Unveiling the exceptional evolution of solute aggregates: From micro to trace, solution to interface

Weili Wang , Hao Ma , Qiuting Huang , Siheng Luo , Bin Ren , Zhongqun Tian , Guokun Liu

Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e589

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e589 DOI: 10.1002/agt2.589
RESEARCH ARTICLE

Unveiling the exceptional evolution of solute aggregates: From micro to trace, solution to interface

Author information +
History +
PDF

Abstract

Existential state of solutes substantially affects the efficiency and direction of various chemical and biological processes, about which current consensus is still limited at macro and micro levels. At the trace level, solutes assume a pivotal role across a spectrum of critical fields. However, their existential states, especially at interfaces, remain largely elusive. Herein, an exceptional evolution of solute molecules is unveiled from micro to trace, solution to interface, with the aid of surface-enhanced Raman spectroscopy, extinction, DLS and theoretical simulations. Given predominant existence of monomers within the solution, these aggregates dominate the interfacial behavior of solute molecules. Moreover, a universal, aggregate-controlled mechanism is demonstrated that aggregates triggered by cosolvent, which can dramatically promote efficiency of catalytic reactions. The results provide novel insights into the interaction mechanisms between reactants and catalysts, potentially offering fresh perspectives for the manipulation of multiphase catalysis and related biological processes.

Keywords

aggregate / molecular dynamics / surface-enhanced Raman spectroscopy

Cite this article

Download citation ▾
Weili Wang, Hao Ma, Qiuting Huang, Siheng Luo, Bin Ren, Zhongqun Tian, Guokun Liu. Unveiling the exceptional evolution of solute aggregates: From micro to trace, solution to interface. Aggregate, 2024, 5(5): e589 DOI:10.1002/agt2.589

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. R. Widmer, B. J. Schwartz, Nat. Chem. 2018, 10, 910.

[2]

P. W. Atkins, J. De Paula, Atkins’Phys. Chem. 2002.

[3]

S. Dixit, J. Crain, W. C. K. Poon, J. L. Finney, A. K. Soper, Nature 2002, 416, 829.

[4]

S. A. Vitale, J. L. Katz, Langmuir 2003, 19, 4105.

[5]

a) P. S. Romero-Perez, Y. Dorone, E. Flores, S. Sukenik, S. Boeynaems, Chem. Rev. 2023, 123, 9010;b) M. Abbas, W. P. Lipiński, K. K. Nakashima, W. T. S. Huck, E. Spruijt, Nat. Chem. 2021, 13, 1046.

[6]

Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Commun. 2009, 4332.

[7]

J. Higham, L. Kerr, Q. Zhang, R. M. Walker, S. E. Harris, D. M. Howard, E. L. Hawkins, A. L. Sandu, J. D. Steele, G. D. Waiter, A. D. Murray, K. L. Evans, A. M. McIntosh, P. M. Visscher, I. J. Deary, S. R. Cox, D. Sproul, Genome Biol. 2022, 23, 216.

[8]

M. Liu, C. Shang, T. Zhao, H. Yu, Y. Kou, Z. Lv, M. Hou, F. Zhang, Q. Li, D. Zhao, X. Li, Nat. Commun. 2023, 14, 1211.

[9]

M. A. Vratsanos, W. Xue, N. D. Rosenmann, L. D. Zarzar, N. C. Gianneschi, ACS Cent. Sci. 2023, 9, 457.

[10]

Z. Lu, M. H. K. Schaarsberg, X. Zhu, L. Y. Yeo, D. Lohse, X. Zhang, Proc. Natl. Acad. Sci. 2017, 114, 10332.

[11]

N. L. Sitnikova, R. Sprik, G. Wegdam, E. Eiser, Langmuir 2005, 21, 7083.

[12]

a) Z.Y. Yuwen, Q. Zeng, Q. Ye, Y. Zhao, J. Zhu, K. Chen, H. Liu, R. Yang, Angew. Chem. Int. Ed. 2023, 62, e202302957; b) X. Wang, L. Cohen, J. Wang, D. R. Walt, J. Am. Chem. Soc. 2018, 140, 18132;c) K. C. To, S. Ben-Jaber, I. P. Parkin, ACS Nano 2020, 14, 10804.

[13]

a) G. Gonella, E. H. G. Backus, Y. Nagata, D. J. Bonthuis, P. Loche, A. Schlaich, R. R. Netz, A. Kühnle, I. T. McCrum, M. T. M. Koper, M. Wolf, B. Winter, G. Meijer, R. K. Campen, M. Bonn, Nat. Rev. Chem. 2021, 5, 466;b) J. L. Bañuelos, E. Borguet, G. E. Brown, R. T. Cygan, J. J. DeYoreo, P. M. Dove, M. P. Gaigeot, F. M. Geiger, J. M. Gibbs, V. H. Grassian, A. G. Ilgen, Y. S. Jun, N. Kabengi, L. Katz, J. D. Kubicki, J. Lützenkirchen, C. V. Putnis, R. C. Remsing, K. M. Rosso, G. Rother, M. Sulpizi, M. Villalobos, H. Zhang, Chem. Rev. 2023, 123, 6413;c) H. W. Wang, K. Yuan, N. Rampal, A. G. Stack, Cryst. Growth Des. 2022, 22, 853.

[14]

H. Heinz, T. J. Lin, R. Kishore Mishra, F. S. Emami, Langmuir 2013, 29, 1754.

[15]

X. Wang, S. C. Huang, S. Hu, S. Yan, B. Ren, Nat. Rev. Phys. 2020, 2, 253.

[16]

a) J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, R. A Alvarez-Puebla, B. Auguié, J. J. Baumberg, G. C. Bazan, S. E. J. Bell, A. Boisen, A. G. Brolo, J. Choo, D. Cialla-May, V. Deckert, L. Fabris, K. Faulds, F. J. García de Abajo, R. Goodacre, D. Graham, A. J. Haes, C. L. Haynes, C. Huck, T. Itoh, M. Käll, J. Kneipp, N. A. Kotov, H. Kuang, E. C. Le Ru, H. K. Lee, J. F. Li, X. Y. Ling, et al., ACS Nano 2020, 14, 28;b) A. I. Pérez-Jiménez, D. Lyu, Z. Lu, G. K. Liu, B. Ren, Chem. Sci. 2020, 11, 4563.

[17]

C. Li, Z. Chen, Y. Huang, Y. Zhang, X. Li, Z. Ye, X. Xu, S. E. J. Bell, Y. Xu, Chem 2022, 8, 2514.

[18]

H. Ma, S. Yan, X. Lu, Y. F. Bao, J. Liu, L. Liao, K. Dai, M. Cao, X. Zhao, H. Yan, H. L. Wang, X. Peng, N. Chen, H. Feng, L. Zhu, G. Yao, C. Fan, D. Y. Wu, B. Wang, X. Wang, B. Ren, Sci. Adv. 2023, 9, eadh8362.

[19]

G. K. Liu, B. Ren, D. Y. Wu, S. Duan, J. F. Li, J. L. Yao, R. A. Gu, Z. Q. Tian, J. Phys. Chem. B 2006, 110, 17498.

[20]

a) M. M. Bajomo, Y. Ju, J. Zhou, S. Elefterescu, C. Farr, Y. Zhao, O. Neumann, P. Nordlander, A. Patel, N. J. Halas, Proc. Natl. Acad. Sci. 2022, 119, e2211406119; b) M. Su, C. Wang, T. Wang, Y. Jiang, Y. Xu, H. Liu, Anal. Chem. 2020, 92, 6941;c) Z. F. Zhou, J. Lu, J. Wang, Y. Zou, T. Liu, Y. Zhang, G. K. Liu, Z. Q. Tian, Spectrochim. Acta, Part A 2020, 234, 118250;d) M. Ge, P. Li, G. Zhou, S. Chen, W. Han, F. Qin, Y. Nie, Y. Wang, M. Qin, G. Huang, S. Li, Y. Wang, L. B. Yang, Z. Q. Tian, J. Am. Chem. Soc. 2021, 143, 7769.

[21]

a) C. J. Ackerson, P. D. Jadzinsky, R. D. Kornberg, J. Am. Chem. Soc. 2005, 127, 6550;b) E. Pensa, A. A. Rubert, G. Benitez, P. Carro, A. G. Orive, A. H. Creus, R. C. Salvarezza, C. Vericat, J. Phys. Chem. C 2012, 116, 25765;c) G. Lu, B. Shrestha, A. J. Haes, J. Phys. Chem. C 2016, 120, 20759.

[22]

S. Y. Zhou, J. Shi, S. G. Liu, G. Li, F. Pei, Y. H. Chen, J. X. Deng, Q. Z. Zheng, J. Y. Li, C. Zhao, I. H. Wang, C. J. Sun, Y. Z. Liu, Y. Deng, L. Huang, Y. Qiao, G. L. Xu, J. F. Chen, K. Amine, S. G. Sun, H. G. Liao, Nature 2024, 621, 75.

[23]

a) J. S. Adams, A. Chemburkar, P. Priyadarshini, T. Ricciardulli, Y. Lu, V. Maliekkal, A. Sampath, S. Winikoff, A. M. Karim, M. Neurock, W. D. Flaherty, Science 2021, 371, 626;b) B. Karimi, H. Barzegar, H. Vali, Chem. Commun. 2018, 54, 7155;c) X. Ma, Y. Liu, S. Liu, C. Xia, Appl. Catal. B 2014, 144, 580;d) M. A. Keane, Chem. Cat. Chem. 2011, 3, 800.

[24]

a) S. Gómez-Quero, E. Díaz, F. Cárdenas-Lizana, M. A. Keane, Chem. Eng. Sci. 2010, 65, 3786; b) C. Xia, J. Xu, W. Wu, Q. Luo, J. Chen, Q. Zhang, X. Liang, Appl. Catal. B 2003, 45, 281.

[25]

B. Hu, A. W. Nienow, E. H. Stitt, A. W. Pacek, Ind. Eng. Chem. Res. 2007, 46, 4451.

[26]

T. D McClure-Begley, B. L. Roth, Nat. Rev. Drug Discovery 2022, 21, 463.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/