Revealing the regulation of water dipole potential to aggregation of amyloid-β 42 at chiral interface by surface-enhanced infrared absorption spectroscopy

Manyu Zhu , Shanshan Li , Qixin Liu , Yuqi Zhang , Zihao Li , Yiran Wang , Lie Wu , Xiue Jiang

Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e601

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e601 DOI: 10.1002/agt2.601
RESEARCH ARTICLE

Revealing the regulation of water dipole potential to aggregation of amyloid-β 42 at chiral interface by surface-enhanced infrared absorption spectroscopy

Author information +
History +
PDF

Abstract

Surface chirality plays an important role in determining the biological effect, but the molecular nature beyond stereoselectivity is still unknown. Herein, through surface-enhanced infrared absorption spectroscopy, electrochemistry, and theoretical simulations, we found diasteromeric monolayers induced by assembled density on chiral gold nanofilm and identified the positive contribution of water dipole potential at chiral interface and their different interfacial interactions, which result in a difference both in the positive dipoles of interfacial water compensating the negative surface potential of the SAM and in the hindrance effect of interface dehydration, thereby regulating the interaction between amyloid-β peptide (Aβ) and N-isobutyrylcysteine (NIBC). Water on L-NIBC interface which shows stronger positive dipole potential weakens the negative surface potential, but its local weak binding to the isopropyl group facilitates hydrophobic interaction between Aβ42 and L-NIBC and resulted fiber aggregate. Conversely, electrostatic interaction between Aβ42 and D-NIBC induces spherical oligomer. These findings provide new insight into molecular nature of chirality-regulated biological effect.

Keywords

amyloid- β 42 / chiral interface / surface-enhanced infrared absorption spectroscopy

Cite this article

Download citation ▾
Manyu Zhu, Shanshan Li, Qixin Liu, Yuqi Zhang, Zihao Li, Yiran Wang, Lie Wu, Xiue Jiang. Revealing the regulation of water dipole potential to aggregation of amyloid-β 42 at chiral interface by surface-enhanced infrared absorption spectroscopy. Aggregate, 2024, 5(5): e601 DOI:10.1002/agt2.601

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Kang, H. G. Lemaire, A. Unterbeck, J. M. Salbaum, C. L. Masters, K. M. Grzeschik, G. Multhaup, K. Beyreuther, B. Mullerhill, Nature 1987, 325, 733.

[2]

M. Goedert, M. G. Spillantini, Science 2006, 314, 777.

[3]

D. J. Selkoe, Nature 2003, 426, 900.

[4]

I. Benilova, E. Karran, B. D. Strooper, Nat. Neurosci. 2012, 15, 349.

[5]

P. Seubert, C. Vigo-Pelfrey, F. Esch, M. Lee, H. Dovey, D. Davis, S. Sinha, M. Schiossmacher, J. Whaley, C. Swindlehurst, R. McCormack, R. Wolfert, D. Selkoe, I. Lieberburg, D. Schenk, Nature 1992, 359, 325.

[6]

I. W. Hamley, Chem. Rev. 2012, 112, 5147.

[7]

S. R. Wang, J. Q. Wang, G. H. Xu, L. Wei, B. S. Fu, L. Y. Wu, Y. Y. Song, X. R. Yang, C. Li, S. M. Liu, X. Zhou, Adv. Sci. 2018, 5, 1800231.

[8]

M. Inaki, T. Sasamura, K. Matsuno, Front. Cell. Dev. Biol. 2018, 6, 34.

[9]

G. Gao, M. Zhang, P. Lu, G. Guo, D. Wang, T. Sun, Angew. Chem. Int. Ed. 2015, 54, 2245.

[10]

Z. Du, Y. Guan, C. Ding, N. Gao, J. Ren, X. Qu, Nano Res. 2018, 11, 4102.

[11]

N. Gao, Z. Du, Y. Guan, K. Dong, J. Ren, X. Qu, J. Am. Chem. Soc. 2019, 141, 6915.

[12]

X. Wang, C. Wang, H. Chu, H. Qin, D. Wang, F. Xu, X. Ai, C. Quan, G. Li, G. Qing, Chem. Sci. 2020, 11, 7369.

[13]

H. Zhang, C. Hao, A. Qu, M. Sun, L. Xu, C. Xu, H. Kuang, Angew. Chem. Int. Ed. 2020, 59, 7131.

[14]

X. Xiao, C. Chen, Y. Zhang, H. Kong, R. An, S. Li, W. Liu, Q. Ji, Angew. Chem. Int. Ed. 2021, 60, 25028.

[15]

X. Wang, X. Wang, M. Wang, D. Zhang, Q. Yang, T. Liu, R. Lei, S. Zhu, Y. Zhao, C. Chen, Small 2018, 14, e1703982.

[16]

C. D. Ma, C. Wang, C. Acevedo-Vélez, S. H. Gellman, N. L. Abbott, Nature 2015, 517, 347.

[17]

S. Chen, Y. Itoh, T. Masuda, S. Shimizu, J. Zhao, J. Ma, S. Nakamura, K. Okuro, H. Noguchi, K. Uosaki, T. Aida, Science 2015, 348, 555.

[18]

P. S. Cremer, A. H. Flood, B. C. Gibb, D. L. Mobley, Nat. Chem. 2018, 10, 8.

[19]

M. L. McDermott, H. Vanselous, S. A. Corcelli, P. B. Petersen, ACS Cent. Sci. 2017, 3, 708.

[20]

E. A. Perets, D. Konstantinovsky, L. Fu, J. Chen, H. F. Wang, S. Hammes-Schiffer, E. C. Y. Yan, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 32902.

[21]

Z. Su, Y. Xu. Angew. Chem. Int. Ed. 2007, 46, 6163.

[22]

C. Seuring, K. Ayyer, E. Filippaki, M. Barthelmess, J. N. Longchamp, P. Ringler, T. Pardini, D. H. Wojtas, M. A. Coleman, K. Dorner, S. Fuglerud, G. Hammarin, B. Habenstein, A. E. Langkilde, A. Loquet, A. Meents, R. Riek, H. Stahlberg, S. Boutet, M. S. Hunter, J. Koglin, M. Liang, H. M. Ginn, R. P. Millane, M. Frank, A. Barty, H. N. Chapman, Nat. Commun. 2018, 9, 1836.

[23]

J. Habchi, S. Chia, C. Galvagnion, T. C. T. Michaels, M. M. J. Bellaiche, F. S. Ruggeri, M. Sanguanini, I. Idini, J. R. Kumita, E. Sparr, S. Linse, C. M. Dobson, T. P. J. Knowles, M. Vendruscolo, Nat. Chem. 2018, 10, 673.

[24]

M. C. Owen, D. Gnutt, M. Gao, S. Warmlander, J. Jarvet, A. Graslund, R. Winter, Chem. Soc. Rev. 2019, 48, 3946.

[25]

S. Hosseinpour, S. J. Roeters, M. Bonn, W. Peukert, S. Woutersen, T Weidner, Chem. Rev. 2020, 120, 3420.

[26]

F. Meng, J. Yoo, H. S. Chung, Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2116736119.

[27]

L. Wu, L. Zeng, X. Jiang. J. Am. Chem. Soc. 2015, 137, 10052.

[28]

X. Zhang, L. Wu, W. Zhen, S. Li, X. Jiang, Fundam. Res. 2022, 2, 66.

[29]

J. Kozuch, K. Ataka, J. Heberle, Nat. Rev. Methods Primers 2023, 3, 70.

[30]

H. Zhang, Y. Li, X. Xu, T. Sun, H. Fuchs, L. Chi, Langmuir 2010, 26, 7343.

[31]

G. Gonella, E. H. G. Backus, Y. Nagata, D. J. Bonthuis, P. Loche, A. Schlaich, R. R. Netz, A. Kühnle, I. T. McCrum, M. T. M. Koper, M. Wolf, B. Winter, G. Meijer, R. K. Campen, M. Bonn, Nat. Rev. Chem. 2021, 5, 466.

[32]

J. Wu, Chem. Rev. 2022, 122, 10821.

[33]

M. Porus, C. Labbez, P. Maroni, M. Borkovec, J. Chem. Phys. 2011, 135, 064701.

[34]

M. A. Brown, A. Goel, Z. Abbas, Angew. Chem. Int. Ed. 2016, 55, 3790.

[35]

D. K. Hore, E. Tyrode, J. Phys. Chem. C 2019, 123, 16911.

[36]

L. Becucci, M. R. Moncelli, R. Herrero, R. Guidelli, Langmuir, 2000, 16, 7694.

[37]

P. Ramírez, R. Andreu, Á. Cuesta, C. J. Calzado, J. J. Calvente, Anal. Chem. 2007, 79, 6473.

[38]

Z. Su, J. Leitch, J. Lipkowski, Z. Phys. Chem. 2012, 226, 995.

[39]

S. D. Fried, S. G. Boxer, Acc. Chem. Res. 2015, 48, 998.

[40]

M. F. Delley, E. M. Nichols, J. M. Mayer, J. Am. Chem. Soc. 2021, 143, 10778.

[41]

G. Schkolnik, J. Salewski, D. Millo, I. Zebger, S. Franzen, P. Hildebrandt, Int. J. Mol. Sci. 2012, 13, 7466.

[42]

N. Ballav, B. Schüpbach, O. Dethloff, P. Feulner, A. Terfort, M. Zharnikov, J. Am. Chem. Soc. 2007, 129, 15416.

[43]

T. Hu, S. Wang, C. Chen, J. Sun, X. Yang, Anal. Chem. 2017, 89, 2606.

[44]

J. S. Sharp, J. A. Forrest, R. A. L. Jones, Biochemistry 2002, 41, 15810.

[45]

J. Seo, W. Hoffmann, S. Warnke, X. Huang, S. Gewinner, W. Schöllkopf, M. T. Bowers, G. von Helden, K. Pagel, Nat. Chem. 2017, 9, 39.

[46]

J. Khandogin, C. L. Brooks, Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 16880.

[47]

M. D. Kirkitadze, M. M. Condron, D. B. Teplow, J. Mol. Biol. 2001, 312, 1103.

[48]

R. Zangi, M. Hagen, B. J. Berne, J. Am. Chem. Soc. 2007, 129, 4678.

[49]

A. Tuladhar, S. Dewan, S. Pezzotti, F. S. Brigiano, F. Creazzo, M. P. Gaigeot, E. Borguet, J. Am. Chem. Soc. 2020, 142, 6991.

[50]

A. Sharma, S. H. Behrens, Y. O. Chernoff, A. S. Bommarius, J. Phys. Chem. B 2018, 122, 4972.

[51]

Y. Li, N. Ni, M. Lee, W. Wei, N. Andrikopoulos, A. Kakinen, T. P. Davis, Y. Song, F. Ding, D. T. Leong, P. C. Ke, Nat. Commun. 2024, 15, 613.

[52]

M. Favaro, B. Jeong, P. N. Ross, J. Yano, Z. Hussain, Z. Liu, E. J. Crumlin, Nat. Commun. 2016, 7, 12695.

[53]

D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, J. Comput. Chem. 2005, 26, 1701.

[54]

W. G. Hoover, Phys. Rev. A 1985, 31, 1695.

[55]

A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B 1998, 102, 3586.

[56]

H. Heinz, R. A. Vaia, B. L. Farmer, R. R. Naik, J. Phys. Chem. C 2008, 112, 17281.

[57]

T. Darden, D. York, L. Pedersen, J. Chem. Phys. 1993, 98, 10089.

[58]

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, M. G. Mayer, Wiley New York 1954, 1219.

[59]

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79, 926.

[60]

G. Kresse, J. Hafner. Phys. Rev. B 1993, 48, 13115.

[61]

G. Kress, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[62]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[63]

V. Wang, N. Xu, J. C. Liu, G. Tang, W. T. Geng, Comput. Phys. Commun. 2021, 267, 108033.

[64]

S. Nosé, J. Chem. Phys. 1984, 81, 511.

[65]

S. Nosé, Prog. Theor. Phys. Supp. 1991, 103, 1.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

193

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/