Ethylene control in fruit quality assurance: A material science perspective

Yi Jiang , Zhanpeng Liu , Mohammad Peydayesh , Bin Zhang , Xiangze Jia , Qiang Huang

Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e565

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e565 DOI: 10.1002/agt2.565
REVIEW

Ethylene control in fruit quality assurance: A material science perspective

Author information +
History +
PDF

Abstract

The waste of resources associated with fruit decay is rapidly spreading globally, threatening the interests of relevant practitioners and the health of consumer groups, and demanding precise solutions. Controlling fruit ripening through ethylene regulation is one of the most important strategies for providing high-quality fruits. However, current materials for ethylene regulation still have difficulty realizing their application potential due to high manufacturing costs and performance deficiencies. In this review, the ethylene-controlled release materials for ripening based on molecular encapsulation and the ethylene scavengers for preservation based on mechanisms such as oxidation, photodegradation, and adsorption are presented. We discuss and analyze a wide range of materials in terms of mechanism, performance, potential of applicability, and sustainability. The ethylene release behavior of encapsulating materials depends on the form in which the ethylene binds to the material as well as on environmental factors (humidity and temperature). For ethylene scavengers, there are a variety of scavenging mechanisms, but they generally require porous materials as adsorption carriers. We highlight the great opportunity of designing soft crystalline porous materials as efficient ethylene adsorbent due to their unique structural properties. We present this review, including a summary of practical characteristics and deficiencies of various materials, to establish a systematic understanding of fruit quality assurance materials applied to ethylene regulation, anticipating a promising prospect for these new materials.

Keywords

crystalline porous materials / ethylene scavengers / fruit ripening control / gas adsorption / gas encapsulation

Cite this article

Download citation ▾
Yi Jiang, Zhanpeng Liu, Mohammad Peydayesh, Bin Zhang, Xiangze Jia, Qiang Huang. Ethylene control in fruit quality assurance: A material science perspective. Aggregate, 2024, 5(5): e565 DOI:10.1002/agt2.565

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FAO Global food losses and waste. Extent, causes and prevention. https://www.fao.org/3/mb060e/mb060e00.pdf (accessed June).

[2]

UNEP Prevention and reduction of food and drink waste in businesses and households—guidance for governments, local authorities, businesses and other organisations. http://www.fao.org/fileadmin/user_upload/save-food/PDF/Guidance-content.pdf (accessed June).

[3]

WRI Food loss and waste accounting and reporting standard. http://www.wri.org/sites/default/files/REP_FLW_Standard.pdf (accessed June).

[4]

D. Martínez-Romero, G. Bailén, M. Serrano, F. Guillén, J. M. Valverde, P. J. Zapata, S. Castillo, D. Valero, Crit. Rev. Food Sci. Nutr. 2007, 47, 543.

[5]

K. L. C Wang, H. Li, J. R. Ecker, Plant Cell 2002, 14, S131.

[6]

S. F. Yang, D. O. Adams, In Lipids: Structure and Function, Stumpf, P.K., Ed. Academic Press:1980, 163.

[7]

J. M. Alonso, T. Hirayama, G. Roman, S. Nourizadeh, J. R. Ecker, Science 1999, 284, 2148.

[8]

W. Mou, Y.-T. Kao, E. Michard, A. A. Simon, D. Li, M. M. Wudick, M. A. Lizzio, J. A. Feijó, C. Chang, Nat. Commun. 2020, 11, 4082.

[9]

A. Ruwali, M. S. Thakuri, S. Pandey, J. Mahat, S. Shrestha, J. Agric. Food Res. 2022, 10, 100416.

[10]

C. Bai, C. Wu, L. Ma, A. Fu, Y. Zheng, J. Han, C. Li, S. Yuan, S. Zheng, L. Gao, X. Zhang, Q. Wang, D. Meng, J. Zuo, Hortic. Plant J. 2023, 9, 109.

[11]

J. Chai, Y. Wang, Y. Liu, Z. Gu, Z. Liu, Sci. Hortic. 2022, 300, 111073.

[12]

M.-H. Park, P. Sangwanangkul, J.-W. Choi, Sci. Hortic. 2018, 231, 66.

[13]

M. Sharma, S. Negi, P. Kumar, D. K. Srivastava, M. K. Choudhary, M. Irfan, Plant Sci. 2023, 335, 111820.

[14]

H. Li, L. Shi, C. Li, X. Fu, Q. Huang, B. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 34095.

[15]

Z. Liu, M. Shao, S. A. Junejo, B. Zhang, H. Jiang, X. Fu, Q. Huang, Postharvest Biol. Technol. 2023, 202, 112377.

[16]

B. Ugare, K. Banerjee, S. D. Ramteke, S. Pradhan, D. P. Oulkar, S. C. Utture, P. G. Adsule, Food Chem. 2013, 141, 4208.

[17]

R. K. Dhall, B. V. C. Mahajan, A. Dhatt, Acta Horticulturae 2010, 877, 1025.

[18]

A. Rizzuti, L. M. Aguilera-Sáez, V. Gallo, I. Cafagna, P. Mastrorilli, M. Latronico, A. Pacifico, A. M. S. Matarrese, G. Ferrara, Food Chem. 2015, 171, 341.

[19]

T. Ban, M. Kugishima, T. Ogata, S. Shiozaki, S. Horiuchi, H. Ueda, Sci. Hortic. 2007, 112, 278.

[20]

L. Qi, T. Wu, A. E. Watada, J. Food Qual. 1999, 22, 513.

[21]

A. A. Saquet, J. Streif, Bragantia 2017, 76, 335.

[22]

R. C Soliva-Fortuny, G. Oms-Oliu, O. Martin-Belloso, J. Food Sci. 2002, 67, 1958.

[23]

R. Yuan, L. Mao, T. Min, Y. Zhao, Y. Duan, H. Wang, Q. Lin, Sci. Hortic. 2023, 308, 111586.

[24]

Y. Zhang, Z. Gao, M. Hu, Y. Pan, X. Xu, Z. Zhang, Postharvest Biol. Technol. 2022, 185, 111797.

[25]

I. S. Minas, A. R. Vicente, A. P. Dhanapal, G. A. Manganaris, V. Goulas, M. Vasilakakis, C. H. Crisosto, A. Molassiotis, Plant Sci. 2014, 229, 76.

[26]

V. Y. Tokala, Z. Singh, P. N. Kyaw, Food Chem. 2021, 341, 128293.

[27]

M. H. Álvarez-Hernández, G. B. Martínez-Hernández, F. Avalos-Belmontes, F. D Miranda-Molina, F. Artés-Hernández, Postharvest Biol. Technol. 2020, 160, 111061.

[28]

D. U. Shin, B. J. Park, H. W. Cho, S. W. Kim, E. S. Kim, Y. W. Jung, D. H. Kim, S. J. Lee, Postharvest Biol. Technol. 2023, 200, 112330.

[29]

C. Wang, A. Ajji, LWT 2022, 172, 114200.

[30]

H. Li, F. Li, L. Wang, J. Sheng, Z. Xin, L. Zhao, H. Xiao, Y. Zheng, Q. Hu, Food Chem. 2009, 114, 547.

[31]

G. Bailén, F. Guillén, S. Castillo, P. J. Zapata, M. Serrano, D. Valero, D. Martínez-Romero, Span. J. Agric. Res. 2007, 5, 579.

[32]

P. Tepamatr, J. Agric. Food Res. 2023, 12, 100561.

[33]

S.-H. Wang, Y.-K. Hwang, S. W. Choi, X. Yuan, K. B. Lee, F.-C. Chang, J. Taiwan Inst. Chem. Eng. 2020, 115, 315.

[34]

G. Awalgaonkar, R. Beaudry, E. Almenar, Compr. Rev. Food Sci. Food Saf. 2020, 19, 3980.

[35]

L. Cisneros, F. Gao, A. Corma, Microporous Mesoporous Mater. 2019, 283, 25.

[36]

S. D. do Nascimento Sousa, R. G. Santiago, D. A. Soares Maia, E. de Oliveira Silva, R. S. Vieira, M. Bastos-Neto, Food Packag. Shelf Life 2020, 26, 100584.

[37]

Y. Ren, Y. Chen, J. Yang, J. Li, L. Li, Appl. Surf. Sci. 2023, 613, 156002.

[38]

S. Li, X. Hu, S. Chen, X. Wang, H. Shang, Y. Zhou, J. Dai, L. Xiao, W. Qin, Y. Liu, Food Hydrocolloids 2023, 136, 108294.

[39]

X. Zhao, Y. Wang, D. S. Li, X. Bu, P. Feng, Adv. Mater. 2018, 30, 1705189.

[40]

L.-Y. Chang, J. K. Brecht, Sci. Hortic. 2023, 309, 111636.

[41]

X. Li, T. Xiong, Q. Zhu, Y. Zhou, Q. Lei, H. Lu, W. Chen, X. Li, X. Zhu, Postharvest Biol. Technol. 2023, 198, 112265.

[42]

J. Lv, M. Zhang, L. Bai, X. Han, Y. Ge, W. Wang, J. Li, Food Chem. 2020, 308, 125707.

[43]

H. R. Choi, M. W. Baek, L. H. Cheol, C. S. Jeong, S. Tilahun, Food Chem. 2022, 384, 132490.

[44]

B. T. Ho, P. J. Hofman, D. C. Joyce, B. R. Bhandari, Postharvest Biol. Technol. 2016, 113, 77.

[45]

L. Shi, Z. Li, J. Guo, L. Kong, Z. Ren, W. Weng, Carbohydr. Polym. 2022, 287, 119360.

[46]

Y. Yao, Y. Deng, Y. Liang, X. Li, X. Tang, M. Lin, C. Xu, L. Fu, B. Lin, Int. J. Biol. Macromol. 2022, 214, 338.

[47]

B. Zhang, Y. Luo, K. Kanyuck, G. Bauchan, J. Mowery, P. Zavalij, J. Agric. Food Chem. 2016, 64, 5164.

[48]

G. Astray, C. Gonzalez-Barreiro, J. C. Mejuto, R. Rial-Otero, J. Simal-Gándara, Food Hydrocolloids 2009, 23, 1631.

[49]

E. M. M. Del Valle, Process Biochem. 2004, 39, 1033.

[50]

M. Singh, R. Sharma, U. C. Banerjee, Biotechnol. Adv. 2002, 20, 341.

[51]

S. Soltani, M. Kadri, V. Kaipanchery, A. Stachowicz-Kuśnierz, B. Korchowiec, M. Rogalski, P. Magri, J. Korchowiec, J. Mol. Struct. 2024, 1295, 136645.

[52]

A. M. Rubim, J. B. Rubenick, L. O. Vendrame, I. Zanella, C. M. B. Rolim, C. R. B. Rhoden, J. Mol. Graph. Model. 2023, 126, 108639.

[53]

J. He, Y. Dai, J. Zhong, X. Liu, X. Qin, Food Chem. 2023, 435, 137459.

[54]

B. T. Ho, D. C. Joyce, B. R. Bhandari, Food Chem. 2011, 127, 572.

[55]

T. L. Neoh, K. Yamauchi, H. Yoshii, T. Furuta, J. Agric. Food Chem. 2007, 55, 11020.

[56]

H.-W. Chien, W.-B. Tsai, S. Jiang, Biomaterials 2012, 33, 5706.

[57]

L. Shi, X. Fu, Q. Huang, B. Zhang, Carbohydr. Polym. 2017, 174, 798.

[58]

L. Shi, W. Wang, X. Fu, Y. Yuan, B. Zhang, Q. Huang, Polym. Chem. 2019, 10, 6021.

[59]

N. Stock, S. Biswas, Chem. Rev. 2012, 112, 933.

[60]

T. Jia, Y. Gu, F. Li, J. Environ. Chem. Eng. 2022, 10, 108300.

[61]

Y. Guan, Z. Teng, L. Mei, J. Zhang, Q. Wang, Y. Luo, J. Colloid Interface Sci. 2019, 533, 207.

[62]

P. Z. Moghadam, T. Islamoglu, S. Goswami, J. Exley, M. Fantham, C. F. Kaminski, R. Q. Snurr, O. K. Farha, D. Fairen-Jimenez, Nat. Commun. 2018, 9, 1378.

[63]

C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp, R. Q. Snurr, Nat. Chem. 2012, 4, 83.

[64]

R. E. Rundle, D. French, J. Am. Chem. Soc. 1943, 65, 558.

[65]

Y. Sun, X. Jia, C. P. Tan, B. Zhang, X. Fu, Q. Huang, Int. J. Biol. Macromol. 2023, 235, 123886.

[66]

Q. Gao, Y. Sun, R. He, J. Zheng, B. Zhang, C. P. Tan, X. Fu, Q. Huang, Food Hydrocolloids 2023, 136, 108285.

[67]

Z. Liu, S. Wang, C. P. Tan, B. Zhang, X. Fu, Q. Huang, Carbohydr. Polym. 2022, 291, 119556.

[68]

Q. Gao, J. Zheng, P. Van der Meeren, J. Xia, B. Zhang, X. Fu, Q. Huang, Carbohydr. Polym. 2022, 298, 120086.

[69]

Y. Feng, C. Wu, S. A. Junejo, B. Zhang, X. Fu, C. P. Tan, Q. Huang, Carbohydr. Polym. 2022, 297, 120015.

[70]

Y. Jiang, S. A. Junejo, X. Jia, B. Zhang, X. Fu, Q. Huang, Carbohydr. Polym. 2023, 302, 120386.

[71]

Z. Liu, S. A. Junejo, B. Zhang, X. Fu, Q. Huang, Carbohydr. Polym. 2022, 277, 118814.

[72]

L. Shi, X. Fu, C. Tan, Q. Huang, B. Zhang, J. Agric. Food Chem. 2017, 65, 2189.

[73]

L. Shi, B. Zhang, C. Li, X. Fu, Q. Huang, Int. J. Biol. Macromol. 2019, 141, 947.

[74]

L. Shi, L. Zhong, B. Zhang, X. Fu, Q. Huang, Int. J. Biol. Macromol. 2020, 156, 10.

[75]

J. Li, A. Wang, M. Nie, L. Wang, L. Liu, F. Wang, E. Capuano, L-T. Tong, Food Hydrocolloids 2024, 151, 109755.

[76]

D. Bardelang, K. A. Udachin, D. M. Leek, J. C. Margeson, G. Chan, C. I. Ratcliffe, J. A. Ripmeester, Cryst. Growth Des. 2011, 11, 5598.

[77]

Y. Miyahara, K. Abe, T. Inazu, Angew. Chem. Int. Ed. 2002, 41, 3020.

[78]

H. Kim, Y. Kim, M. Yoon, S. Lim, S. M. Park, G. Seo, K. Kim, J. Am. Chem. Soc. 2010, 132, 12200.

[79]

N. H. Duc, F. Chauvy, J.-M. Herri, Energy Convers. Manage. 2007, 48, 1313.

[80]

J. Tian, S. Ma, P. K. Thallapally, D. Fowler, B. P. McGrail, J. L. Atwood, Chem. Commun. 2011, 47, 7626.

[81]

M. Peydayesh, R. Mezzenga, Nat. Commun. 2021, 12, 3248.

[82]

K. J. Scott, R. B. H. Wills, Australian J. Exp. Agric. Anim. Husbandry 1974, 14, 266.

[83]

M. L. Arpaia, F. G. Mitchell, A. A. Kader, G. Mayer, J. Am. Soc. Hortic. Sci. 1985, 110, 200.

[84]

M. Ozdemir, J. D. Floros, Crit. Rev. Food Sci. Nutr. 2004, 44, 185.

[85]

Q. Zhang, Z. Zhen, H. Jiang, X.-G. Li, J.-A. Liu, J. Agric. Food Chem. 2011, 59, 10539.

[86]

J. H. Hotchkiss, C. B. Watkins, D. G. Sanchez, J. Food Sci. 2007, 72, E330.

[87]

C. M. Ortiz, A. N. Mauri, A. R. Vicente, Innov. Food Sci. Emerg. Technol. 2013, 20, 281.

[88]

R. B. H Wills, M. A. Warton, J. Am. Soc. Hortic. Sci. 2004, 129, 433.

[89]

S. Shenoy, N. Pathak, A. Molins, A. Toncheva, T. Schouw, A. Hemberg, F. Laoutid, P. V. Mahajan, Postharvest Biol. Technol. 2022, 188, 111881.

[90]

P. C. Spricigo, M. M. Foschini, C. Ribeiro, D. S. Corrêa, M. D. Ferreira, Food Bioproc. Technol. 2017, 10, 1622.

[91]

M. Kostekli, O. Ozdzikicierler, C. Cortés, A. P. Zulueta, M. J. Esteve, A. Frígola, MOJ Food Process. Technol. 2016, 3, 1.

[92]

P. Kaewklin, U. Siripatrawan, A. Suwanagul, Y. S. Lee, Int. J. Biol. Macromol. 2018, 112, 523.

[93]

K. Wang, P. Jin, H. Shang, H. Li, F. Xu, Q. Hu, Y. Zheng, J. Sci. Food Agric. 2010, 90, 2427.

[94]

Q. Hu, Y. Fang, Y. Yang, N. Ma, L. Zhao, Food Res. Int. 2011, 44, 1589.

[95]

Z. Zhu, Y. Zhang, Y. Zhang, Y. Shang, X. Zhang, Y. Wen, Materials 2019, 12, 896.

[96]

A. Maldonado, P. Cheuquepan, S. Gutiérrez, N. Gallegos, M. Donoso, C. Hauser, M. P. Arrieta, A. Torres, J. Bruna, X. Valenzuela, A. Guarda, M. Galotto, F. Rodríguez-Mercado, Polymers 2023, 15, 3369.

[97]

J. d. M Fonseca, N. Y. L. Pabón, G. A. Valencia, L. G. Nandi, M. E. R. Dotto, R. D. F. P. M. Moreira, A. R. Monteiro, Int. J. Biol. Macromol. 2021, 178, 154.

[98]

M. Wang, L. Nian, J. Wu, S. Cheng, Z. Yang, C. Cao, Food Hydrocolloids 2023, 145, 109073.

[99]

K. Abe, A. E. Watada, J. Food Sci. 1991, 56, 1589.

[100]

G. Bailén, F. Guillén, S. Castillo, M. Serrano, D. Valero, D. Martínez-Romero, J. Agric. Food Chem. 2006, 54, 2229.

[101]

B. Erdoğan, M. Sakızcı, E. Yörükoğulları, Appl. Surf. Sci. 2008, 254, 2450.

[102]

N. Sue-aok, T. Srithanratana, K. Rangsriwatananon, S. Hengrasmee, Appl. Surf. Sci. 2010, 256, 3997.

[103]

B. Erdoğan Alver, J. Hazard. Mater. 2013, 262, 627.

[104]

N. J. Abreu, H. Valdés, C. A. Zaror, F. Azzolina-Jury, M. F. Meléndrez, Microporous Mesoporous Mater. 2019, 274, 138.

[105]

B. Esser, J. M. Schnorr, T. M. Swager, Angew. Chem. Int. Ed. 2012, 51, 5752.

[106]

H. Ma, H. Ren, S. Meng, Z. Yan, H. Zhao, F. Sun, G. Zhu, Chem. Commun. 2013, 49, 9773.

[107]

Y. Yang, L. Li, R.-B. Lin, Y. Ye, Z. Yao, L. Yang, F. Xiang, S. Chen, Z. Zhang, S. Xiang, B. Chen, Nat. Chem. 2021, 13, 933.

[108]

S. M. Blankenship, J. M. Dole, Postharvest Biol. Technol. 2003, 28, 1.

[109]

D. R. Harris, J. A. Seberry, R. B. H. Wills, L. J. Spohr, Postharvest Biol. Technol. 2000, 20, 303.

[110]

M. A. Chaves, R. C. F. Bonotno, A. A. L. Silva, L. S. Santos, B. M. A. Carvalho, T. S. Souza, G. M. S. Gomes, R. D. Soares, Ciencia Tecnol. Aliment 2007, 5, 346.

[111]

B. R Gutierrez-Aguirre, R. E Llave-Davila, L. A. Olivera-Montenegro, E. Herrera-Nunez, L. A Marzano-Barreda, Int. J. Food Sci. 2023, 2023, 4650023.

[112]

S. Yimmongkol, P. Pratumpong, S. Boonyuen, C. Pechyen, Chiang Mai J. Sci. 2018, 45, 2152.

[113]

Y.-L. Zhang, R.-G. Zhang, Agric. Sci. China 2009, 8, 59.

[114]

A. C. V. Neves Junior, R. C. C. Coneglian, A. G. Soares, D. G. C. Freitas, M. J. O. Fonseca, F. R. Barreira, A. F. M. de Miranda, In XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Postharvest Technology in the Global Market. 2012, 934, 537.

[115]

L. C. Argenta, M. J. Vieira, A. M. Tomazini Scolar, Rev. Brasi. De Fruticult. 2009, 31, 323.

[116]

L. Chen, P. Xu, H. Wang, J. Hazard. Mater. 2022, 424, 127493.

[117]

E. Moctezuma, E. Leyva, C. A. Aguilar, R. A. Luna, C. Montalvo, J. Hazard. Mater. 2012, 243, 130.

[118]

E. S. Elmolla, M. Chaudhuri, Desalination 2010, 252, 46.

[119]

X. Liang, P. Wang, M. Li, Q. Zhang, Z. Wang, Y. Dai, X. Zhang, Y. Liu, M.-H. Whangbo, B. Huang, Appl. Catal., B 2018, 220, 356.

[120]

F. Chen, A. He, Y. Wang, W. Yu, H. Chen, F. Geng, Z. Li, Z. Zhou, Y. Liang, J. Fu, L. Zhao, Y. Wang, Chemosphere 2022, 298, 134176.

[121]

L. Wang, J. Li, J. Zhao, H. Li, J. Feng, P. Zhang, B. Pan, Water Res. 2023, 233, 119784.

[122]

M. Mohsin, I. A. Bhatti, M. Zeshan, M. Yousaf, M. Iqbal, FlatChem 2023, 42, 100547.

[123]

V. Navakoteswara Rao, U. Bharagav, A. Kumar, V. Krishnan, P. Ravi, M. Sathish, J. Velusamy, S. Pitchaimuthu, M. Mamatha Kumari, J. Theerthagiri, M. V. Shankar, Mater. Lett. 2021, 298, 130025.

[124]

M. Sultana, A. Mondol, S. Islam, M. A. Khatun, M. H. Rahman, A. K. Chakraborty, M. S. Rahman, M. M. Rahman, A. S. M. Nur, Sustain Chem 2023, 7, 100383.

[125]

O. Cabrera-Rodríguez, M. D Trejo-Valdez, C. R. Torres-SanMiguel, N. Pérez-Hernández, Á. Bañuelos-Hernández, M. E. Manríquez-Ramírez, J. A. Hernández-Benítez, A. V. Rodríguez-Tovar, Surf. Coat. Technol. 2023, 458, 129349.

[126]

M. Trochowski, M. Kobielusz, B. Pucelik, J. M. Dąbrowski, W. Macyk, J. Photochem. Photobiol. A Chem. 2023, 438, 114517.

[127]

I. Fatimah, R. Nurillahi, I. Sahroni, O. Muraza, Appl. Clay Sci. 2019, 183, 105302.

[128]

S. Krause, N. Hosono, S. Kitagawa, Angew. Chem. Int. Ed. 2020, 59, 15325.

[129]

M. Fakhraei Ghazvini, M. Vahedi, S. Najafi Nobar, F. Sabouri, J. Environ. Chem. Eng. 2021, 9, 104790.

[130]

H.-J. Li, Y.-D. Liu, New Carbon Mater. 2022, 37, 484.

[131]

Z. Xu, Z. Fan, C. Shen, Q. Meng, G. Zhang, C. Gao, Adv. Membr. 2022, 2, 100027.

[132]

K.-G. Liu, F. Bigdeli, A. Panjehpour, S. Hwa Jhung, H. A. J. Al Lawati, A. Morsali, Coord. Chem. Rev. 2023, 496, 215413.

[133]

Y. Gu, J.-J. Zheng, K.-I. Otake, S. Sakaki, H. Ashitani, Y. Kubota, S. Kawaguchi, M.-S. Yao, P. Wang, Y. Wang, F. Li, S. Kitagawa, Nat. Commun. 2023, 14, 4245.

[134]

R. Seabra, V. F. D. Martins, A. M. Ribeiro, A. E. Rodrigues, A. P. Ferreira, Chem. Eng. Sci. 2021, 229, 116006.

[135]

Y. Song, T. Ke, J. Shen, J. Li, X. Zhu, L. Yang, Z. Zhang, Z. Bao, Q. Ren, Q. Yang, Sep. Purif. Technol. 2023, 323, 124377.

[136]

J. Yan, H. Dong, M. Meng, J. Li, L. Sun, J. Mol. Liq. 2024, 394, 123629.

[137]

J. D. Monzón, A. M. Pereyra, M. R. Gonzalez, M. S. Legnoverde, M. S. Moreno, N. Gargiulo, A. Peluso, P. Aprea, D. Caputo, E. I. Basaldella, Appl. Surf. Sci. 2021, 542, 148748.

[138]

X. Wang, Z. Zhang, Y. Li, S. Qian, L. Yang, J. Hu, R. You, L. Chen, J. Zhao, H. Xing, X. Cui, Sep. Purif. Technol. 2022, 300, 121804.

[139]

Z. Liu, Y. Jiang, B. Zhang, X. Fu, Q. Huang, P. Van der Meeren, Food Biosci. 2023, 56, 103383.

[140]

A. Sultana, L. Kumar, K. K. Gaikwad, Int. J. Biol. Macromol. 2023, 243, 125031.

[141]

T. M. Ho, T. Howes, B. R. Bhandari, Powder Technol. 2014, 259, 87.

[142]

H. Tian, J. Pan, D. Zhu, Z. Guo, C. Yang, Y. Xue, D. Wang, Y. Wang, J. Environ. Manage. 2022, 323, 116281.

[143]

G. Sneddon, A. Greenaway, H. H. P. Yiu, Adv. Energy Mater. 2014, 4, 1301873.

[144]

C. Sarathchandran, M. R. Devika, S. Prakash, S. Sujatha, S. A. Ilangovan, In Handbook of Carbon-Based Nanomaterials, Thomas, S., Sarathchandran, C., Ilangovan, S. A., Moreno-Piraján, J. C., Eds. Elsevier:2021, 783.

[145]

C.-H. Yu, C.-H. Huang, C.-S. Tan, Aerosol Air Qual. Res. 2012, 12, 745.

[146]

N. Patdhanagul, K. Rangsriwatananon, K. Siriwong, S. Hengrasmee, Microporous Mesoporous Mater. 2012, 153, 30.

[147]

H. K. Chae, D. Y. Siberio-Pérez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe, O. M. Yaghi, D. Materials, G. Discovery, Nature 2004, 427, 523.

[148]

M. H. Álvarez-Hernández, F. Artés-Hernández, F. Ávalos-Belmontes, M. A Castillo-Campohermoso, J. C. Contreras-Esquivel, J. M Ventura-Sobrevilla, G. B. Martínez-Hernández, Food Bioproc. Technol. 2018, 11, 511.

[149]

J.-H. Yoon, M.-W. Huh, J. Phys. Chem. 1994, 98, 3202.

[150]

V. R. Choudhary, S. Mayadevi, Zeolites 1996, 17, 501.

[151]

P. L. Cen, AIChE J. 1990, 36, 789.

[152]

F. Sardabi, J. Mohtadinia, F. Shavakhi, A. A. Jafari, J. Food Process. Preserv. 2014, 38, 2176.

[153]

S. Kim, G. H. Jeong, S.-W. Kim, ACS Sustain Chem. Eng. 2019, 7, 11250.

[154]

D. Wang, G. Zhu, Y. Zhang, W. Yang, B. Wu, Y. Tang, Z. Xie, New J. Chem. 2005, 29, 272.

[155]

S. Iijima, Nature 1991, 354, 56.

[156]

S. Oddy, J. Poupore, F. H. Tezel, Can. J. Chem. Eng. 2013, 91, 1031.

[157]

A. Fujiwara, K. Ishii, H. Suematsu, H. Kataura, Y. Maniwa, S. Suzuki, Y. Achiba, Chem. Phys. Lett. 2001, 336, 205.

[158]

D. Levesque, A. Gicquel, F. L. Darkrim, S. B. Kayiran, J. Phys.: Condens. Matter 2002, 14, 9285.

[159]

S. Furmaniak, A. P. Terzyk, P. A. Gauden, P. Kowalczyk, Microporous Mesoporous Mater. 2012, 154, 51.

[160]

C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. S. Dresselhaus, Science 1999, 286, 1127.

[161]

T. Han, A. Nag, S. Chandra Mukhopadhyay, Y. Xu, Sens. Actuators, A 2019, 291, 107.

[162]

M. Reyes-Reyes, N. Grobert, R. Kamalakaran, T. Seeger, D. Golberg, M. Rühle, Y. Bando, H. Terrones, M. Terrones, Chem. Phys. Lett. 2004, 396, 167.

[163]

F. L. Darkrim, P. Malbrunot, G. P. Tartaglia, Int. J. Hydrogen Energy 2002, 27, 193.

[164]

X. Li, Y. Fan, F. Watari, Biomed. Mater. 2010, 5, 022001.

[165]

R. Leyva-Ramos, N. A. Medellín-Castillo, A. Jacobo-Azuara, J. Mendoza, L. E Landin-Rodriguez, J. M. Martínez-Rosales, A. Aragón-Piña, J. Environ. Eng. Manage. 2008, 18, 301.

[166]

S. Mallakpour, E. Khadem, Prog. Polym. Sci. 2015, 51, 74.

[167]

Z. F. Wang, S. N. Zhang, Y. Chen, Z. J. Zhang, S. Q. Ma, Chem. Soc. Rev. 2020, 49, 708.

[168]

R. Wang, J. X. Guo, J. Xue, H. H. Wang, Small Struct. 2021, 2, 2100061.

[169]

S. Z. Cai, Z. F. An, W. Huang, Adv. Funct. Mater. 2022, 32, 2207145.

[170]

R. B. Lin, B. L. Chen, Chem 2022, 8, 2114.

[171]

S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334.

[172]

L. Feng, S. Yuan, J.-S. Qin, Y. Wang, A. Kirchon, D. Qiu, L. Cheng, S. T. Madrahimov, H.-C. Zhou, Matter 2019, 1, 156.

[173]

Z. Hu, Y. Peng, Z. Kang, Y. Qian, D. Zhao, Inorg. Chem. 2015, 54, 4862.

[174]

A. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout, M. Eddaoudi, Science 2016, 353, 137.

[175]

R.-B. Lin, L. Li, H.-L. Zhou, H. Wu, C. He, S. Li, R. Krishna, J. Li, W. Zhou, B. Chen, Nat. Mater. 2018, 17, 1128.

[176]

S. Ma, D. Sun, D. Yuan, X.-S. Wang, H.-C. Zhou, J. Am. Chem. Soc. 2009, 131, 6445.

[177]

L. Pan, D. H. Olson, L. R. Ciemnolonski, R. Heddy, J. Li, Angew. Chem. Int. Ed. 2006, 45, 616.

[178]

Z. Zhang, Q. Yang, X. Cui, L. Yang, Z. Bao, Q. Ren, H. Xing, Angew. Chem. Int. Ed. 2017, 56, 16282.

[179]

Z. Bao, J. Wang, Z. Zhang, H. Xing, Q. Yang, Y. Yang, H. Wu, R. Krishna, W. Zhou, B. Chen, Q. Ren, Angew. Chem. Int. Ed. 2018, 57, 16020.

[180]

E. J. Kim, R. L. Siegelman, H. Z. H. Jiang, A. C. Forse, J.-H. Lee, J. D. Martell, P. J. Milner, J. M. Falkowski, J. B. Neaton, J. A. Reimer, S. C. Weston, J. R. Long, Science 2020, 369, 392.

[181]

M. Du, C.-P. Li, M. Chen, Z.-W. Ge, X. Wang, L. Wang, C.-S. Liu, J. Am. Chem. Soc. 2014, 136, 10906.

[182]

B. Chen, S. Xiang, G. Qian, Acc. Chem. Res. 2010, 43, 1115.

[183]

X. Cui, K. Chen, H. Xing, Q. Yang, R. Krishna, Z. Bao, H. Wu, W. Zhou, X. Dong, Y. Han, B. Li, Q. Ren, M. J. Zaworotko, B. Chen, Science 2016, 353, 141.

[184]

O. T. Qazvini, R. Babarao, S. G. Telfer, Nat. Commun. 2021, 12, 197.

[185]

J. W. Yoon, H. Chang, S.-J. Lee, Y. K. Hwang, D.-Y. Hong, S.-K. Lee, J. S. Lee, S. Jang, T.-U. Yoon, K. Kwac, Y. Jung, R. S. Pillai, F. Faucher, A. Vimont, M. Daturi, G. Férey, C. Serre, G. Maurin, Y.-S. Bae, J.-S. Chang, Nat. Mater. 2017, 16, 526.

[186]

C. Yu, Z. Guo, L. Yang, J. Cui, S. Chen, Y. Bo, X. Suo, Q. Gong, S. Zhang, X. Cui, S. He, H. Xing, Angew. Chem. Int. Ed. 2023, 62, e202218027.

[187]

A. P. Katsoulidis, D. Antypov, G. F. S. Whitehead, E. J. Carrington, D. J. Adams, N. G. Berry, G. R. Darling, M. S. Dyer, M. J. Rosseinsky, Nature 2019, 565, 213.

[188]

S. K. Elsaidi, M. H. Mohamed, D. Banerjee, P. K. Thallapally, Coord. Chem. Rev. 2018, 358, 125.

[189]

A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R. A. Fischer, Chem. Soc. Rev. 2014, 43, 6062.

[190]

Z. Chang, D.-H. Yang, J. Xu, T.-L. Hu, X.-H. Bu, Adv. Mater. 2015, 27, 5432.

[191]

S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695.

[192]

R. Matsuda, Nature 2014, 509, 434.

[193]

D.-D. Zhou, P. Chen, C. Wang, S.-S. Wang, Y. Du, H. Yan, Z.-M. Ye, C.-T. He, R.-K. Huang, Z.-W. Mo, N.-Y. Huang, J.-P. Zhang, Nat. Mater. 2019, 18, 994.

[194]

Y. Yan, E. J. Carrington, R. Pétuya, G. F. S. Whitehead, A. Verma, R. K. Hylton, C. C. Tang, N. G. Berry, G. R. Darling, M. S. Dyer, D. Antypov, A. P. Katsoulidis, M. J. Rosseinsky, J. Am. Chem. Soc. 2020, 142, 14903.

[195]

L. Vanduyfhuys, S. M. J. Rogge, J. Wieme, S. Vandenbrande, G. Maurin, M. Waroquier, V. Van Speybroeck, Nat. Commun. 2018, 9, 204.

[196]

J.-J. Zheng, S. Kusaka, R. Matsuda, S. Kitagawa, S. Sakaki, J. Am. Chem. Soc. 2018, 140, 13958.

[197]

Y. Gu, J.-J. Zheng, K.-I. Otake, K. Sugimoto, N. Hosono, S. Sakaki, F. Li, S. Kitagawa, Angew. Chem. Int. Ed. 2020, 59, 15517.

[198]

S. Sen, N. Hosono, J.-J. Zheng, S. Kusaka, R. Matsuda, S. Sakaki, S. Kitagawa, J. Am. Chem. Soc. 2017, 139, 18313.

[199]

C. Gu, N. Hosono, J.-J. Zheng, Y. Sato, S. Kusaka, S. Sakaki, S. Kitagawa, Science 2019, 363, 387.

[200]

Y. X. Wang, D. Zhao, Cryst. Growth Des. 2017, 17, 2291.

[201]

Y. Y. Tian, B. Mu, B. Li, X. Li, W. Xu, Y. C. Lin, ChemistrySelect 2019, 4, 3841.

[202]

H. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O. M. Yaghi, Science 2010, 327, 846.

[203]

K. Hirar, S. Furukawa, M. Kondo, H. Uehara, O. Sakata, S. Kitagawa, Angew. Chem. Int. Ed. 2011, 50, 8057.

[204]

M. Kondo, S. Furukawa, K. Hirai, S. Kitagawa, Angew. Chem. Int. Ed. 2010, 49, 5327.

[205]

J. Li, X. Jing, Q. Li, S. Li, X. Gao, X. Feng, B. Wang, Chem. Soc. Rev. 2020, 49, 3565.

[206]

X. Zhao, P. Pachfule, A. Thomas, Chem. Soc. Rev. 2021, 50, 6871.

[207]

M. G. Rabbani, A. K. Sekizkardes, Z. Kahveci, T. E. Reich, R. Ding, H. M El-Kaderi, Chem. Eur. J. 2013, 19, 3324.

[208]

L.-H. Xie, M. P. Suh, Chem. Eur. J. 2013, 19, 11590.

[209]

J.-O. Kim, Process Biochem. 2003, 39, 447.

[210]

Y. Fu, L. Shao, H. Liu, L. Tong, H. Liu, J. Hazard. Mater. 2011, 192, 658.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/