Lysine aggregates-based nanostructured antimicrobial peptides for cariogenic biofilm microenvironment-activated caries treatment

Siyuan Li , Feng Wang , Yang Chen , Wanrui Shi , Dashuai Liu , Mingyang Lv , Bin Zhao , Yi Liu , Hao Zhang

Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e578

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e578 DOI: 10.1002/agt2.578
RESEARCH ARTICLE

Lysine aggregates-based nanostructured antimicrobial peptides for cariogenic biofilm microenvironment-activated caries treatment

Author information +
History +
PDF

Abstract

Dental caries is one of the most prevalent and costly biofilm-induced oral diseases that causes the deterioration of the mineralized tooth tissue. Traditional antimicrobial agents like antibiotics and antimicrobial peptides (AMPs) struggle to effectively eradicate bacteria in biofilms without eliciting resistance. Herein, we demonstrate the construction of FeOOH@Fe-Lysine@Au nanostructured AMPs (nAMPs) distinguished by their AMP-like antibacterial activity and self-producing reactive oxygen species (ROS) capacity for caries treatment. On the one hand, FeOOH@Fe- Lysine@Au nAMPs can catalyze glucose oxidation to generate ROS within the cariogenic biofilm microenvironment, resulting in the disintegration of the extracellular polymeric substance matrix and the exposure of bacteria. On the other hand, FeOOH@Fe-Lysine@Au nAMPs can attach to bacterial surfaces via electrostatic attractions, proceeding to damage membranes, disrupt metabolic pathways, and inhibit protein synthesis through the aggregated lysine and the generated ROS. Based on this antibacterial mechanism, FeOOH@Fe-Lysine@Au nAMPs can effectively eradicate Streptococcus mutans and its associated biofilm, significantly impeding the progression of dental caries. Given the straightforward and cost-efficient preparation of FeOOH@Fe-Lysine@Au nAMPs compared to AMPs that require specific sequences, and their minimal adverse impacts on gingival/palatal tissues, major organs, and oral/gut microbiomes, our research may promote the development of novel therapeutic agents in dental health maintenance.

Keywords

antimicrobial peptides / biofilm / catalytic cascade reactions / dental caries / lysine aggregates

Cite this article

Download citation ▾
Siyuan Li, Feng Wang, Yang Chen, Wanrui Shi, Dashuai Liu, Mingyang Lv, Bin Zhao, Yi Liu, Hao Zhang. Lysine aggregates-based nanostructured antimicrobial peptides for cariogenic biofilm microenvironment-activated caries treatment. Aggregate, 2024, 5(5): e578 DOI:10.1002/agt2.578

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. A. Peres, L. M. D. Macpherson, R. J. Weyant, B. Daly, R. Venturelli, M. R. Mathur, S. Listl, R. K. Celeste, C. C. Guarnizo-Herreño, C. Kearns, H. Benzian, P. Allison, R. G. Watt, Lancet 2019, 394, 249.

[2]

G. Hajishengallis, T. Chavakis, Nat. Rev. Immunol. 2021, 21, 426.

[3]

N. B. Pitts, D. T. Zero, P. D. Marsh, K. Ekstrand, J. A. Weintraub, F. Ramos-Gomez, J. Tagami, S. Twetman, G. Tsakos, A. Ismail, Nat. Rev. Dis. Primers 2017, 3, 17030.

[4]

C. de la Fuente-Nunez, A. Cesaro, R. E. W. Hancock, Drug Resist Updat. 2023, 71, 101012.

[5]

M. Zampieri, Science 2021, 371, 783.

[6]

R. C. MacLean, A. San Millan, Science 2019, 365, 1082.

[7]

I. Yelin, R. Kishony, Cell 2018, 172, 1136.

[8]

T. Tuganbaev, K. Yoshida, K. Honda, Science 2022, 376, 934.

[9]

L. Chen, M. N. Peng, H. P. Li, J. N. Zhou, W. He, R. D. Hu, F. F. Ye, Y. F. Li, L. Q. Shi, Y. Liu, Adv. Mater. 2024, 36, e2306376.

[10]

H. Cho, Z. Ren, K. Divaris, J. Roach, B. M. Lin, C. Liu, M. A Azcarate-Peril, M. A. Simancas-Pallares, P. Shrestha, A. Orlenko, J. Ginnis, K. E. North, A. G. F. Zandona, A. A. Ribeiro, D. Wu, H. Koo, Nat. Commun. 2023, 14, 2919.

[11]

Z. R. Li, J. Sun, Y. L. Du, A. F. Pan, L. Zeng, R. Maboudian, R. A. Burne, P. Y. Qian, W. J. Zhang, Nat. Chem. Biol. 2021, 17, 576.

[12]

Q. Zhang, Q. Ma, Y. Wang, H. Wu, J. Zou, Int. J. Oral Sci. 2021, 13, 30.

[13]

J. R. Buzzo, A. Devaraj, E. S. Gloag, J. A. Jurcisek, F. Robledo-Avila, T. Kesler, K. Wilbanks, L. Mashburn-Warren, S. Balu, J. Wickham, L. A. Novotny, P. Stoodley, L. O. Bakaletz, S. D. Goodman, Cell 2021, 184, 5740.

[14]

S. Tian, L. Z. Su, Y. Liu, J. J. Cao, G. Yang, Y. J. Ren, F. Huang, J. F. Liu, Y. L. An, H. C. van der Mei, H. J. Busscher, L. Q. Shi, Sci. Adv. 2020, 6, eabb1112.

[15]

H. C. Flemming, E. D. van Hullebusch, T. R. Neu, P. H. Nielsen, T. Seviour, P. Stoodley, J. Wingender, S. Wuertz, Nat. Rev. Microbiol. 2023, 21, 70.

[16]

Z. Yin, Y. Liu, A. Anniwaer, Y. You, J. Guo, Y. Tang, L. Fu, L. Yi, C. Huang, Adv. Mater. 2023, e2305633.

[17]

I. C. Micu, A. Muntean, A. Roman, Ş. I. Stratul, E. Pall, A. Ciurea, A. Soancă, M. Negucioiu, L. Barbu Tudoran, A. G. Delean, Antibiotics 2023, 12, 456.

[18]

X. Han, Q. Lou, F. Feng, G. H. Xu, S. Hong, L. Yao, S. J. Qin, D. Z. Wu, X. P. Ouyang, Z. G. Zhang, X. Y. Wang, Angew. Chem. Int. Ed. 2022, 61, e202202559.

[19]

M. Liu, L. Huang, X. Xu, X. Wei, X. Yang, X. Li, B. Wang, Y. Xu, L. Li, Z. Yang, ACS Nano 2022, 16, 9479.

[20]

H. J. Huang, W. Geng, X. Z. Wu, Y. Y. Zhang, L. Xie, T. Ma, C. Cheng, Angew. Chem. Int. Ed. 2024, 63, e202310811.

[21]

J. W. Mei, D. D. Xu, L. T. Wang, L. T. Kong, Q. Liu, Q. M. Li, X. Z. Zhang, Z. Su, X. L. Hu, W. B. Zhu, M. Ye, J. X. Wang, C. Zhu, Adv. Mater. 2023, 35, 2303432.

[22]

S. B. Li, X. M. Wang, Z. Y. Yan, T. Wang, Z. B. Chen, H. Song, Y. B. Zheng, Adv. Sci. 2023, 10, 2300576.

[23]

Y. M. Yang, B. B. Chu, J. Y. Cheng, J. L. Tang, B. Song, H. Y. Wang, Y. He, Nat. Commun. 2022, 13, 1255.

[24]

W. Xiu, L. Wan, K. Yang, X. Li, L. Yuwen, H. Dong, Y. Mou, D. Yang, L. Wang, Nat. Commun. 2022, 13, 3875.

[25]

Z. Li, S. Lu, W. Z. Liu, T. Dai, J. X. Ke, X. J. Li, R. F. Li, Y. X. Zhang, Z. Chen, X. Y. Chen, Angew. Chem. Int. Ed. 2021, 60, 19201.

[26]

X. Pang, D. F. Li, J. Zhu, J. L. Cheng, G. Liu, Nano Micro Lett. 2020, 12, 144.

[27]

M. Q. Wu, Z. Y. Zhang, Z. R. Liu, J. M. Zhang, Y. L. Zhang, Y. M. Ding, T. Huang, D. L. Xiang, Z. Wang, Y. J. Dai, X. Y. Wan, S. B. Wang, H. L. Qian, Q. J. Sun, L. L. Li, Nano Today 2021, 37, 101104.

[28]

X. Pang, X. Liu, Y. Cheng, C. Zhang, E. Ren, C. Liu, Y. Zhang, J. Zhu, X. Y. Chen, G. Liu, Adv. Mater. 2019, 31, 1902530.

[29]

Y. Huang, Y. Liu, S. Shah, D. Kim, A. Simon-Soro, T. Ito, M. Hajfathalian, Y. Li, J. C. Hsu, L. M. Nieves, F. Alawi, P. C. Naha, D. P. Cormode, H. Koo, Biomaterials 2021, 268, 120581.

[30]

B. H. Gan, J. Gaynord, S. M. Rowe, T. Deingruber, D. R. Spring, Chem. Soc. Rev. 2021, 50, 7820.

[31]

B. P. Lazzaro, M. Zasloff, J. Rolff, Science 2020, 368, eaau5480.

[32]

Z. Sun, L. Ma, X. Sun, A. J. Sloan, N. M. O’Brien-Simpson, W. Li, Aggregate 2023, 4, e309.

[33]

M. Xiong, Z. Han, Z. Song, J. Yu, H. Ying, L. Yin, J. Cheng, Angew. Chem. Int. Ed. 2017, 56, 10826.

[34]

Q.-Y. Zhang, Z.-B. Yan, Y.-M. Meng, X.-Y. Hong, G. Shao, J.-J. Ma, X.-R. Cheng, J. Liu, J. Kang, C.-Y. Fu, Mil. Med. Res. 2021, 8, 48.

[35]

Z. Zhang, Y. Chen, J. Gao, M. Yang, D. Zhang, L. Wang, T. Zhang, Q. Cao, J. Mwangi, C. He, Y. Li, X. Liu, X. Jiang, P. M. Kamau, R. Lai, Nano Lett. 2023, 23, 11874.

[36]

H. Zhang, Q. Chen, J. Xie, Z. Cong, C. Cao, W. Zhang, D. Zhang, S. Chen, J. Gu, S. Deng, Z. Qiao, X. Zhang, M. Li, Z. Lu, R. Liu, Sci. Adv. 2023, 9, eabn0771.

[37]

W. Li, F. Separovic, N. M. O’Brien-Simpson, J. D. Wade, Chem. Soc. Rev. 2021, 50, 4932.

[38]

Y. Engelberg, M. Landau, Nat. Commun. 2020, 11, 3894.

[39]

P. Tan, H. Fu, X. Ma, Nano Today 2021, 39, 101229.

[40]

P.-K. Lai, Y. N. Kaznessis, ACS Omega 2018, 3, 6056.

[41]

L. Li, I. Vorobyov, T. W. Allen, J. Phys. Chem. B 2013, 117, 11906.

[42]

H. Z. Zardini, A. Amiri, M. Shanbedi, M. Maghrebi, M. Baniadam, Colloids Surf. B 2012, 92, 196.

[43]

Y. Wu, K. Chen, J. Wang, M. Chen, Y. Chen, Y. She, Z. Yan, R. Liu, Prog. Polym. Sci. 2023, 141, 101679.

[44]

M. Zheng, M. Pan, W. Zhang, H. Lin, S. Wu, C. Lu, S. Tang, D. Liu, J. Cai, Bioact. Mater. 2021, 6, 1878.

[45]

S. Li, Y. Zhang, H. Jin, H. Gao, S. Liu, W. Shi, W. Sun, Y. Liu, H. Zhang, J. Colloid Interface Sci. 2023, 651, 319.

[46]

X. J. Wei, B. Shao, Y. Zhou, Y. Li, C. C. Jin, J. Y. Liu, W. J. Shen, Angew. Chem. Int. Ed. 2018, 57, 11289.

[47]

X. Zhang, Y. Liu, C. Li, L. Tian, F. Yuan, S. Zheng, Z. Sun, Chem. Eng. J. 2022, 429, 132374.

[48]

Y. Guo, H.-R. Jia, X. Zhang, X. Zhang, Q. Sun, S.-Z. Wang, J. Zhao, F.-G. Wu, Small 2020, 16, 2000897.

[49]

C.-S. Lee, J. Gong, D.-S. Oh, J.-R. Jeon, Y.-S. Chang, ACS Appl. Nano Mater. 2018, 1, 768.

[50]

W. Luo, C. Zhu, S. Su, D. Li, Y. He, Q. Huang, C. Fan, ACS Nano 2010, 4, 7451.

[51]

M. Comotti, C. Della Pina, R. Matarrese, M. Rossi, Angew. Chem. Int. Ed. 2004, 43, 5812.

[52]

Z. Lai, Q. Jian, G. Li, C. Shao, Y. Zhu, X. Yuan, H. Chen, A. Shan, ACS Nano 2021, 15, 15824.

[53]

B. Ezraty, A. Gennaris, F. Barras, J.-F. Collet, Nat. Rev. Microbiol. 2017, 15, 385.

[54]

P. Feng, R. He, Y. Gu, F. Yang, H. Pan, C. Shuai, Mater. Horiz. 2024, 11, 590.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/