Multiple-resonance thermally activated delayed emitters through multiple peripheral modulation to enable efficient blue OLEDs at high doping levels

Yuyuan Wang , Zhiwei Ma , Junrong Pu , Danman Guo , Gaoyu Li , Zhu Chen , Shi-Jian Su , Huangjun Deng , Juan Zhao , Zhenguo Chi

Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e585

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e585 DOI: 10.1002/agt2.585
RESEARCH ARTICLE

Multiple-resonance thermally activated delayed emitters through multiple peripheral modulation to enable efficient blue OLEDs at high doping levels

Author information +
History +
PDF

Abstract

Organic light-emitting diodes (OLEDs) based on multiple resonance-thermally activated delayed fluorescence (MR-TADF) have the advantages of high exciton utilization and excellent color purity. However, the large conjugated planarity of general MR-TADF emitters makes them easily aggregate in the form of π-π stacking, resulting in aggregation-caused quenching (ACQ) and the formation of excimers, which reduce exciton utilization efficiency and color purity. To address these issues, large shielding units can be incorporated to prevent interchromophore interactions, whereas the majority of reported molecules are limited to blue-green light emissions. This work proposes a strategy of incorporating steric hindrance groups at different sites of the B/N core to suppress interactions between chromophore, contributing to blue MR-TADF emitters with high photo-luminance quantum yields (PLQYs ≥ 95%) and narrow full width at half maximum (FWHM), and importantly, great suppression of the ACQ effect. Therefore, blue OLEDs achieve high external quantum efficiencies up to 34.3% and high color purity with FWHM of about 27 nm and CIE around (0.12, 0.15), even at a high doping concentration of 20 wt%.

Keywords

blue emission / color purity / multiple-resonance / organic light-emitting diodes / thermally activated delayed fluorescence

Cite this article

Download citation ▾
Yuyuan Wang, Zhiwei Ma, Junrong Pu, Danman Guo, Gaoyu Li, Zhu Chen, Shi-Jian Su, Huangjun Deng, Juan Zhao, Zhenguo Chi. Multiple-resonance thermally activated delayed emitters through multiple peripheral modulation to enable efficient blue OLEDs at high doping levels. Aggregate, 2024, 5(5): e585 DOI:10.1002/agt2.585

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.

[2]

X. Chen, Z. Yang, Z. Xie, J. Zhao, Z. Yang, Y. Zhang, M. P. Aldred, Z. Chi, Mater. Chem. Front. 2018, 2, 1017.

[3]

Z. Yang, Z. Mao, C. Xu, X. Chen, J. Zhao, Z. Yang, Y. Zhang, W. Wu, S. Jiao, Y. Liu, M. P. Aldred, Z. Chi, Chem. Sci. 2019, 10, 8129.

[4]

G. Li, J. Pu, Z. Yang, H. Deng, Y. Liu, Z. Mao, J. Zhao, S. J. Su, Z. Chi, Aggregate 2023, 4, e382.

[5]

Z. Ma, Y. Wang, Y. Liu, G. Li, J. Zhou, J. Zhao, Z. Yang, Z. Chi, Dyes Pigm. 2023, 215, 111298.

[6]

Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915.

[7]

J. Zhao, Z. Chi, Y. Zhang, Z. Mao, Z. Yang, E. Ubba, Z. Chi, J. Mater. Chem. C 2018, 6, 6327.

[8]

T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777.

[9]

Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Nat. Photonics 2019, 13, 678.

[10]

Y. Zhang, D. Zhang, T. Huang, A. J. Gillett, Y. Liu, D. Hu, L. Cui, Z. Bin, G. Li, J. Wei, L. Duan, Angew. Chem. Int. Ed. 2021, 60, 20498.

[11]

Y. Zhang, D. Zhang, J. Wei, X. Hong, Y. Lu, D. Hu, G. Li, Z. Liu, Y. Chen, L. Duan, Angew. Chem. Int. Ed. 2020, 59, 17499.

[12]

J. Han, Y. Chen, N. Li, Z. Huang, C. Yang, Aggregate 2022, 3, e182.

[13]

X. Lv, J. Miao, M. Liu, Q. Peng, C. Zhong, Y. Hu, X. Cao, H. Wu, Y. Yang, C. Zhou, J. Ma, Y. Zou, C. Yang, Angew. Chem. Int. Ed. 2022, 134, 202201588.

[14]

Y. X. Hu, J. Miao, T. Hua, Z. Huang, Y. Qi, Y. Zou, Y. Qiu, H. Xia, H. Liu, X. Cao, C. Yang, Nat. Photonics 2022, 16, 803.

[15]

K. Stavrou, A. Danos, T. Hama, T. Hatakeyama, A. Monkman, ACS Appl. Mater 2021, 13, 8643.

[16]

X. Cai, Y. Xu, Y. Pan, L. Li, Y. Pu, X. Zhuang, C. Li, Y. Wang, Angew. Chem. Int. Ed. 2023, 62, 202216473.

[17]

J. Jin, C. Duan, H. Jiang, P. Tao, H. Xu, W. Y. Wong, Angew. Chem. Int. Ed. 2023, 62, 202218947.

[18]

J. Han, Z. Huang, J. Miao, Y. Qiu, Z. Xie, C. Yang, Chem. Sci. 2022, 13, 3402.

[19]

H. S. Kim, H. J. Cheon, D. Lee, W. Lee, J. Kim, Y.-H. Kim, S. Yoo, Sci. Adv. 2023, 9, eadf1388.

[20]

X. Liang, Z. P. Yan, H. B. Han, Z. G. Wu, Y. X. Zheng, H. Meng, J. L. Zuo, W. Huang, Angew. Chem. Int. Ed. 2018, 57, 11316.

[21]

F. Liu, Z. Cheng, Y. Jiang, L. Gao, H. Liu, H. Liu, Z. Feng, P. Lu, W. Yang, Angew. Chem. Int. Ed. 2022, 61, 202116927.

[22]

Y. Xu, C. Li, Z. Li, Q. Wang, X. Cai, J. Wei, Y. Wang, Angew. Chem. Int. Ed. 2020, 59, 17442.

[23]

H. J. Cheon, S. J. Woo, S. H. Baek, J. H. Lee, Y. H. Kim, Adv. Mater. 2022, 34, 2207416.

[24]

P. Jiang, J. Miao, X. Cao, H. Xia, K. Pan, T. Hua, X. Lv, Z. Huang, Y. Zou, C. Yang, Adv. Mater. 2022, 34, 2106954.

[25]

Y. Zhang, J. Wei, D. Zhang, C. Yin, G. Li, Z. Liu, X. Jia, J. Qiao, L. Duan, Angew. Chem. Int. Ed. 2022, 61, 202113206.

[26]

Y. Xu, Z. Cheng, Z. Li, B. Liang, J. Wang, J. Wei, Z. Zhang, Y. Wang, Adv. Opt. Mater. 2020, 8, 1902142.

[27]

Y. K. Qu, D. Y. Zhou, F. C. Kong, Q. Zheng, X. Tang, Y. H. Zhu, C. C. Huang, Z. Q. Feng, J. Fan, C. Adachi, L. S. Liao, Z. Q. Jiang, Angew. Chem. Int. Ed. 2022, 61, 202201886.

[28]

X. F. Luo, H. X. Ni, X. Liang, D. Yang, D. Ma, Y. X. Zheng, J. L. Zuo, Adv. Opt. Mater. 2023, 11, 2203002.

[29]

G. Chen, J. Wang, W. C. Chen, Y. Gong, N. Zhuang, H. Liang, L. Xing, Y. Liu, S. Ji, H. L. Zhang, Z. Zhao, Y. Huo, B. Z. Tang, Adv. Funct. Mater. 2023, 33, 2211893.

[30]

S. Oda, W. Kumano, T. Hama, R. Kawasumi, K. Yoshiura, T. Hatakeyama, Angew. Chem. Int. Ed. 2020, 60, 2882.

[31]

Y. Qiu, H. Xia, J. Miao, Z. Huang, N. Li, X. Cao, J. Han, C. Zhou, C. Zhong, C. Yang, ACS Appl. Mater 2021, 13, 59035.

[32]

K. Schmidt, S. Brovelli, V. Coropceanu, D. Beljonne, J. Cornil, C. Bazzini, T. Caronna, R. Tubino, F. Meinardi, Z. Shuai, J.-L. Brédas, J. Phys. Chem. A 2007, 111, 10490.

[33]

P. K. Samanta, D. Kim, V. Coropceanu, J.-L. Brédas, J. Am. Chem. Soc. 2017, 139, 4042.

[34]

L.-S. Cui, A. J. Gillett, S.-F. Zhang, H. Ye, Y. Liu, X.-K. Chen, Z.-S. Lin, E. W. Evans, W. K. Myers, T. K. Ronson, H. Nakanotani, S. Reineke, J.-L. Bredas, C. Adachi, R. H. Friend, Nat. Photonics 2020, 14, 636.

[35]

A. Pershin, D. Hall, V. Lemaur, J.-C. Sancho-Garcia, L. Muccioli, E. Zysman-Colman, D. Beljonne, Y. Olivier, Nat. Commun. 2019, 10, 597.

[36]

D. Hall, J. C. Sancho-García, A. Pershin, G. Ricci, D. Beljonne, E. Zysman-Colman, Y. Olivier, J. Chem. Theory Comput. 2022, 18, 4903.

[37]

Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Commun. 2009, 4332.

[38]

S.-Y. Park, M. Ebihara, Y. Kubota, K. Funabiki, M. Matsui, Dyes Pigm. 2009, 82, 258.

[39]

J. Liu, Q. Meng, X. Zhang, X. Lu, P. He, L. Jiang, H. Dong, W. Hu, Chem. Commun. 2013, 49, 1199.

[40]

X. Feng, B. Tong, J. Shen, J. Shi, T. Han, L. Chen, J. Zhi, P. Lu, Y. Ma, Y. Dong, J. Phys. Chem. B 2010, 114, 16731.

[41]

K. Liang, L. Dong, N. Jin, D. Chen, X. Feng, J. Shi, J. Zhi, B. Tong, Y. Dong, RSC Adv. 2016, 6, 23420.

[42]

S. H. Han, J. H. Jeong, J. W. Yoo, J. Y. Lee, J. Mater. Chem. C 2019, 7, 3082.

[43]

J. Bian, S. Chen, L. Qiu, R. Tian, Y. Man, Y. Wang, S. Chen, J. Zhang, C. Duan, C. Han, H. Xu, Adv. Mater. 2022, 34, 2110547.

RIGHTS & PERMISSIONS

2024 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

221

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/