Homochiral metalated tetraphenylethylene-based organic cages: Unusual chiral and luminescent behavior depending on thermodynamic and kinetic aggregation

Hao-Jie Zhang , Ya-Liang Lai , Hu Yang , Xian-Chao Zhou , Zi-Jun Yuan , Li Deng , Xiao-Lan Hu , Xue Li , Xiao-Ping Zhou , Dan Li

Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e598

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e598 DOI: 10.1002/agt2.598
RESEARCH ARTICLE

Homochiral metalated tetraphenylethylene-based organic cages: Unusual chiral and luminescent behavior depending on thermodynamic and kinetic aggregation

Author information +
History +
PDF

Abstract

Chirality and luminescence are important for both chemistry and biology, which are highly influenced by aggregation. In this work, a pair of metalated tetraphenylethylene(TPE)-based organic cage enantiomers are reported, which feature a quadrangular prismatic cage structure. These homochiral cages exhibit concentration-dependent chiral behaviors alongside a propensity for thermodynamic aggregation. Aggregation caused quench effect is found for these cages accompanying the increasing of the concentrations. When a poor solvent is added to produce a kinetical aggregation, the aggregation-annihilation circular dichroism and aggregation-induced emission behaviors are observed for these enantiomeric cages. By comparing these observations with the photophysical behaviors of a pair of structurally similar organic molecular enantiomers, the unique photophysical properties observed are intricately linked to the metal-integrated TPE-functionalized cage structures.

Keywords

concentration-dependent chirality / kinetic aggregation / metalated organic cage / tetraphenylethylene / thermodynamic aggregation

Cite this article

Download citation ▾
Hao-Jie Zhang, Ya-Liang Lai, Hu Yang, Xian-Chao Zhou, Zi-Jun Yuan, Li Deng, Xiao-Lan Hu, Xue Li, Xiao-Ping Zhou, Dan Li. Homochiral metalated tetraphenylethylene-based organic cages: Unusual chiral and luminescent behavior depending on thermodynamic and kinetic aggregation. Aggregate, 2024, 5(5): e598 DOI:10.1002/agt2.598

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Cintas, Angew. Chem. Int. Ed. 2002, 41, 1139.

[2]

M. Liu, L. Zhang, T. Wang, Chem. Rev. 2015, 115, 7304.

[3]

M. L. Solomon, A. A. E. Saleh, L. V. Poulikakos, J. M. Abendroth, L. F. Tadesse, J. A. Dionne, Acc. Chem. Res. 2020, 53, 588.

[4]

P. Peluso, B. Chankvetadze, Chem. Rev. 2022, 122, 13235.

[5]

S.-H. Xiang, B. Tan, Nat. Commun. 2020, 11, 3786.

[6]

R. Noyori, Angew. Chem. Int. Ed. 2002, 41, 2008.

[7]

Y. Sang, J. Han, T. Zhao, P. Duan, M. Liu, Adv. Mater. 2020, 32, 1900110.

[8]

J. Dong, Y. Liu, Y. Cui, Acc. Chem. Res. 2021, 54, 194.

[9]

P. Xing, Y. Zhao, Acc. Chem. Res. 2018, 51, 2324.

[10]

J. Tyedmers, A. Mogk, B. Bukau, Nat. Rev. Mol. Cell Biol. 2010, 11, 777.

[11]

M. Stefani, C. M. Dobson, J. Mol. Med. 2003, 81, 678.

[12]

J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718.

[13]

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 18, 1740.

[14]

X. Nie, W. Huang, D. Zhou, T. Wang, X. Wang, B. Chen, X. Zhang, G. Zhang, Aggregate 2022, 3, e165.

[15]

T. Liu, E. Diemann, H. Li, A. W. M. Dress, A. Müller, Nature 2003, 426, 59.

[16]

E. Raee, Y. Yang, T. Liu, Giant 2021, 5, 100050.

[17]

D. Luo, L.-X. Wu, Y. Zhang, Y.-L. Huang, X.-L. Chen, X.-P. Zhou, D. Li, Sci. China Chem. 2022, 65, 1105.

[18]

D. Li, J. Zhang, K. Landskron, T. Liu, J. Am. Chem. Soc. 2008, 130, 4226.

[19]

E. Raee, H. Li, X. Sun, P. Ustriyana, J. Luo, J. Chen, N. Sahai, T. Liu, J. Phys. Chem. B 2020, 124, 9958.

[20]

Z. Zhao, W. He, B. Z. Tang, Acc. Mater. Res. 2021, 2, 1251.

[21]

D. Li, R. Hu, D. Guo, Q. Zang, J. Li, Y. Wang, Y.-S. Zheng, B. Z. Tang, H. Zhang, J. Phys. Chem. C 2017, 121, 20947.

[22]

J.-B. Xiong, H.-T. Feng, J.-P. Sun, W.-Z. Xie, D. Yang, M. Liu, Y.-S. Zheng, J. Am. Chem. Soc. 2016, 138, 11469.

[23]

H. Qu, Y. Wang, Z. Li, X. Wang, H. Fang, Z. Tian, X. Cao, J. Am. Chem. Soc. 2017, 139, 18142.

[24]

Y.-L. Sun, Z. Wang, H. Ma, Q.-P. Zhang, B.-B. Yang, X. Meng, Y. Zhang, C. Zhang, Chem. Commun. 2023, 59, 302.

[25]

Y.-L. Lai, H.-J. Zhang, J. Su, X.-Z. Wang, D. Luo, J.-X. Liu, X.-P. Zhou, D. Li, Chin. Chem. Lett. 2023, 34, 107686.

[26]

L.-Y. Sun, N. Sinha, T. Yan, Y.-S. Wang, T. T. Y. Tan, L. Yu, Y.-F. Han, F. E. Hahn, Angew. Chem. Int. Ed. 2018, 57, 5161.

[27]

Y. Li, J.-G. Yu, L.-L. Ma, M. Li, Y.-Y. An, Y.-F. Han, Sci. China Chem. 2021, 64, 701.

[28]

Q.-F. Sun, J. Iwasa, D. Ogawa, Y. Ishido, S. Sato, T. Ozeki, Y. Sei, K. Yamaguchi, M. Fujita, Science 2010, 328, 1144.

[29]

D. Fujita, Y. Ueda, S. Sato, N. Mizuno, T. Kumasaka, M. Fujita, Nature 2016, 540, 563.

[30]

D. Fujita, Y. Ueda, S. Sato, H. Yokoyama, N. Mizuno, T. Kumasaka, M. Fujita, Chem 2016, 1, 91.

[31]

Y.-L. Lu, J.-Q. Song, Y.-H. Qin, J. Guo, Y.-H. Huang, X.-D. Zhang, M. Pan, C.-Y. Su, J. Am. Chem. Soc. 2022, 144, 8778.

[32]

H. Wang, C. Guo, X. Li, CCS Chem. 2022, 4, 785.

[33]

H. Wu, X. He, B. Yang, C.-C. Li, L. Zhao, Angew. Chem. Int. Ed. 2021, 60, 1535.

[34]

K. Jyothish, M. Hariharan, D. Ramaiah, Chem. Eur. J. 2007, 13, 5944.

[35]

Z. Song, H. Sato, A. Pietropaolo, Q. Wang, S. Shimoda, H. Dai, Y. Imai, H. Toda, T. Harada, Y. Shichibu, K. Konishi, M. Bando, N. Naga, T. Nakano, Chem. Commun. 2022, 58, 1029.

[36]

S. Manchineella, V. Prathyusha, U. D. Priyakumar, T. Govindaraju, Chem. Eur. J. 2013, 19, 16615.

[37]

H. Zhang, X. Zheng, R. T. K. Kwok, J. Wang, N. L. C. Leung, L. Shi, J. Z. Sun, Z. Tang, J. W. Y. Lam, A. Qin, B. Z. Tang, Nat. Commun. 2018, 9, 4961.

[38]

L. Ding, L. Lin, C. Liu, H. Li, A. Qin, Y. Liu, L. Song, H. Zhang, B. Z. Tang, Y. Zhao, New J. Chem. 2011, 35, 1781.

[39]

H. Zhang, H. Li, J. Wang, J. Sun, A. Qin, B. Z. Tang, J. Mater. Chem. C 2015, 3, 5162.

[40]

D. Luo, Z.-J. Yuan, L.-J. Ping, X.-W. Zhu, J. Zheng, C.-W. Zhou, X.-C. Zhou, X.-P. Zhou, D. Li, Angew. Chem. Int. Ed. 2023, 62, e202216977.

[41]

H. Li, T.-Z. Xie, Z. Liang, Y. Shen, X. Sun, Y. Yang, T. Liu, J. Phys. Chem. C 2019, 123, 23280.

[42]

J. Kong, W. Li, S. Zhao, J. Zhang, T. Yue, Y. Wang, Y. Xia, Z. Li, Small 2022, 18, 2201826.

[43]

H.-T. Feng, Y.-X. Yuan, J.-B. Xiong, Y.-S. Zheng, B. Z. Tang, Chem. Soc. Rev. 2018, 47, 7452.

[44]

C. Zhang, Z. Wang, L. Tan, T.-L. Zhai, S. Wang, B. Tan, Y.-S. Zheng, X.-L. Yang, H.-B. Xu, Angew. Chem. Int. Ed. 2015, 54, 9244.

[45]

J. Feng, L. Yao, J. Zhang, Y. Mu, Z. Chi, C.-Y. Su, Dalton Trans. 2016, 45, 1668.

[46]

Y. Li, Y.-Y. An, J.-Z. Fan, X.-X. Liu, X. Li, F. E. Hahn, Y.-Y. Wang, Y.-F. Han, Angew. Chem. Int. Ed. 2020, 59, 10073.

[47]

R. Hu, E. Lager, A. Aguilar-Aguilar, J. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. Zhong, K. S. Wong, E. Peña-Cabrera, B. Z. Tang, J. Phys. Chem. C 2009, 113, 15845.

[48]

D. D. La, S. V. Bhosale, L. A. Jones, S. V. Bhosale, ACS Appl. Mater. Interfaces 2018, 10, 12189.

[49]

H. Wang, E. Zhao, J. W. Y. Lam, B. Z. Tang, Mater. Today 2015, 18, 365.

[50]

Y. Li, T. Yang, N. Li, S. Bai, X. Li, L.-L. Ma, K. Wang, Y. Zhang, Y.-F. Han, CCS Chem. 2021, 4, 732.

[51]

X. Yan, T. R. Cook, P. Wang, F. Huang, P. J. Stang, Nat. Chem. 2015, 7, 342.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/