperature). For ethylene scavengers, there are a variety of scavenging mechanisms, but they generally require porous materials as adsorption carriers. We highlight the great opportunity of designing soft crystalline porous materials as efficient ethylene adsorbent due to their unique structural properties. We present this review, including a summary of practical characteristics and deficiencies of various materials, to establish a systematic understanding of fruit quality assurance materials applied to ethylene regulation, anticipating a promising prospect for these new materials.
The prosperous evolution of conductive hydrogel-based skin sensors is attracting tremendous attention nowadays. Nevertheless, it remains a great challenge to simultaneously integrate excellent mechanical strength, desirable electrical conductivity, admirable sensing performance, and brilliant healability in hydrogel-based skin sensors for high-performance diagnostic healthcare sensing and wearable human-machine interface, as well as robust photothermal performance for promptly intelligent photothermal therapy followed by the medical diagnosis and superior electromagnetic interference (EMI) shielding performance for personal protection. Herein, a flexible healable MXene hydrogel-based skin sensor is prepared through a delicate combination of MXene (Ti3C2Tx) nanosheets network with the polymeric network. The as-prepared skin sensor is featured with significantly enhanced mechanical, conducting, and sensing performances, along with robust self-healability, good biocompatibility, and reliable injectability, enabling ultrasensitive human motion monitoring and teeny electrophysiological signals sensing. As a frontier technology in artificial intelligence, machine learning can facilitate to efficiently and precisely identify the electromyography signals produced by various human motions (such as variable finger gestures) with up to 99.5% accuracy, affirming the reliability of the machine learning-assisted gesture identification with great potential in smart personalized healthcare and human-machine interaction. Moreover, the MXene hydrogel-based skin sensor displays prominent EMI shielding performance, demonstrating the great promise of effective personal protection.
Among a promising photovoltaic technology for solar energy conversion, organic solar cells (OSCs) have been paid much attention, of which the power conversion efficiencies (PCEs) have rapidly surpassed over 20%, approaching the threshold for potential applications. However, the device stability of OSCs including storage stability, photostability and thermal stability, remains to be an enormous challenge when faced with practical applications. The major causes of device instability are rooted in the poor inherent properties of light-harvesting materials, metastable morphology, interfacial reactions and highly sensitive to external stresses. To get rid of these flaws, a comprehensive review is provided about recent strategies and methods for improving the device stability from active layers, interfacial layers, device engineering and encapsulation techniques for high-performance OSC devices. In the end, prospectives for the next stage development of high-performance devices with satisfactory long-term stability are afforded for the solar community.
Multiresonant thermally activated delayed fluorescence (MR-TADF) emitters have been the focus of extensive design efforts as they are recognized to show bright, narrowband emission, which makes them very appealing for display applications. However, the planar geometry and relatively large singlet–triplet energy gap lead to, respectively, severe aggregation-caused quenching (ACQ) and slow reverse intersystem crossing (RISC). Here, a design strategy is proposed to address both issues. Two MR-TADF emitters triphenylphosphine oxide (TPPO)-tBu-DiKTa and triphenylamine (TPA)-tBu-DiKTa have been synthesized. Twisted ortho-substituted groups help increase the intermolecular distance and largely suppress the ACQ. In addition, the contributions from intermolecular charge transfer states in the case of TPA-tBu-DiKTa help to accelerate RISC. The organic light-emitting diodes (OLEDs) with TPPO-tBu-DiKTa and TPA-tBu-DiKTa exhibit high maximum external quantum efficiencies (EQEmax) of 24.4% and 31.0%, respectively. Notably, the device with 25 wt% TPA-tBu-DiKTa showed both high EQEmax of 28.0% and reduced efficiency roll-off (19.9% EQE at 1000 cd m−2) compared to the device with 5 wt% emitter (31.0% EQEmax and 11.0% EQE at 1000 cd m−2). The new emitters were also introduced into single-layer light-emitting electrochemical cells (LECs), equipped with air-stable electrodes. The LEC containing TPA-tBu-DiKTa dispersed at 0.5 wt% in a matrix comprising a mobility-balanced blend-host and an ionic liquid electrolyte delivered blue luminance with an EQEmax of 2.6% at 425 cd m−2. The high efficiencies of the OLEDs and LECs with TPA-tBu-DiKTa illustrate the potential for improving device performance when the DiKTa core is decorated with twisted bulky donors.
To enhance the anesthetic efficacy and reduce toxic side effects, a strategy is proposed involving the utilization of general anesthetics of Propofol (Pro) and Etomidate (Eto) to synergistic inhibition GABA receptors simultaneously. Four-in-one molecular aggregates were prepared to implement this strategy, which comprised of Pro and Eto with the bridging molecule monoglyceride monooleate (GMO) and surfactant F127 through intermolecular forces. The blood-brain barrier (BBB) targeted lactoferrin (LF) is affixed to their surface, obtaining the final molecular aggregates. By employing lactoferrin enrich aggregates to the BBB, followed by ultrasound combine microbubbles to open the BBB, a remarkable 4.5-fold enhancement in brain drug delivery was achieved. The molecular aggregates group maintained stable parameters of heart rate, diastolic blood pressure, and systolic blood pressure. A notable increase of more than twice therapeutic index (TI) value was observed, implying their higher anesthesia efficiency and reduced toxicity. Electroencephalogram (EEG) experiments demonstrate a significant elevation in the proportion of δ waves from 28% to 80% for aggregates, accompanied by a nearly fivefold reduction in the proportion of θ waves, meaning a significant improvement in synergistic anesthesia effectiveness (interaction index 0.289) with lower drug dosage. Furthermore, mouse immunofluorescence brain slice experiments suggest Pro and Eto enter the GABA receptor simultaneously, resulting in synergistic inhibition of GABA receptors.
Zero-dimensional (0D) hybrid manganese halides have gained wide attention for the various crystal structures, excellent optical performance and scintillation properties compared with 3D lead halide perovskite nanocrystals. In this work, a new family of 0D hybrid manganese halides of A2MnBr4 (A = BzTPP, Br-BzTPP, and F-BzTPP) based on discrete [MnBr4]2− tetrahedral units is reported as highly efficient leadfree scintillators. Excited by UV or blue light, these hybrids emit bright green light originating from the d–d transition of Mn2+ with near-unity PLQY (99.5%). Significantly, high PLQY and low self-absorption render extraordinary radioluminescence properties with the highest light yield of 80,100 photons MeV−1, which reached the climax of present hybrid manganese halides and surpassed most commercial scintillators. The radioluminescence intensity features a linear response to X-ray doses with a detection limit of 30 nGyair s−1, far lower than the requirement of medical diagnostic (5.5 µGyair s−1). X-ray imaging demonstrates ultrahigh spatial resolution of 14.06 lp mm−1 and short afterglow of 0.3 ms showcasing promising application prospects in radiography. Overall, we demonstrated new hybrid manganese halides as promising scintillators for advanced applications in X-ray imaging with multiple superiorities of nontoxicity, facile-assembly process, high irradiation light yield, excellent resolution, and stability.
Antimicrobial resistance (AMR) remains an urgent and formidable challenge to global public health. Developing new medicines or alternative therapies to address AMR is imperative. Herein, we rationally designed and synthesized a series of Au(I)-based aggregation-induced emission luminogens (AIEgens) to combat drugresistant bacterial infections. Through systematic screening, we identified an optimal AIEgen, called complex 5, which can rapidly discriminate between gram-positive (G+) and gram-negative bacteria (G−) bacteria, and exert robust and broad-spectrum antimicrobial potency against diverse drug-resistant bacterial strains, including those intractable to treat in clinic. Furthermore, extensive testing against a variety of clinical drug-resistant isolates, coupled with the successful treatment of methicillinresistant Staphylococcus aureus-infected skin wounds unequivocally validates the high efficiency and broad-spectrum activity of complex 5. Therefore, complex 5 emerges as a promising candidate for combating drug-resistant bacterial infections in clinic, and this work provides inspiration for developing new solutions to address the escalating global challenge of AMR.
The energy dissipation pathways of a photosensitizer for phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), compete directly with that of its fluorescence (FL) emission. Enriching heavy atoms on the π- conjugated systems and aggregation-caused quenching are two effective methods to turn off the FL emission of photosensitizers, which is expected to boost the intersystem crossing (for PDT) and nonradiative transition (for PTT) of photosensitizers for maximized phototherapeutic efficacy. Following this approach, an all-iodinesubstituted polydiacetylene aggregate poly(diiododiacetylene) (PIDA) has been developed, which shows a superior near infrared absorption (ϵ808nm = 26.1 g−1 cm−1 L) with completely blocked FL, as well as high efficiency of reactive oxygen species generation (nearly 45 folds of indocyanine green) and photothermal conversion (33.4%). To make the insoluble fibrillar PIDA aggregates favorable for systemic administration, they are converted into nanospheres through a pre-polymerization morphology transformation strategy. The in vivo study on a 4T1 tumor-bearing mouse model demonstrates that PIDA nanospheres can almost eliminate the tumor entirely in 16 days and prolong the survival time of mice to over 60 days, validating their effective phototherapeutic response through the strategy of inhibiting FL for boosted intersystem crossing and nonradiative transition.
Single-component ambipolar polymers are highly desirable for organic electrochemical transistors (OECTs) and integration into complementary logic circuits with reduced process complexity. However, they often suffer from imbalanced p-type and n-type characteristics and/or stability issues. Herein, a novel single-component ambipolar polymer, namely, gIDT–BBT is reported based on indacenodithiophene (IDT) as the electron donor, benzobisthiadiazole (BBT) as the electron acceptor and oligo ethylene glycol (OEG) as the side chain. Benefitting from the extended backbone planarity and rigidity of IDT, pronounced electron-withdrawing capability of BBT, favored ionic transport from OEG together with vertical OECT device structure, a nearly balanced ambipolar OECT performance is achieved for gIDT– BBT, revealing a high transconductance of 155.05 ± 1.58/27.28 ± 0.92 mS, a high current on/off ratio >106 and an excellent operational stability under both p-type and n-type operation conditions. With gIDT–BBT in hand, furthermore, vertically stacked complementary inverters are successfully fabricated to show a maximum voltage gain of 28 V V−1 (VIN = 0.9 V) and stable operation over 1000 switching cycles, and then used for efficient electrooculogram recording. This work provides a new approach for the development of ambipolar single-component organic mixed ionic–electronic conductors and establishes a foundation for the manufacture of high-performance ambipolar OECTs and associated complementary circuits.
Dental caries is one of the most prevalent and costly biofilm-induced oral diseases that causes the deterioration of the mineralized tooth tissue. Traditional antimicrobial agents like antibiotics and antimicrobial peptides (AMPs) struggle to effectively eradicate bacteria in biofilms without eliciting resistance. Herein, we demonstrate the construction of FeOOH@Fe-Lysine@Au nanostructured AMPs (nAMPs) distinguished by their AMP-like antibacterial activity and self-producing reactive oxygen species (ROS) capacity for caries treatment. On the one hand, FeOOH@Fe- Lysine@Au nAMPs can catalyze glucose oxidation to generate ROS within the cariogenic biofilm microenvironment, resulting in the disintegration of the extracellular polymeric substance matrix and the exposure of bacteria. On the other hand, FeOOH@Fe-Lysine@Au nAMPs can attach to bacterial surfaces via electrostatic attractions, proceeding to damage membranes, disrupt metabolic pathways, and inhibit protein synthesis through the aggregated lysine and the generated ROS. Based on this antibacterial mechanism, FeOOH@Fe-Lysine@Au nAMPs can effectively eradicate Streptococcus mutans and its associated biofilm, significantly impeding the progression of dental caries. Given the straightforward and cost-efficient preparation of FeOOH@Fe-Lysine@Au nAMPs compared to AMPs that require specific sequences, and their minimal adverse impacts on gingival/palatal tissues, major organs, and oral/gut microbiomes, our research may promote the development of novel therapeutic agents in dental health maintenance.
Developing dynamic color-tunable ultra-long room temperature phosphorescence (URTP) polymers with afterglow of over 1 s, photo-chromism, and multi-stimuli response for practical anti-counterfeiting and information security applications is attractive but very challenging. Herein, by doping multicolor phosphorescence pyridinium bromide L block or viologen-based photo-chromic V block into polyvinyl alcohol matrixes, the water-stimuli-responsive color-tunable URTP polymer films with afterglow of up to 8 s and the reversible viologen-based photochromic polymer films have been developed. More significantly, a series of dynamic color-tunable URTP polymer films with ultra-long afterglow of over 6 s, photo-chromism, and water-stimuli response have been successfully exploited by integrating L and V blocks into one polymer system. Mechanistic investigations have revealed that their photo-chromism mainly comes from the photo-generated viologen free radicals. Furthermore, their dynamic multilevel anti-counterfeiting applications have been demonstrated. These results pave the way to develop smarter multifunctional URTP materials for anti-counterfeiting and optical sensing.
With the development of aggregation-induced emission (AIE) materials, the drawbacks of conventional fluorescence materials subjected to aggregation-caused quenching (ACQ) have been resolved. This has allowed for the improvement of novel AIE fluorescent materials that exhibit enhanced photostability, a higher signalto- noise ratio, and better imaging quality.Meanwhile, the enhanced phototherapeutic effect of AIE materials has garnered widespread attention in the realm of tumor treatment. The distinct physiological and anatomical characteristics of the urinary system make it suitable for the use of AIE materials. Additionally, AIE-based phototherapy provides a superior solution to deal with the weaknesses of conventional treatments for urologic neoplasms. In this review, the scientific advancement on the use of AIE materials in urinary system diseases since the emergence of the AIE concept is reviewed in detail. The review highlights the promise of AIE materials for biomarkers detection, fluorescence imaging (FLI) in vivo and in vitro, AIE-based phototherapy, and synergistic therapy from both diagnostic and therapeutic viewpoints. It is firmly believed that AIE materials hold immense untapped potential for the diagnosis and treatment of urologic disease, as well as all diseases of the human body.
Supercapacitors (SCs) are studied and used in various fields due to their high power density, fast charging/discharging rate, as well as long cycle life. Compared to other traditional electrode and electrolyte materials, supramolecular hydrogels have great advantages in the application of SCs due to their excellent properties. Unlike covalent bonds, supramolecular systems are assembled through dynamic reversible bonds, including host–guest interactions, ion interactions, electrostatic interactions, hydrogen bonding, coordination interactions, etc. The resulting supramolecular hydrogels show some special functions, such as stretching, compression, adhesion, self-healing, stimulus responsiveness, etc., making them strong candidates for the next generation of energy storage devices. This paper reviews the representative progress of electrodes, electrolytes, and SCs based on supramolecular hydrogels. Besides, the properties of supramolecular hydrogels, such as conductivity, extensibility, compressibility and elasticity, self-healing, frost resistance, adhesion, and flexibility, are also reviewed to highlight the key role of excellent properties of hydrogel materials in SCs. In addition, this article also discusses the challenges faced by current technologies, hoping to continue promoting future research in this field.
Metalated covalent organic frameworks (COFs) for 2D and 3D topologies are continuously being developed, whereas metalated COFs with 1D topologies are still in their infancy. Here, a novel 1D phenanthroline-based COF containing 4,4- (1,10-phenanthroline-2,9-diyl)bis[benzaldehyde] (PBA) is reported (PAD-COF). Subsequently, a metalated 1D COF, Co SAS/PAD-COF, is constructed using the bidentate ligand properties of PBA and anchoring the single Co atoms in PAD-COF through a post-synthetic modification strategy. This complex significantly improved the photocatalytic performance of PAD-COF, and the CO yield of the optimized Co SAS/PAD-COF was stable at 3091 μmol g−1 h−1 with a selectivity of 93%, which is approximately 43.7 times that of the original PAD-COF. Experimental and theoretical results demonstrate the excellent CO2 photoreduction activity of Co SAS/PAD-COF owing to the synergistic effect of single Co catalytic sites and PADCOF. Among them, PAD-COF, as the host, adsorbs CO2 molecules and loads single Co atoms. Meanwhile, Co atoms function as catalytic sites and promote the adsorption and activation of CO2, while reducing the reaction energy barrier formed by the *COOH intermediates. Therefore, this unique metalated 1D COF provides a fresh approach to photocatalytic CO2 reduction.
Viologen, as a type of strong electron acceptor, is prone to undergo electron transfer (ET) and change color under external stimuli. However, due to the easy aggregation of viologen molecules, they usually suffer from poor fluorescence emission in the condensed phase. Herein, a new viologen derivative of VioCl2·2Cl (12+·2Cl) was designed and synthesized, in which the fluorescence was enhanced by introducing Me-β-CD to weaken the interactions between viologen molecules. Then a viologen-based host-guest supramolecule of 12+@Me-β-CD was obtained by electrostatic interactions. Photo-/chemo-responded guest 12+ supplies 12+@Me-β-CD, a green and dark purple caused by intramolecular and intermolecular ET. Furthermore, 12+@Me-β-CD displays an additional thermal responsive purple color. The triple chromic behaviors all exhibit excellent reversibility and cycling stability. As expected, 12+@Me-β-CD exhibits strong photoluminescence (PL) in solid-liquid dual states, presenting an improved quantum yield (Φ) from 12+ (Φs = 0.37%, Φl = 16.74%) to 12+@Me-β-CD (Φs = 10.45%, Φl = 25.86%), and the fluorescence intensity can be dynamically modulated by light, heat, and acid/base vapors. The multi-responsive chromism and tunable fluorescence of 12+@Me-β-CD allow for potential applications in information security and smart windows.
Photoisomerization and photoluminescence are two distinct energy dissipation pathways in light-drivenmolecular motors. The photoisomerization properties of discrete molecular motors have been well established in solution, but their photoluminescent properties have been rarely reported—especially in aggregates. Here, it is shown that an overcrowded alkene-based molecular motor exhibits distinct dynamic properties in solution and aggregate states, for example, gel and solid states. Despite the poor emissive properties of molecular motors in solution, a bright emission is observed in the aggregate states, including in gel and the crystalline solid. The emission wavelength is highly dependent on the nature of the supramolecular packing and order in the aggregates. As a result, the fluorescent color can be readily tuned reversibly viamechanical grinding and vapor fuming, which provides a new platform for developing multi-stimuli functional materials.
Organic light-emitting diodes (OLEDs) based on multiple resonance-thermally activated delayed fluorescence (MR-TADF) have the advantages of high exciton utilization and excellent color purity. However, the large conjugated planarity of general MR-TADF emitters makes them easily aggregate in the form of π-π stacking, resulting in aggregation-caused quenching (ACQ) and the formation of excimers, which reduce exciton utilization efficiency and color purity. To address these issues, large shielding units can be incorporated to prevent interchromophore interactions, whereas the majority of reported molecules are limited to blue-green light emissions. This work proposes a strategy of incorporating steric hindrance groups at different sites of the B/N core to suppress interactions between chromophore, contributing to blue MR-TADF emitters with high photo-luminance quantum yields (PLQYs ≥ 95%) and narrow full width at half maximum (FWHM), and importantly, great suppression of the ACQ effect. Therefore, blue OLEDs achieve high external quantum efficiencies up to 34.3% and high color purity with FWHM of about 27 nm and CIE around (0.12, 0.15), even at a high doping concentration of 20 wt%.
The prevention of blindness from glaucoma requires multiple treatments to lower intraocular pressure. Here, human contact lenses are modified with highly porous metal-organic frameworks with sustained release of brimonidine for prolonged glaucoma treatment. Various metal-organic frameworks were screened for their attachment to lenses, loading with brimonidine, and drug-release properties. Optimized therapeutic ocular lenses conjugated with MIL-101(Cr) frameworks maintain optical transparency and power. Coating of lenses with MIL-101(Cr) nanoparticles reduced brimonidine washout with tears and ensured a gradual and localized release of the drug into the eyeball through the cornea. The hybrid lenses provided a 4.5- fold better decrease in eye pressure, compared by area under the curve (AUC) value to a commercially available brimonidine tartrate solution. Therapeutic lenses did not induce any notable eye irritation or corneal damage in vivo. The newly developed hybrid lenses are expected to provide a robust platform for the therapy and prevention of various ocular diseases.
The exploration of antibiotic-independent phototherapy strategies for the treatment of bacterial biofilm infections has gained significant attention. However, efficient eradication of bacterial biofilms remains a challenge. Herein, a self-regulated phototheranostic nanosystem with single wavelength-triggered photothermal therapy (PTT)/photodynamic therapy (PDT) transformation and oxygen supply for multimodal synergistic therapy of bacterial biofilm infections is presented. This approach combines a eutectic mixture of natural phase-change materials (PCMs) and an aggregation-induced emission (AIE) phototheranostic agent TPA-ICN to form colloidally stable nanopartcicles (i.e. AIE@PCM NPs). The reversible solid–liquid phase transition of PCMs facilitates the adaptive regulation of the aggregation states of TPA-ICN, enabling a switch between the energy dissipation pathways for enhanced PDT in solid PCMs or enhanced PTT in liquid PCMs. Additionally, oxygen-carrying thermoresponsive nanoparticles are also introduced to alleviate the hypoxic microenvironment of biofilms by releasing oxygen upon heating by AIE@PCM NPs with enhanced PTT. The nanosystem exhibits outstanding therapeutic efficacy against bacterial biofilms both in vitro and in vivo, with an antibacterial efficiency of 99.99%. This study utilizes a self-regulated theranostic nanoplatform with adaptive PTT/PDT transformation via the phase transition of PCMs and heattriggered oxygen release, holding great promise in the safe and efficient treatment of bacterial biofilm infections.
Thermally activated delayed fluorescence (TADF) molecules are regarded as promising materials for realizing high-performance organic light-emitting diodes (OLEDs). The connecting groups between donor (D) and acceptor (A) units in D–A type TADF molecules could affect the charge transfer and luminescence performance of TADF materials in aggregated states. In this work, we design and synthesize four TADF molecules using planar and twisted linkers to connect the aza-azulene donor (D) and triazine acceptor (A). Compared with planar linkers, the twisted ones (Az-NP-T and Az-NN-T) can enhance A–A aggregation interaction between adjacent molecules to balance hole and electron density. As a result, highly efficient and stable deep-red top-emission OLEDs with a high electroluminescence efficiency of 57.3% and an impressive long operational lifetime (LT95~30,000 h, initial luminance of 1000 cd m−2) are obtained. This study provides a new strategy for designing more efficient and stable electroluminescent devices through linker aggregation engineering in donor–acceptor molecules.
Existential state of solutes substantially affects the efficiency and direction of various chemical and biological processes, about which current consensus is still limited at macro and micro levels. At the trace level, solutes assume a pivotal role across a spectrum of critical fields. However, their existential states, especially at interfaces, remain largely elusive. Herein, an exceptional evolution of solute molecules is unveiled from micro to trace, solution to interface, with the aid of surface-enhanced Raman spectroscopy, extinction, DLS and theoretical simulations. Given predominant existence of monomers within the solution, these aggregates dominate the interfacial behavior of solute molecules. Moreover, a universal, aggregate-controlled mechanism is demonstrated that aggregates triggered by cosolvent, which can dramatically promote efficiency of catalytic reactions. The results provide novel insights into the interaction mechanisms between reactants and catalysts, potentially offering fresh perspectives for the manipulation of multiphase catalysis and related biological processes.
The aggregation of topological spin textures at nano and micro scales has practical applications in spintronic technologies. Here, the authors report the in-plane current-induced proliferation and aggregation of bimerons in a bulk chiral magnet. It is found that the spin-transfer torques can induce the proliferation and aggregation of bimerons only in the presence of an appropriate out-of-plane magnetic field. It is also found that a relatively small damping and a relatively large non-adiabatic spin-transfer torque could lead to more pronounced bimeron proliferation and aggregation. Particularly, the current density should be larger than a certain threshold in order to trigger the proliferation; namely, the bimerons may only be driven into translational motion under weak current injection. Besides, the authors find that the aggregate bimerons could relax into a deformed honeycomb bimeron lattice with a few lattice structure defects after the current injection. The results are promising for the development of bio-inspired spintronic devices that use a large number of aggregate bimerons. The findings also provide a platform for studying aggregation-induced effects in spintronic systems, such as the aggregation-induced lattice phase transitions.
Efficient strategies for transforming Bacillus subtilis vegetative cells into spores (BtS transformation) are still limited, although they show promise for the treatment of inflammatory bowel disease (IBD). A novel, simple, and rapid photoinduced BtS transformation mechanism is now presented that utilizes a novel aggregation-induced emission luminogen (AIEgen) photosensitizer, triphenylaminebenzothiadiazole- pyridine-p-tolylboronic acid bromine salt (TBPBB), that generates reactive oxygen species (ROS) when exposed to light. The ROS selectively target and damage the membranes of Bacillus subtilis and trigger their transformation into spores. These spores demonstrate considerable promise for the effective treatment of IBD in a mouse disease model. Furthermore, the fluorescence signal generated by TBPBB can be used to directly visualize the recovery of damaged intestinal tissue. This is a valuable tool for monitoring the healing process and gaining insights into therapeutic efficacy. This study highlights the remarkable practical value of AIEgen-induced BtS transformation for identifying, localizing, and visualizing the therapeutic outcomes of IBD treatments.
Chirality and luminescence are important for both chemistry and biology, which are highly influenced by aggregation. In this work, a pair of metalated tetraphenylethylene(TPE)-based organic cage enantiomers are reported, which feature a quadrangular prismatic cage structure. These homochiral cages exhibit concentration-dependent chiral behaviors alongside a propensity for thermodynamic aggregation. Aggregation caused quench effect is found for these cages accompanying the increasing of the concentrations. When a poor solvent is added to produce a kinetical aggregation, the aggregation-annihilation circular dichroism and aggregation-induced emission behaviors are observed for these enantiomeric cages. By comparing these observations with the photophysical behaviors of a pair of structurally similar organic molecular enantiomers, the unique photophysical properties observed are intricately linked to the metal-integrated TPE-functionalized cage structures.
Droplet-based bioprinting has shown remarkable potential in tissue engineering and regenerative medicine. However, it requires bioinks with low viscosities, which makes it challenging to create complex 3D structures and spatially pattern them with different materials. This study introduces a novel approach to bioprinting sophisticated volumetric objects by merging droplet-based bioprinting and cryobioprinting techniques. By leveraging the benefits of cryopreservation, we fabricated, for the first time, intricate, self-supporting cell-free or cell-laden structures with single or multiple materials in a simple droplet-based bioprinting process that is facilitated by depositing the droplets onto a cryoplate followed by crosslinking during revival. The feasibility of this approach is demonstrated by bioprinting several cell types, with cell viability increasing to 80%–90% after up to 2 or 3 weeks of culture. Furthermore, the applicational capabilities of this approach are showcased by bioprinting an endothelialized breast cancer model. The results indicate that merging droplet and cryogenic bioprinting complements current droplet-based bioprinting techniques and opens new avenues for the fabrication of volumetric objects with enhanced complexity and functionality, presenting exciting potential for biomedical applications.
The development of tumor drug microcarriers has attracted considerable interest due to their distinctive therapeutic performances. Current attempts tend to elaborate on the micro/nano-structure design of the microcarriers to achieve multiple drug delivery and spatiotemporal responsive features. Here, the desired hydrogel microspheres are presented with spatiotemporal responsiveness for the treatment of gastric cancer. The microspheres are generated based on inverse opals, their skeleton is fabricated by biofriendly hyaluronic acid methacrylate (HAMA) and gelatin methacrylate (GelMA), and is then filled with a phase-changing hydrogel composed of fish gelatin and agarose. Besides, the incorporated black phosphorus quantum dots (BPQDs) within the filling hydrogel endow the microspheres with outstanding photothermal responsiveness. Two antitumor drugs, sorafenib (SOR) and doxorubicin (DOX), are loaded in the skeleton and filling hydrogel, respectively. It is found that the drugs show different release profiles upon near-infrared (NIR) irradiation, which exerts distinct performances in a controlled manner. Through both in vitro and in vivo experiments, it is demonstrated that such microspheres can significantly reduce tumor cell viability and enhance the efficiency in treating gastric cancer, indicating a promising stratagem in the field of drug delivery and tumor therapy.
Surface chirality plays an important role in determining the biological effect, but the molecular nature beyond stereoselectivity is still unknown. Herein, through surface-enhanced infrared absorption spectroscopy, electrochemistry, and theoretical simulations, we found diasteromeric monolayers induced by assembled density on chiral gold nanofilm and identified the positive contribution of water dipole potential at chiral interface and their different interfacial interactions, which result in a difference both in the positive dipoles of interfacial water compensating the negative surface potential of the SAM and in the hindrance effect of interface dehydration, thereby regulating the interaction between amyloid-β peptide (Aβ) and N-isobutyrylcysteine (NIBC). Water on L-NIBC interface which shows stronger positive dipole potential weakens the negative surface potential, but its local weak binding to the isopropyl group facilitates hydrophobic interaction between Aβ42 and L-NIBC and resulted fiber aggregate. Conversely, electrostatic interaction between Aβ42 and D-NIBC induces spherical oligomer. These findings provide new insight into molecular nature of chirality-regulated biological effect.
Highly sensitive stimuli-responsive luminescent materials are crucial for applications in optical sensing, security, and anticounterfeiting. Here, we report two zero-dimensional (0D) copper(I) halides, (TEP)2Cu2Br4, (TEP)2Cu4Br6, and 1D (TEP)3Ag6Br9, which are comprised of isolated [Cu2Br4]2−, [Cu4Br6]2−, and [Ag6Br9]3− polyanions, respectively, separated by TEP+ (tetraethylphosphonium [TEP]) cations. (TEP)2Cu2Br4 and (TEP)2Cu4Br6 demonstrate greenish-white and orange-red emissions, respectively, with near unity photoluminescence quantum yields, while (TEP)3Ag6Br9 is a poor light emitter. Optical spectroscopy measurements and density-functional theory calculations reveal that photoemissions of these compounds originate from self-trapped excitons due to the excited-state distortions in the copper(I) halide units. Crystals of Cu(I) halides are radioluminescence active at room temperature under both X- and γ-rays exposure. The light yields up to 15,800 ph/MeV under 662 keV γ-rays of 137Cs suggesting their potential for scintillation applications. Remarkably, (TEP)2Cu2Br4 and (TEP)2Cu4Br6 are interconvertible through chemical stimuli or reverse crystallization. In addition, both compounds demonstrate luminescence on-off switching upon thermal stimuli. The sensitivity of (TEP)2Cu2Br4 and (TEP)2Cu4Br6 to the chemical and thermal stimuli coupled with their ultrabright emission allows their consideration for applications such as solid-state lighting, sensing, information storage, and anticounterfeiting.
Proteins play a vital role in different biological processes by forming complexes through precise folding with exclusive inter- and intra-molecular interactions. Understanding the structural and regulatorymechanisms underlying protein complex formation provides insights into biophysical processes. Furthermore, the principle of protein assembly gives guidelines for new biomimetic materials with potential applications in medicine, energy, and nanotechnology. Atomic force microscopy (AFM) is a powerful tool for investigating protein assembly and interactions across spatial scales (single molecules to cells) and temporal scales (milliseconds to days). It has significantly contributed to understanding nanoscale architectures, inter- and intramolecular interactions, and regulatory elements that determine protein structures, assemblies, and functions. This review describes recent advancements in elucidating protein assemblies with in situ AFM. We discuss the structures, diffusions, interactions, and assembly dynamics of proteins captured by conventional and high-speed AFM in near-native environments and recent AFM developments in the multimodal high-resolution imaging, bimodal imaging, live cell imaging, and machine-learningenhanced data analysis. These approaches show the significance of broadening the horizons of AFM and enable unprecedented explorations of protein assembly for biomaterial design and biomedical research.
Single-drug therapies or monotherapies are often inadequate, particularly in the case of life-threatening diseases like cancer. Consequently, combination therapies emerge as an attractive strategy. Cancer nanomedicines have many benefits in addressing the challenges faced by small molecule therapeutic drugs, such as low water solubility and bioavailability, high toxicity, etc. However, it remains a significant challenge in encapsulating two drugs in a nanoparticle. To address this issue, computational methodologies are employed to guide the rational design and synthesis of dual-drugloaded polymer nanoparticles while achieving precise control over drug loading. Based on the sequential nanoprecipitation technology, five factors are identified that affect the formulation of drug candidates into dual-drug loaded nanoparticles, and then screened 176 formulations under different experimental conditions. Based on these experimental data, machine learning methods are applied to pin down the key factors. The implementation of this methodology holds the potential to significantly mitigate the complexities associated with the synthesis of dual-drug loaded nanoparticles, and the co-assembly of these compounds into nanoparticulate systems demonstrates a promising avenue for combination therapy. This approach provides a new strategy for enabling the streamlined, high-throughput screening and synthesis of new nanoscale drug-loaded entities.
Clusterization-triggered emissive (CTE) materials have attracted great attention in recent years. The regulation of the emission property of materials with CTE property through supramolecular interactions is an excellent strategy for the construction of smart fluorescent materials. In this work, we have prepared a regulatable supramolecular polymer network with CTE properties through pillararene-based host–guest interactions. The pillar[5]arene-grafted poly(methyl methacrylate) (PMMA) showed a classic CTE character. After adding Brooker’s merocyanine-grafted polymer to the solution of the pillar[5]arene-containing PMMA, the supramolecular polymer network gel formed by the host–guest interactions between pillararene and Brooker’s merocyanine guest. This supramolecular network showed brighter fluorescence than the pillar[5]arene-grafted PMMA in the solid state. In addition, the fluorescence emission of the supramolecular network can be further regulated by pH conditions. After adding an acid, the Brooker’s merocyanine-containing guest polymer was protonated, and the supramolecular network changed to a protonated network through host–guest interactions between protonated Brooker’s merocyanine guest and pillararene. Interestingly, the fluorescence was quenched when the supramolecular network turned into the protonated network. After adding a base, the protonated network can convert back to the original network, along with recovery of the fluorescence. Therefore, the regulation of the fluorescence of the supramolecular polymer materials with CTE was successfully realized by pillararene-based host–guest interactions. Furthermore, this tailorable fluorescent supramolecular polymer network system was applied as an information encryption material.
Exciton binding energy (Eb) has been regarded as a critical parameter in charge separation during photovoltaic conversion. Minimizing the Eb of the photovoltaic materials can facilitate the exciton dissociation in low-driving force organic solar cells (OSCs) and thus improve the power conversion efficiency (PCE); nevertheless, diminishing the Eb with deliberate design principles remains a significant challenge. Herein, bulky side chain as steric hindrance structure was inserted into Y-series acceptors to minimize the Eb by modulating the intra- and intermolecular interaction. Theoretical and experimental results indicate that steric hindrance-induced optimal intra- and intermolecular interaction can enhance molecular polarizability, promote electronic orbital overlap between molecules, and facilitate delocalized charge transfer pathways, thereby resulting in a low Eb. The conspicuously reduced Eb obtained in Y-ChC5 with pinpoint steric hindrance modulation can minimize the detrimental effects on exciton dissociation in low-driving-force OSCs, achieving a remarkable PCE of 19.1% with over 95% internal quantum efficiency. Our study provides a new molecular design rationale to reduce the Eb.