Linker aggregation engineering of TADF materials to tune carrier balance for highly efficient organic LEDs with long operational lifetime

Zhen Zhang , Rongrong Xia , Ke Wang , Youjun Wu , Panpan Zang , Xuemin Gan , Zhangcheng Liao , Bin Wei , Peng Wu , Stefan Bräse , Zixing Wang

Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e588

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e588 DOI: 10.1002/agt2.588
RESEARCH ARTICLE

Linker aggregation engineering of TADF materials to tune carrier balance for highly efficient organic LEDs with long operational lifetime

Author information +
History +
PDF

Abstract

Thermally activated delayed fluorescence (TADF) molecules are regarded as promising materials for realizing high-performance organic light-emitting diodes (OLEDs). The connecting groups between donor (D) and acceptor (A) units in D–A type TADF molecules could affect the charge transfer and luminescence performance of TADF materials in aggregated states. In this work, we design and synthesize four TADF molecules using planar and twisted linkers to connect the aza-azulene donor (D) and triazine acceptor (A). Compared with planar linkers, the twisted ones (Az-NP-T and Az-NN-T) can enhance A–A aggregation interaction between adjacent molecules to balance hole and electron density. As a result, highly efficient and stable deep-red top-emission OLEDs with a high electroluminescence efficiency of 57.3% and an impressive long operational lifetime (LT95~30,000 h, initial luminance of 1000 cd m−2) are obtained. This study provides a new strategy for designing more efficient and stable electroluminescent devices through linker aggregation engineering in donor–acceptor molecules.

Keywords

acceptor stacking / balanced carrier transfer / host materials / long device lifetime / thermally activated delayed fluorescence

Cite this article

Download citation ▾
Zhen Zhang, Rongrong Xia, Ke Wang, Youjun Wu, Panpan Zang, Xuemin Gan, Zhangcheng Liao, Bin Wei, Peng Wu, Stefan Bräse, Zixing Wang. Linker aggregation engineering of TADF materials to tune carrier balance for highly efficient organic LEDs with long operational lifetime. Aggregate, 2024, 5(5): e588 DOI:10.1002/agt2.588

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.b) X.-C. Fan, K. Wang, Y.-Z. Shi, Y.-C. Cheng, Y.-T. Lee, J. Yu, X.-K. Chen, C. Adachi, X.-H. Zhang, Nat. Photonics 2023, 17, 280.c) G. Hong, X. Gan, C. Leonhardt, Z. Zhang, J. Seibert, J. M. Busch, S. Bräse, Adv. Mater. 2021, 33, 2005630. d) Y. Im, M. Kim, Y. J. Cho, J.-A Seo, K. S. Yook, J. Y. Lee, Chem. Mater. 2017, 29, 1946.e) H. Jiang, P. Tao, W.-Y. Wong, ACS Materials Lett. 2023, 5, 822.

[2]

a) Z. Qiu, W. Xie, Z. Yang, J.-H. Tan, Z. Yuan, L. Xing, S. Ji, W.-C. Chen, Y. Huo, S.-J. Su, Chem. Eng. J. 2021, 415, 128949.b) X. Zhang, J.-Y. Li, K. Zhang, L. Ding, C.-K. Wang, M.-K. Fung, J. Fan, J. Mater. Chem. C 2022, 10, 3685.c) D. T. Yonemoto, C. M. Papa, C. Mongin, F. N. Castellano, J. Am. Chem. Soc. 2020, 142, 10883.d) A. J. Gillett, R. H. Friend, D. Beljonne, Chem. Mater. 2022, 34, 7095.

[3]

a) X. Lv, Y. Wang, N. Li, X. Cao, G. Xie, H. Huang, C. Zhong, L. Wang, C. Yang, Chem. Eng. J. 2020, 402, 126173.b) Z. Yang, X. Ge, W. Li, Z. Mao, X. Chen, C. Xu, F. Long Gu, Y. Zhang, J. Zhao, Z. Chi, Chem. Eng. J. 2022, 442, 136219.c) J.-R. Cha, C. W. Lee, J. Y. Lee, M.-S. Gong, Dyes Pigm. 2016, 134, 562.

[4]

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, C. Adachi, Appl. Phys. Lett. 2011, 98, 083302.

[5]

a) D. R. Lee, J. M. Choi, C. W. Lee, J. Y. Lee, ACS Appl. Mater. Interfaces 2016, 8, 23190.b) D. R. Lee, B. S. Kim, C. W. Lee, Y. Im, K. S. Yook, S. H. Hwang, J. Y. Lee, ACS Appl. Mater. Interfaces 2015, 7, 9625.

[6]

X. K. Chen, Y. Tsuchiya, Y. Ishikawa, C. Zhong, C. Adachi, J. L. Bredas, Adv. Mater. 2017, 29, 1702767.

[7]

a) H. van Eersel, P. A. Bobbert, R. A. J. Janssen, R. Coehoorn, Appl. Phys. Lett. 2014, 105, 143303. b) C. Murawski, K. Leo, M. C. Gather, Adv. Mater. 2013, 25, 6801.

[8]

a) C.-Y. Chan, M. Tanaka, Y.-T. Lee, Y.-W. Wong, H. Nakanotani, T. Hatakeyama, C. Adachi, Nat. Photonics 2021, 15, 203.b) N. C. Giebink, S. R. Forrest, Phys. Rev. B 2008, 77, 235215.

[9]

a) D. Zhang, M. Cai, Y. Zhang, D. Zhang, L. Duan, Mater. Horiz. 2016, 3, 145.b) D. R. Lee, S. H. Hwang, S. K. Jeon, C. W. Lee, J. Y. Lee, Chem. Commun. 2015, 51, 8105.c) P. L. Dos Santos, J. S. Ward, M. R. Bryce, A. P. Monkman, J. Phys. Chem. Lett. 2016, 7, 3341.

[10]

a) S. W. Li, C. H. Yu, C. L. Ko, T. Chatterjee, W. Y. Hung, K. T. Wong, ACS Appl. Mater. Interfaces 2018, 10, 12930.b) M. Godumala, S. Choi, S. K. Kim, S. W. Kim, J. H. Kwon, M. J. Cho, D. H. Choi, J. Mater. Chem. C 2018, 6, 10000.c) J. Chen, C. Shi, Q. Fu, F. Zhao, Y. Hu, Y. Feng, D. Ma, J. Mater. Chem. 2012, 22, 5164.d) Y. K. Wang, S. H. Li, S. F. Wu, C. C. Huang, S. Kumar, Z. Q. Jiang, M. K. Fung, L. S. Liao, Adv. Funct. Mater. 2018, 28, 1706228.

[11]

a) A. Kumar, W. Lee, T. Lee, J. Jung, S. Yoo, M. H. Lee, J. Mater. Chem. C 2020, 8, 4253.b) Y. C. Cheng, X. C. Fan, F. Huang, X. Xiong, J. Yu, K. Wang, C. S. Lee, X. H. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202212575. c) J. X. Chen, W. W. Tao, Y. F. Xiao, K. Wang, M. Zhang, X. C. Fan, W. C. Chen, J. Yu, S. Li, F. X. Geng, X. H. Zhang, C. S. Lee, ACS Appl. Mater. Interfaces 2019, 11, 29086.d) H. Kang, S. G. Ihn, I. Kim, Y. S. Chung, S. O. Jeon, M. Sim, J. Kim, H. Lee, Y. Son, W. J. Son, I. Jang, D. S. Kim, H. Choi, J. P. Hong, Adv. Opt. Mater. 2022, 10, 2102309.

[12]

a) T. Zhang, M. Zhu, J. Li, Y. Zhang, X. Wang, Dyes Pigm. 2021, 192, 109426.b) D. R. Lee, C. W. Lee, J. Y. Lee, J. Mater. Chem. C 2014, 2, 7256.c) Y. Tao, Q. Wang, C. Yang, Q. Wang, Z. Zhang, T. Zou, J. Qin, D. Ma, Angew. Chem. Int. Ed. 2008, 47, 8104.d) X. K. Liu, C. J. Zheng, J. Xiao, J. Ye, C. L. Liu, S. D. Wang, W. M. Zhao, X. H. Zhang, Phys. Chem. Chem. Phys. 2012, 14, 14255.e) D. Wagner, S. T. Hoffmann, U. Heinemeyer, I. Münster, A. Köhler, P. Strohriegl, Chem. Mater. 2013, 25, 3758.

[13]

a) X. Lv, Y. Wang, N. Li, X. Cao, G. Xie, H. Huang, C. Zhong, L. Wang, C. Yang, Chem. Eng. J. 2020, 402, 12609. b) R. R. Xia, Z. Zhang, P. Wu, Y. J. Wu, K. Wang, X. F. Li, M. L. Ye, Z. X. Wang, Chem. Eng. J. 2024, 479, 147562.

[14]

Z. Wang, H. Shao, J. Ye, L. Zhang, P. Lu, Adv. Funct. Mater. 2007, 17, 253.

[15]

a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang. Chem. Commun. 2001, 1740. b) Y. Hong, J. W. Y. Lam, B. Z. Tang. Chem. Soc. Rev. 2011, 40, 5361.c) G. Yang, Y. Ran, Y. Wu, M. Chen, Z. Bin, J. You, Aggregate 2022, 3, e127. d) H. Wu, X.-C. Fan, H. Wang, F. Huang, X. Xiong, Y.-Z. Shi, K. Wang, J. Yu, X.-H. Zhang, Aggregate 2023, 4, e243. e) J. Hwang, P. Nagaraju, M. J. Cho, D. H. Choi, Aggregate 2023, 4, e199.

[16]

a) Z. Wang, Z. Li, Y. Zhang, W. Liu, J. Chem. Phys. 2020, 153, 164109. b) Z. Li, Y. Xiao, W. Liu, J. Chem. Phys. 2014, 141, 054111. c) W. Liu, F. Wang, L. Li, J. Theor. Comput. Chem. 2003, 02, 257.

[17]

a) Z. Liu, T. Lu, Q. Chen, Carbon 2020, 165, 461.b) T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.c) T. Liang, X. Jiang, J. Wang, Y. Pan, B. Yang, Comput. Theo. Chem. 2023, 1220, 114000.

[18]

X. K. Chen, B. W. Bakr, M. Auffray, Y. Tsuchiya, C. D. Sherrill, C. Adachi, J. L. Bredas, J. Phys. Chem. Lett. 2019, 10, 3260.

[19]

a) Y. Wada, H. Nakagawa, S. Matsumoto, Y. Wakisaka, H. Kaji, Nat. Photonics 2020, 14, 643.b) L. Hua, Y. Liu, B. Liu, Z. Zhao, L. Zhang, S. Yan, Z. Ren, Nat. Commun. 2022, 13, 7828.

[20]

a) C. Deng, L. Zhang, D. Wang, T. Tsuboi, Q. Zhang, Adv. Opt. Mater. 2019, 7, 1801644. b) R. Skaisgiris, T. Serevičius, K. Kazlauskas, Y. Geng, C. Adachi, S. Juršėnas, J. Mater. Chem. C 2019, 7, 12601.c) Z. Zhang, D. H. Dou, R. R. Xia, P. Wu, E. Spuling, K. Wang, J. Cao, B. Wei, X. F. Li, J. H. Zhang, S. Bräse, Z. X. Wang, Sci. Adv. 2023, 9, eadf4060.

[21]

K. Masui, H. Nakanotani, C. Adachi, Org. Electron. 2013, 14, 2721.

[22]

a) M. Baba, J. Phys. Chem. A 2011, 115, 9514.b) F. B. Dias, J. Santos, D. R. Graves, P. Data, R. S. Nobuyasu, M. A. Fox, A. S. Batsanov, T. Palmeira, M. N Berberan-Santos, M. R. Bryce, A. P. Monkman, Adv. Sci. 2016, 3, 1600080.

[23]

a) I. S. Park, K. Matsuo, N. Aizawa, T. Yasuda, Adv. Funct. Mater. 2018, 28, 1802031. b) P. K. Samanta, D. Kim, V. Coropceanu, J. L. Bredas, J. Am. Chem. Soc. 2017, 139, 4042.

[24]

T. Fleetham, G. Li, J. Li, ACS Appl. Mater. Interfaces 2015, 7, 16240.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/