Supramolecular self-assembled nanoparticles for targeted therapy of myocardial infarction by enhancing cardiomyocyte mitophagy

Yang Jiao , Haimang Wang , Xiechuan Weng , Jihang Wang , Ying Li , Jian Shen , Weiwei Zhao , Qing Xi , Hongyu Zhang , Zhenhong Fu

Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e563

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e563 DOI: 10.1002/agt2.563
RESEARCH ARTICLE

Supramolecular self-assembled nanoparticles for targeted therapy of myocardial infarction by enhancing cardiomyocyte mitophagy

Author information +
History +
PDF

Abstract

Myocardial infarction accompanied by diabetes mellitus is accepted as the most serious type of coronary heart disease, and among the current treatment strategies, the precise delivery of protective drugs for inhibiting cardiomyocyte apoptosis is still a challenge. In this study, we developed a biodegradable nanoparticles-based delivery system with excellent macrophage escape, cardiac targeting, and drug release properties to achieve targeted therapy of myocardial infarction. Specifically, a copolymer of p(DMA–MPC–CD) combining self-adhesion, hydration lubrication, and targeting peptide binding site was successfully prepared by free radical copolymerization, and it was self-assembled on the surface of melatonin-loaded dendritic mesoporous silica nanoparticles (bMSNs) following the integration of adamantane-modified cardiac homing peptide (CHP) based on supramolecular host–guest interaction. Importantly, a hydration layer formed around the zwitterionic phosphorylcholine groups of the multifunctional nanoparticles, which was confirmed by the enhancement in hydration lubrication and reduction in coefficient of friction, prevented the nanoparticles from phagocytosis by the macrophages. The in vivo bioluminescence imaging test indicated that the nanoparticles were endowed with satisfied cardiac targeting capability, and the in vivo mice study demonstrated that the intravenous injection of drug-loaded nanoparticles (namely bMSNs–Mel@PDMC–CHP) effectively reduced cardiomyocyte apoptosis, alleviated myocardial interstitial fibrosis, and enhanced cardiac function.

Keywords

hydration lubrication / myocardial infarction / nanoparticles / self-assembly / targeted drug delivery

Cite this article

Download citation ▾
Yang Jiao, Haimang Wang, Xiechuan Weng, Jihang Wang, Ying Li, Jian Shen, Weiwei Zhao, Qing Xi, Hongyu Zhang, Zhenhong Fu. Supramolecular self-assembled nanoparticles for targeted therapy of myocardial infarction by enhancing cardiomyocyte mitophagy. Aggregate, 2024, 5(5): e563 DOI:10.1002/agt2.563

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Wu, C. Cui, Y. Huang, Y. Liu, C. Fan, X. Han, Y. Yang, Z. Xu, B. Liu, G. Fan, W. Liu, ACS Appl. Mater. Interfaces 2020, 12, 2039.

[2]

H. Miettinen, S. Lehto, V. Salomaa, M. Mahonen, M. Niemela, S.M. Haffner, K. Pyorala, J. Tuomilehto, Diabetes Care 1998, 21, 69.

[3]

P. Vidal-Cales, P.L. Cepas-Guillen, S. Brugaletta, M. Sabate, J. Cardiovasc. Dev. Dis. 2021, 8, 100.

[4]

Y. Matsuo, K. Ozaki, R. Ikegami, K. Nishida, N. Kubota, T. Takano, T. Okubo, M. Hoyano, T. Yanagawa, T. Kashimura, T. Minamino, J. Cardiol. Cases 2021, 23, 274.

[5]

J.W. Tian, M. Zhu, F.Q. Wang, K. Li, C.F. Zhou, B. Li, M. Wang, J.L. Deng, B. Jiang, J. Bai, Y. Guo, R.J. Jin, Z. Zhang, Y. Lin, J.H. Wang, S.H. Zhao, M.Z. Shen, J. Geriatr. Cardiol. 2019, 16, 458.

[6]

A.P. DeFilippis, A.R. Chapman, N.L. Mills, J.A. de Lemos, A. Arbab-Zadeh, L.K. Newby, D.A. Morrow, Circulation 2019, 140, 1661.

[7]

Y.W. Won, A.N. McGinn, M. Lee, D.A. Bull, S.W. Kim, Mol. Pharm. 2013, 10, 378.

[8]

E. Quarta, F. Sonvico, R. Bettini, C. De Luca, A. Dotti, D. Catalucci, M. Iafisco, L. Degli Esposti, G. Colombo, G. Trevisi, D.M. Rekkas, A. Rossi, T.W. Wong, F. Buttini, P. Colombo, Pharmaceutics 2021, 13, 1825.

[9]

C. Liu, L. Chen, Y. Ma, K. Hu, P. Wu, L. Pan, H. Chen, L. Li, H. Hu, J. Zhang, Theranostics 2021, 11, 8550.

[10]

S.L. Teichman, K.S. Thomson, M. Regnier, Handb. Exp. Pharmacol. 2017, 243, 447.

[11]

M. Asrih, S. Gardier, I. Papageorgiou, C. Montessuit, J. Mol. Cell Cardiol. 2013, 56, 106.

[12]

A.V. Kristen, S. Ajroud-Driss, I. Conceicao, P. Gorevic, T. Kyriakides, L. Obici, Neurodegener. Dis. Manag. 2019, 9, 5.

[13]

L.P. Lowes, L.N. Alfano, W.D. Arnold, R. Shell, T.W. Prior, M. McColly, K.J. Lehman, K. Church, D.M. Sproule, S. Nagendran, M. Menier, D.E. Feltner, C. Wells, J.T. Kissel, S. Al-Zaidy, J. Mendell, Pediatr. Neurol. 2019, 98, 39.

[14]

D.A. Prado, M. Acosta-Acero, R.S. Maldonado, Curr. Opin. Ophthalmol. 2020, 31, 147.

[15]

S. Yla-Herttuala, A.H. Baker, Mol. Ther. 2017, 25, 1095.

[16]

B. Yang, C.L. Lu, H. Zhao, R. Dong, J. Nanosci. Nanotechnol. 2021, 21, 1272.

[17]

Z. Li, D. Shen, S. Hu, T. Su, K. Huang, F. Liu, L. Hou, K. Cheng, ACS Nano 2018, 12, 12193.

[18]

D. Shen, Z. Li, S. Hu, K. Huang, T. Su, H. Liang, F. Liu, K. Cheng, Nano Lett. 2019, 19, 1883.

[19]

T. Su, K. Huang, H. Ma, H. Liang, P.U. Dinh, J. Chen, D. Shen, T.A. Allen, L. Qiao, Z. Li, S. Hu, J. Cores, B.N. Frame, A.T. Young, Q. Yin, J. Liu, L. Qian, T.G. Caranasos, Y. Brudno, F.S. Ligler, K. Cheng, Adv. Funct. Mater. 2019, 29, 1803567.

[20]

J. Tang, T. Su, K. Huang, P.U. Dinh, Z. Wang, A. Vandergriff, M.T. Hensley, J. Cores, T. Allen, T. Li, E. Sproul, E. Mihalko, L.J. Lobo, L. Ruterbories, A. Lynch, A. Brown, T.G. Caranasos, D. Shen, G.A. Stouffer, Z. Gu, J. Zhang, K. Cheng, Nat. Biomed. Eng. 2018, 2, 17.

[21]

A. Vandergriff, K. Huang, D. Shen, S. Hu, M.T. Hensley, T.G. Caranasos, L. Qian, K. Cheng, Theranostics 2018, 8, 1869.

[22]

C. Yao, W. Wu, H. Tang, X. Jia, J. Tang, X. Ruan, F. Li, D.T. Leong, D. Luo, D. Yang, Biomaterials 2020, 257, 120256.

[23]

S. Wang, X. Liu, M. Yang, L. Ouyang, J. Ding, S. Wang, W. Zhou, Asian J. Pharm. Sci. 2022, 17, 557.

[24]

J. Trousil, N.K. Dal, F. Fenaroli, I. Schlachet, P. Kubickova, O. Janouskova, E. Pavlova, M. Skoric, K. Trejbalova, O. Pavlis, A. Sosnik, Small 2022, 18, 2201853.

[25]

M. Pavlin, J. Lojk, K. Strojan, I. Hafner-Bratkovic, R. Jerala, A. Leonardi, I. Krizaj, N. Drnovsek, S. Novak, P. Veranic, V.B. Bregar, Int. J. Mol. Sci. 2022, 23, 6197.

[26]

N. Lafuente-Gomez, S. Wang, F. Fontana, M. Dhanjani, D. Garcia-Soriano, A. Correia, M. Castellanos, C. Rodriguez Diaz, G. Salas, H.A. Santos, A. Somoza, Nanoscale 2022, 14, 11129.

[27]

S. Zhang, F. Xie, K. Li, H. Zhang, Y. Yin, Y. Yu, G. Lu, S. Zhang, Y. Wei, K. Xu, Y. Wu, H. Jin, L. Xiao, L. Bao, C. Xu, Y. Li, Y. Lu, J. Gao, Acta Pharm. Sin. B 2022, 12, 3124.

[28]

Q. Ren, M. Li, Y. Deng, A. Lu, J. Lu, Pharmacol. Res. 2021, 165, 105377.

[29]

P. Falagan-Lotsch, E.M. Grzincic, C.J. Murphy, Bioconjug. Chem. 2017, 28, 135.

[30]

Y. Chen, J. Shi, Adv. Mater. 2016, 28, 3235.

[31]

Y. Yang, M. Zhao, P. Yao, Y. Huang, Z. Dai, H. Yuan, C. Ni, J. Nanosci. Nanotechnol. 2018, 18, 2971.

[32]

D. Shen, J. Yang, X. Li, L. Zhou, R. Zhang, W. Li, L. Chen, R. Wang, F. Zhang, D. Zhao, Nano Lett. 2014, 14, 923.

[33]

R.G. Acres, A.V. Ellis, J. Alvino, C.E. Lenahan, D.A. Khodakov, G.F. Metha, G.G. Andersson, J. Phys. Chem. C 2012, 116, 6289.

[34]

S.J. Yang, L.Y. Zou, C. Liu, Q. Zhong, Z.Y. Ma, J. Yang, J. Ji, P. Muller-Buschbaum, Z.K. Xu, ACS Appl. Mater. Interfaces 2020, 12, 54094.

[35]

Y.F. Yan, T. Sun, H.B. Zhang, X.L. Ji, Y.L. Sun, X. Zhao, L.F. Deng, J. Qi, W.G. Cui, H.A. Santos, H. Zhang, Adv. Funct. Mater. 2018, 29, 1807559.

[36]

X. Tan, Y. Sun, T. Sun, H. Zhang, Chem. Commun. 2019, 55, 2593.

[37]

S. Liu, X. Zhao, J. Tang, Y. Han, Q. Lin, ACS Biomater. Sci. Eng. 2021, 7, 1065.

[38]

M. Vatankhah-Varnosfaderani, X. Hu, Q. Li, H. Adelnia, M. Ina, S.S. Sheiko, ACS Appl. Mater. Interfaces 2018, 10, 20869.

[39]

B.R. Knowles, P. Wagner, S. Maclaughlin, M.J. Higgins, P.J. Molino, Biointerphases 2020, 15, 021009.

[40]

T. Jin, D. Wu, X.M. Liu, J.T. Xu, B.J. Ma, Y. Ji, Y.Y. Jin, S.Y. Wu, T. Wu, K. Ma, J. Nanobiotechnology 2020, 18, 94.

[41]

W. Lin, J. Klein, Acc. Mater. Res. 2022, 3, 213.

[42]

M.L.A. Ramirez, E. Bindini, P. Moretti, G. Soler Illia, H. Amenitsch, P. Andreozzi, M.G. Ortore, S.E. Moya, Colloids Surf. B Biointerfaces 2022, 219, 112797.

[43]

T. Liu, L. Li, X. Teng, X. Huang, H. Liu, D. Chen, J. Ren, J. He, F. Tang, Biomaterials 2011, 32, 1657.

[44]

W. Zhao, H. Wang, Y. Han, H. Wang, Y. Sun, H. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 51236.

[45]

W. Zhao, Y. Yu, Z. Zhang, D. He, H. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 35409.

[46]

Y. Zheng, Y. Yan, W. Zhao, H. Wang, Y. Sun, J. Han, H. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 21773.

[47]

X. Li, W. Zhang, J. Lin, H. Wu, Y. Yao, J. Zhang, C. Yang, Biomater. Sci. 2021, 9, 3453.

[48]

X. Song, R. Sun, R. Wang, K. Zhou, R. Xie, J. Lin, D. Georgiev, A.A. Paraschiv, R. Zhao, M.M. Stevens, Adv. Mater. 2022, 34, 2204791.

[49]

L. Jaragh-Alhadad, H. Behbehani, S. Karnik, Drug Deliv. 2022, 29, 2759.

[50]

F. Gao, J. Yin, Y. Chen, C. Guo, H. Hu, J. Su, Front. Bioeng. Biotechnol. 2022, 10, 972933.

[51]

Z. Fu, Y. Jiao, J. Wang, Y. Zhang, M. Shen, R.J. Reiter, Q. Xi, Y. Chen, Front. Physiol. 2020, 11, 366.

[52]

R. Rezzani, G. Favero, A. Stacchiotti, L.F. Rodella, Life Sci. 2013, 92, 875.

[53]

H. Zhou, D. Li, P. Zhu, S. Hu, N. Hu, S. Ma, Y. Zhang, T. Han, J. Ren, F. Cao, Y. Chen, J. Pineal. Res. 2017, 63, e12438.

[54]

Z. Yang, L. Sun, H. Wang, Front. Cardiovasc. Med. 2023, 10, 1166324.

[55]

B. Wang, J. Nie, L. Wu, Y. Hu, Z. Wen, L. Dong, M.H. Zou, C. Chen, D.W. Wang, Circ. Res. 2018, 122, 712.

[56]

C. Xu, Y. Cao, R. Liu, L. Liu, W. Zhang, X. Fang, S. Jia, J. Ye, Y. Liu, L. Weng, X. Qiao, B. Li, M. Zheng, J. Cell Mol. Med. 2022, 26, 1315.

[57]

S. Park, S.G. Choi, S.M. Yoo, J.H. Son, Y.K. Jung, Autophagy 2014, 10, 1906.

[58]

K. Liu, X. Zhou, L. Fang, J. Dong, L. Cui, J. Li, X. Meng, G. Zhu, J. Li, H. Wang, Int. Immunopharmacol. 2022, 112, 109200.

[59]

Z. Deng, M. He, H. Hu, W. Zhang, Y. Zhang, Y. Ge, T. Ma, J. Wu, L. Li, M. Sun, S. An, J. Li, Q. Huang, S. Gong, J. Zhang, Z. Chen, Z. Zeng, Autophagy 2024, 20, 151.

[60]

C. Chen, C. Yang, J. Wang, X. Huang, H. Yu, S. Li, S. Li, Z. Zhang, J. Liu, X. Yang, G.P. Liu, J. Pineal. Res. 2021, 71, e12774.

[61]

H. Zhang, A. Yan, X. Liu, Y. Ma, F. Zhao, M. Wang, J.J. Loor, H. Wang, J. Hazard. Mater. 2021, 407, 124489.

[62]

Y. Che, Y. Tian, R. Chen, L. Xia, F. Liu, Z. Su, Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166171.

[63]

S. Zaib, A. Hayyat, N. Ali, A. Gul, M. Naveed, I. Khan, Anticancer Agents Med. Chem. 2022, 22, 2048.

[64]

M. Panagia, H. He, T. Baka, D.R. Pimentel, D. Croteau, M.M. Bachschmid, J.A. Balschi, W.S. Colucci, I. Luptak, NMR Biomed. 2020, 33, 4258.

[65]

L. Wan, Y. Wang, X.L. Tan, Y.L. Sun, J. Luo, H.Y. Zhang, Friction 2022, 10, 68.

[66]

S. Liu, Q. Zhang, Y. Han, Y. Sun, Y. Zhang, H. Zhang, Langmuir 2019, 35, 13189.

[67]

Y. Han, J. Yang, W. Zhao, H. Wang, Y. Sun, Y. Chen, J. Luo, L. Deng, X. Xu, W. Cui, H. Zhang, Bioact. Mater. 2021, 6, 3596.

[68]

N. Azizi, M.R. Saidi, Org. Lett. 2005, 7, 3649.

[69]

W. Zhao, H. Wang, H. Wang, Y. Han, Z. Zheng, X. Liu, B. Feng, H. Zhang, Nanoscale 2021, 13, 6394.

[70]

W. Feng, Z. Wang, L. Shi, Evid. Based Complement. Alternat. Med. 2022, 2022, 2521816.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/