One-dimensional phenanthroline-based covalent organic framework bearing single cobalt atoms for efficient photocatalytic CO2 reduction

Lv-Ye Ai , Qian Wang , Xiao-Wen Chen , Guo-Fang Jiang

Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e582

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e582 DOI: 10.1002/agt2.582
RESEARCH ARTICLE

One-dimensional phenanthroline-based covalent organic framework bearing single cobalt atoms for efficient photocatalytic CO2 reduction

Author information +
History +
PDF

Abstract

Metalated covalent organic frameworks (COFs) for 2D and 3D topologies are continuously being developed, whereas metalated COFs with 1D topologies are still in their infancy. Here, a novel 1D phenanthroline-based COF containing 4,4- (1,10-phenanthroline-2,9-diyl)bis[benzaldehyde] (PBA) is reported (PAD-COF). Subsequently, a metalated 1D COF, Co SAS/PAD-COF, is constructed using the bidentate ligand properties of PBA and anchoring the single Co atoms in PAD-COF through a post-synthetic modification strategy. This complex significantly improved the photocatalytic performance of PAD-COF, and the CO yield of the optimized Co SAS/PAD-COF was stable at 3091 μmol g−1 h−1 with a selectivity of 93%, which is approximately 43.7 times that of the original PAD-COF. Experimental and theoretical results demonstrate the excellent CO2 photoreduction activity of Co SAS/PAD-COF owing to the synergistic effect of single Co catalytic sites and PADCOF. Among them, PAD-COF, as the host, adsorbs CO2 molecules and loads single Co atoms. Meanwhile, Co atoms function as catalytic sites and promote the adsorption and activation of CO2, while reducing the reaction energy barrier formed by the *COOH intermediates. Therefore, this unique metalated 1D COF provides a fresh approach to photocatalytic CO2 reduction.

Keywords

1D phenanthroline-based covalent organic framework / metalated / photocatalytic CO 2 reduction / single Co atoms

Cite this article

Download citation ▾
Lv-Ye Ai, Qian Wang, Xiao-Wen Chen, Guo-Fang Jiang. One-dimensional phenanthroline-based covalent organic framework bearing single cobalt atoms for efficient photocatalytic CO2 reduction. Aggregate, 2024, 5(5): e582 DOI:10.1002/agt2.582

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. M. Mota, D. H. Kim, Chem. Soc. Rev. 2019, 48, 205.

[2]

T. A. Jacobson, J. S. Kler, M. T. Hernke, R. K. Braun, K. C. Meyer, W. E. Funk, Nat. Sustainability 2019, 2, 691.

[3]

S. J. Davis, K. Caldeira, H. D. Matthews, Science 2010, 329, 1330.

[4]

S. Solomon, G.-K. Plattner, R. Knutti, P. Friedlingstein, Proc. Natl. Acad. Sci. 2009, 106, 1704.

[5]

J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Mater. Today 2020, 32, 222.

[6]

X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev. 2019, 119, 3962.

[7]

K. Su, G.-X. Dong, W. Zhang, Z.-L. Liu, M. Zhang, T.-B. Lu, ACS Appl. Mater. Interfaces 2020, 12, 50464.

[8]

S. Xie, Q. Zhang, G. Liu, Y. Wang, Chem. Commun. 2016, 52, 35.

[9]

W. A. Thompson, E. S. Fernandez, M. M Maroto-Valer, ACS Sustainable Chem. Eng. 2020, 8, 4677.

[10]

H. Schwarz, R. Dodson, J. Phys. Chem. 1989, 93, 409.

[11]

C. Xu, P. R. Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Chem. Soc. Rev. 2019, 48, 3868.

[12]

S. Wang, B. Y. Guan, X. W. D. Lou, J. Am. Chem. Soc. 2018, 140, 5037.

[13]

Q. Wang, J. Warnan, S. Rodríguez-Jiménez, J. J. Leung, S. Kalathil, V. Andrei, K. Domen, E. Reisner, Nat. Energy 2020, 5, 703.

[14]

X. Xiong, Y. Zhao, R. Shi, W. Yin, Y. Zhao, G. I. N. Waterhouse, T. Zhang, Sci. Bull. 2020, 65, 987.

[15]

K. Wang, Y. Du, Y. Li, X. Wu, H. Hu, G. Wang, Y. Xiao, S. Chou, G. Zhang, Carbon Energy 2023, 5, e264.

[16]

Y. Zhao, G. Chen, T. Bian, C. Zhou, G. Waterhouse, L.-Z. Wu, C.-H. Tung, L. J. Smith, D. O’Hare, T. Zhang, Adv. Mater. 2015, 27, 7824.

[17]

G.-B. Wang, K.-H. Xie, H.-P. Xu, Y.-J. Wang, F. Zhao, Y. Geng, Y.-B. Dong, Coord. Chem. Rev. 2022, 472, 214774.

[18]

R. Liu, K. T. Tan, Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z. Lu, H. Yang, D. Jiang, Chem. Soc. Rev. 2021, 50, 120.

[19]

S.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548.

[20]

T. He, Y. Zhao, Angew. Chem. Int. Ed. 2023, 62, e202303086.

[21]

K. T. Tan, S. Ghosh, Z. Wang, F. Wen, D. Rodríguez-San-Miguel, J. Feng, N. Huang, W. Wang, F. Zamora, X. Feng, A. Thomas, D. Jiang, Nat. Rev. Methods Primers 2023, 3, 1.

[22]

M. Lu, J. Liu, Q. Li, M. Zhang, M. Liu, J. L. Wang, D. Q. Yuan, Y. Q. Lan, Angew. Chem. Int. Ed. 2019, 131, 12522.

[23]

L. Li, Y. Zhu, N. Gong, W. Zhang, W. Peng, Y. Li, F. Zhang, X. Fan, Int. J. Hydrogen Energy 2020, 45, 2689.

[24]

Y. Guo, Q. Zhang, S. Gao, H. Wang, Z. Li, J. Qiu, Y. Zhao, Z. Liu, J. Wang, Green Chem. 2022, 24, 9530.

[25]

Z. Fan, K. Nomura, M. Zhu, X. Li, J. Xue, T. Majima, Y. Osakada, Commun. Chem. 2019, 2, 55.

[26]

Q. Guan, L.-L. Zhou, Y.-B. Dong, Chem. Soc. Rev. 2022, 51, 6307.

[27]

J. Dong, X. Han, Y. Liu, H. Li, Y. Cui, Angew. Chem. Int. Ed. 2020, 59, 13722.

[28]

S. Yang, W. Hu, X. Zhang, P. He, B. Pattengale, C. Liu, M. Cendejas, I. Hermans, X. Zhang, J. Zhang, J. Huang, J. Am. Chem. Soc. 2018, 140, 14614.

[29]

H. Lv, R. Sa, P. Li, D. Yuan, X. Wang, R. Wang, Sci. China Chem. 2020, 63, 1289.

[30]

L. Sun, M. Lu, Z. Yang, Z. Yu, X. Su, Y. Q. Lan, L. Chen, Angew. Chem. Int. Ed. 2022, 134, e202204326.

[31]

M. Lu, S. B. Zhang, M. Y. Yang, Y. F. Liu, J. P. Liao, P. Huang, M. Zhang, S. L. Li, Z. M. Su, Y. Q. Lan, Angew. Chem. Int. Ed. 2023, 135, e202307632.

[32]

H. L. Nguyen, C. Gropp, O. M. Yaghi, J. Am. Chem. Soc. 2020, 142, 2771.

[33]

Z. Chen, K. Wang, X. Hu, P. Shi, Z. Guo, H. Zhan, ACS Appl. Mater. Interfaces 2020, 13, 1145.

[34]

Z. Chen, K. Wang, Y. Tang, L. Li, X. Hu, M. Han, Z. Guo, H. Zhan, B. Chen, Angew. Chem. Int. Ed. 2023, 135, e202213268.

[35]

S. An, X. Li, S. Shang, T. Xu, S. Yang, C. X. Cui, C. Peng, H. Liu, Q. Xu, Z. Jiang, J. Hu, Angew. Chem. Int. Ed. 2023, 62, e202218742.

[36]

Y. Liu, W.-K. Han, W. Chi, J.-X. Fu, Y. Mao, X. Yan, J.-X. Shao, Y. Jiang, Z.-G. Gu, Appl. Catal. B 2023, 338, 123074.

[37]

P. Shi, J. Wang, Z. Guo, Chem. Eng. J. 2023, 451, 139082.

[38]

H. Wang, C. Qian, J. Liu, Y. Zeng, D. Wang, W. Zhou, L. Gu, H. Wu, G. Liu, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 4862.

[39]

X. Zhao, P. Pachfule, S. Li, T. Langenhahn, M. Ye, C. Schlesiger, S. Praetz, J. Schmidt, A. Thomas, J. Am. Chem. Soc. 2019, 141, 6623.

[40]

X. Wang, Z. Fu, L. Zheng, C. Zhao, X. Wang, S. Y. Chong, F. McBride, R. Raval, M. Bilton, L. Liu, Chem. Mater. 2020, 32, 9107.

[41]

J. Liu, X. Wan, S. Liu, X. Liu, L. Zheng, R. Yu, J. Shui, Adv. Mater. 2021, 33, 2103600.

[42]

L.-Y. Ai, Q. Wang, X.-W. Chen, G.-F. Jiang, Chem. Eng. J. 2023, 475, 146106.

[43]

A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Am. Chem. Soc. 2002, 124, 13547.

[44]

J. Sheng, Y. He, J. Li, C. Yuan, H. Huang, S. Wang, Y. Sun, Z. Wang, F. Dong, ACS Nano 2020, 14, 13103.

[45]

J. Wu, X. Li, W. Shi, P. Ling, Y. Sun, X. Jiao, S. Gao, L. Liang, J. Xu, W. Yan, C. Wang, Y. Xie, Angew. Chem. Int. Ed. 2018, 130, 8855.

[46]

M. Zhou, Z. Wang, A. Mei, Z. Yang, W. Chen, S. Ou, S. Wang, K. Chen, P. Reiss, K. Qi, J. Ma, Y. Liu, Nat. Commun. 2023, 14, 2473.

[47]

Y. Liu, D. Shen, Q. Zhang, Y. Lin, F. Peng, Appl. Catal. B 2021, 283, 119630.

[48]

M. Wang, M. Shen, X. Jin, J. Tian, M. Li, Y. Zhou, L. Zhang, Y. Li, J. Shi, ACS Catal. 2019, 9, 4573.

[49]

L. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao, T. Shao, Y. Song, M. K. H. Leung, L. Sun, J. Hou, J. Am. Chem. Soc. 2022, 144, 17097.

[50]

P. Yang, R. Wang, H. Tao, Y. Zhang, M.-M. Titirici, X. Wang, Appl. Catal. B 2021, 280, 119454.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/