Stimuli-responsive photoluminescent copper(I) halides for scintillation, anticounterfeiting, and light-emitting diode applications

Dilruba A. Popy , Yashpal Singh , Yauhen Tratsiak , Abby M. Cardoza , John M. Lane , Luis Stand , Mariya Zhuravleva , Neeraj Rai , Bayram Saparov

Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e602

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e602 DOI: 10.1002/agt2.602
RESEARCH ARTICLE

Stimuli-responsive photoluminescent copper(I) halides for scintillation, anticounterfeiting, and light-emitting diode applications

Author information +
History +
PDF

Abstract

Highly sensitive stimuli-responsive luminescent materials are crucial for applications in optical sensing, security, and anticounterfeiting. Here, we report two zero-dimensional (0D) copper(I) halides, (TEP)2Cu2Br4, (TEP)2Cu4Br6, and 1D (TEP)3Ag6Br9, which are comprised of isolated [Cu2Br4]2−, [Cu4Br6]2−, and [Ag6Br9]3− polyanions, respectively, separated by TEP+ (tetraethylphosphonium [TEP]) cations. (TEP)2Cu2Br4 and (TEP)2Cu4Br6 demonstrate greenish-white and orange-red emissions, respectively, with near unity photoluminescence quantum yields, while (TEP)3Ag6Br9 is a poor light emitter. Optical spectroscopy measurements and density-functional theory calculations reveal that photoemissions of these compounds originate from self-trapped excitons due to the excited-state distortions in the copper(I) halide units. Crystals of Cu(I) halides are radioluminescence active at room temperature under both X- and γ-rays exposure. The light yields up to 15,800 ph/MeV under 662 keV γ-rays of 137Cs suggesting their potential for scintillation applications. Remarkably, (TEP)2Cu2Br4 and (TEP)2Cu4Br6 are interconvertible through chemical stimuli or reverse crystallization. In addition, both compounds demonstrate luminescence on-off switching upon thermal stimuli. The sensitivity of (TEP)2Cu2Br4 and (TEP)2Cu4Br6 to the chemical and thermal stimuli coupled with their ultrabright emission allows their consideration for applications such as solid-state lighting, sensing, information storage, and anticounterfeiting.

Keywords

0D copper(I) halides / anticounterfeiting / efficient photoluminescence / scintillators / solid-state lighting

Cite this article

Download citation ▾
Dilruba A. Popy, Yashpal Singh, Yauhen Tratsiak, Abby M. Cardoza, John M. Lane, Luis Stand, Mariya Zhuravleva, Neeraj Rai, Bayram Saparov. Stimuli-responsive photoluminescent copper(I) halides for scintillation, anticounterfeiting, and light-emitting diode applications. Aggregate, 2024, 5(5): e602 DOI:10.1002/agt2.602

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Yang, P. Su, Y. Tang, ChemNanoMat 2018, 4, 1097.

[2]

R. Gao, D. Yan, X. Duan, Cell Rep. Phys. Sci. 2021, 2, 100536.

[3]

Z.-H. Zhu, C. Bi, H.-H. Zou, G. Feng, S. Xu, B. Z. Tang, Adv. Sci. 2022, 9, 2200850.

[4]

Z.-H. Zhu, Z. Ni, H.-H. Zou, G. Feng, B. Z. Tang, Adv. Funct. Mater. 2021, 31, 2106925.

[5]

Y. Liu, A. Li, S. Xu, W. Xu, Y. Liu, W. Tian, B. Xu, Angew. Chem. Int. Ed. 2020, 59, 15098.

[6]

C. Sun, S. Su, Z. Gao, H. Liu, H. Wu, X. Shen, W. Bi, ACS Appl. Mater. Interfaces 2019, 11, 8210.

[7]

J. Jiang, P. Zhang, L. Liu, Y. Li, Y. Zhang, T. Wu, H. Xie, C. Zhang, J. Cui, J. Chen, Chem. Eng. J. 2021, 425, 131557.

[8]

L. Chen, J.-W. Ye, H.-P. Wang, M. Pan, S.-Y. Yin, Z.-W. Wei, L.-Y. Zhang, K. Wu, Y.-N. Fan, C.-Y. Su, Nat. Commun. 2017, 8, 15985.

[9]

Z. Han, K. Wang, H.-C. Zhou, P. Cheng, W. Shi, Nat. Protoc. 2023, 18, 1621.

[10]

X. Bi, Y. Shi, T. Peng, S. Yue, F. Wang, L. Zheng, Q.-E. Cao, Adv. Funct. Mater. 2021, 31, 2101312.

[11]

Y. Wang, H. Wu, W. Hu, J. F. Stoddart, Adv. Mater. 2022, 34, 2105405.

[12]

Y. Shoji, Y. Ikabata, Q. Wang, D. Nemoto, A. Sakamoto, N. Tanaka, J. Seino, H. Nakai, T. Fukushima, J. Am. Chem. Soc. 2017, 139, 2728.

[13]

K. Jinnai, R. Kabe, C. Adachi, Adv. Mater. 2018, 30, 1870286.

[14]

C. R. Benson, L. Kacenauskaite, K. L. VanDenburgh, W. Zhao, B. Qiao, T. Sadhukhan, M. Pink, J. Chen, S. Borgi, C.-H. Chen, B. J. Davis, Y. C. Simon, K. Raghavachari, B. W. Laursen, A. H. Flood, Chem 2020, 6, 1978.

[15]

C. Wang, Z. Li, Mater. Chem. Front. 2017, 1, 2174.

[16]

R. Gao, M. S. Kodaimati, D. Yan, Chem. Soc. Rev. 2021, 50, 5564.

[17]

H. Sun, S. Liu, W. Lin, K. Y. Zhang, W. Lv, X. Huang, F. Huo, H. Yang, G. Jenkins, Q. Zhao, W. Huang, Nat. Commun. 2014, 5, 3601.

[18]

Z. Wang, Z. Zhang, L. Tao, N. Shen, B. Hu, L. Gong, J. Li, X. Chen, X. Huang, Angew. Chem. Int. Ed. 2019, 58, 9974.

[19]

S. Jagner, G. Helgesson, in Adv. Inorg. Chem., Vol. 37 (Ed: A. G. Sykes), Academic Press 1991, p.1.

[20]

K. P. Bigalke, A. Hans, H. Hartl, Z. Anorg. Allg. Chem. 1988, 563, 96.

[21]

C. L. Raston, A. H. White, J. Chem. Soc., Dalton Trans. 1976, 2153.

[22]

C. Brink, C. H. MacGillavry, Acta Crystallogr. 1949, 2, 158.

[23]

S. Andersson, S. Jagner, Acta Chem. Scand. 1987, 41a, 230.

[24]

T. D. Creason, T. M. McWhorter, Z. Bell, M.-H. Du, B. Saparov, Chem. Mater. 2020, 32, 6197.

[25]

T. D. Creason, A. Yangui, R. Roccanova, A. Strom, M.-H. Du, B. Saparov, Adv. Opt. Mater. 2020, 8, 1901338.

[26]

R. Roccanova, A. Yangui, G. Seo, T. D. Creason, Y. Wu, D. Y. Kim, M.-H. Du, B. Saparov, ACS Mater. Lett. 2019, 1, 459.

[27]

L. Lian, M. Zheng, P. Zhang, Z. Zheng, K. Du, W. Lei, J. Gao, G. Niu, D. Zhang, T. Zhai, S. Jin, J. Tang, X. Zhang, J. Zhang, Chem. Mater. 2020, 32, 3462.

[28]

D. Banerjee, B. Saparov, Chem. Mater. 2023, 35, 3364.

[29]

L. Zhou, J.-F. Liao, D.-B. Kuang, Adv. Opt. Mater. 2021, 9, 2100544.

[30]

J. Yin, Q. Lei, Y. Han, O. M. Bakr, O. F. Mohammed, Phys. Status Solidid RRL 2021, 15, 2100138.

[31]

Y. Nah, D. Solanki, D. H. Kim, Cell Rep. Phys. Sci. 2022, 3, 101171.

[32]

Y. Han, X. Cheng, B.-B. Cui, Mater. Adv. 2023, 4, 355.

[33]

T. D. Creason, H. Fattal, I. W. Gilley, T. M. McWhorter, M.-H. Du, B. Saparov, ACS Mater. Au 2021, 1, 62.

[34]

P. Kumar, T. D. Creason, H. Fattal, M. Sharma, M.-H. Du, B. Saparov, Adv. Funct. Mater. 2021, 31, 2104941.

[35]

S. Fang, H. Li, Y. Xie, H. Li, Y. Wang, Y. Shi, Small 2021, 17, 2103831.

[36]

D. Banerjee, D. A. Popy, B. C. Leininger, T. D. Creason, V. N. Mapara, M. Furis, M. F. Borunda, B. Saparov, ACS Appl. Mater. Interfaces 2023, 15, 30455.

[37]

H. Peng, X. Wang, Y. Tian, T. Dong, Y. Xiao, T. Huang, Y. Guo, J. Wang, B. Zou, J. Phys. Chem. Lett. 2021, 12, 6639.

[38]

A. Merker, M. Scholz, M. Morgenroth, T. Lenzer, K. Oum, J. Phys. Chem. Lett. 2021, 12, 2736.

[39]

T. Xu, Y. Li, M. Nikl, R. Kucerkova, Z. Zhou, J. Chen, Y.-Y. Sun, G. Niu, J. Tang, Q. Wang, G. Ren, Y. Wu, ACS Appl. Mater. Interfaces 2022, 14, 14157.

[40]

L. Lian, X. Wang, P. Zhang, J. Zhu, X. Zhang, J. Gao, S. Wang, G. Liang, D. Zhang, L. Gao, H. Song, R. Chen, X. Lan, W. Liang, G. Niu, J. Tang, J. Zhang, J. Phys. Chem. Lett. 2021, 12, 6919.

[41]

H. Peng, S. Yao, Y. Guo, R. Zhi, X. Wang, F. Ge, Y. Tian, J. Wang, B. Zou, J. Phys. Chem. Lett. 2020, 11, 4703.

[42]

H. Peng, Y. Tian, X. Wang, T. Dong, Z. Yu, Y. Xiao, Z. Zhang, J. Wang, B. Zou, J. Phys. Chem. C 2022, 126, 8545.

[43]

X. Bin, L. Wu, J. Liu, T. Lin, R. Zeng, in Crystals, Vol. 12, 2022.

[44]

S. Chen, J. Gao, J. Chang, Y. Li, C. Huangfu, H. Meng, Y. Wang, G. Xia, L. Feng, ACS Appl. Mater. Interfaces 2019, 11, 17513.

[45]

D. A. Popy, T. D. Creason, Z. Zhang, D. J. Singh, B. Saparov, J. Solid State Chem. 2022, 316, 123626.

[46]

B. Su, J. Jin, K. Han, Z. Xia, Adv. Funct. Mater. 2023, 33, 2210735.

[47]

H. Peng, Y. Tian, Z. Zhang, X. Wang, T. Huang, T. Dong, Y. Xiao, J. Wang, B. Zou, J. Phys. Chem. C 2021, 125, 20014.

[48]

R. Shannon, Acta Cryst. A 1976, 32, 751.

[49]

R. An, J. Hao, S. Song, H. Zhang, J. Feng, X. Wang, H. Sun, Adv. Opt. Mater. 2023, 11, 2202596.

[50]

D.-Y. Li, J.-H. Wu, X.-Y. Wang, X.-Y. Zhang, C.-Y. Yue, X.-W. Lei, Chem. Mater. 2023, 35, 6598.

[51]

C. Pareja-Rivera, J. A. Morán-Muñoz, A. P. Gómora-Figueroa, V. Jancik, B. Vargas, J. Rodríguez-Hernández, D. Solis-Ibarra, Chem. Mater. 2022, 34, 9344.

[52]

L. Lian, P. Zhang, X. Zhang, Q. Ye, W. Qi, L. Zhao, J. Gao, D. Zhang, J. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 58908.

[53]

A. Bondi, J. Phys. Chem. 1964, 68, 441.

[54]

J. Shen, X. Zhang, X. Kang, P. Hao, Y. Fu, Eur. J. Inorg. Chem. 2019, 2019, 2488.

[55]

Y. Wei, Y. Song, H. Hou, Y. Zhu, Y. Fan, J. Coord. Chem. 2004, 57, 1329.

[56]

H. Peng, B. Zou, J. Phys. Chem. Lett. 2022, 13, 1752.

[57]

M.-H. Du, ACS Energy Lett. 2020, 5, 464.

[58]

X. Guan, Z. Lei, X. Yu, C.-H. Lin, J.-K. Huang, C.-Y. Huang, L. Hu, F. Li, A. Vinu, J. Yi, T. Wu, Small 2022, 18, 2203311.

[59]

D. A. Popy, B. N. Evans, J. Jiang, T. D. Creason, D. Banerjee, L. M. Loftus, R. Pachter, D. T. Glatzhofer, B. Saparov, Mater. Today Chem. 2023, 30, 101502.

[60]

S. R. Sarda, S. K. Wasmatkar, W. N. Jadhav, S. A. Dake, A. R. Sawale, N. S. Kaminwar, S. U. Shisodia, R. P. Pawar, in Green Chemistry: Synthesis of Bioactive Heterocycles, (Eds: K. L. Ameta, A. Dandia), Springer India, New Delhi 2014, p.105.

[61]

A. Yangui, S. Pillet, E.-E. Bendeif, A. Lusson, S. Triki, Y. Abid, K. Boukheddaden, ACS Photonics 2018, 5, 1599.

[62]

W. A Dunlap-Shohl, Y. Zhou, N. P. Padture, D. B. Mitzi, Chem. Rev. 2019, 119, 3193.

[63]

T. Li, A. M. Zeidell, G. Findik, W. A Dunlap-Shohl, J. Euvrard, K. Gundogdu, O. D. Jurchescu, D. B. Mitzi, Chem. Mater. 2019, 31, 4267.

[64]

G. Ding, Y. Zheng, X. Xiao, H. Cheng, G. Zhang, Y. Shi, Y. Shao, J. Mater. Chem. A 2022, 10, 8159.

[65]

D. B. Mitzi, D. R. Medeiros, P. W. DeHaven, Chem. Mater. 2002, 14, 2839.

[66]

A. Singh, E. Crace, Y. Xie, D. B. Mitzi, Chem. Commun. 2023, 59, 8302.

[67]

E. J. Crace, A. Singh, S. Haley, B. Claes, D. B. Mitzi, Inorg. Chem. 2023, 62, 16161.

[68]

R. Zhao, Z. Gu, P. Li, Y. Zhang, Y. Song, Adv. Mater. Technol. 2022, 7, 2101124.

[69]

S. Del Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, P. Ubertini, Sensors, 2009, 9, 3491.

[70]

B. D. Milbrath, A. J. Peurrung, M. Bliss, W. J. Weber, J. Mater. Res. 2008, 23, 2561.

[71]

S. Yakunin, D. N. Dirin, Y. Shynkarenko, V. Morad, I. Cherniukh, O. Nazarenko, D. Kreil, T. Nauser, M. V. Kovalenko, Nat. Photonics 2016, 10, 585.

[72]

M. D. Birowosuto, D. Cortecchia, W. Drozdowski, K. Brylew, W. Lachmanski, A. Bruno, C. Soci, Sci. Rep. 2016, 6, 37254.

[73]

C. W. E. v Eijk, J. T. M. d Haas, P. A. Rodnyi, I. V. Khodyuk, K. Shibuya, F. Nishikido, M. Koshimizu, presented at 2008 IEEE Nuclear Science Symposium Conference Record, 19-25 Oct. 2008, 2008.

[74]

Y. Li, L. Chen, B. Liu, P. Jin, R. Gao, L. Zhou, P. Wan, Q. Xu, X. Ouyang, J. Mater. Chem. C 2021, 9, 17124.

[75]

Y. He, W. Ke, G. C. B. Alexander, K. M. McCall, D. G. Chica, Z. Liu, I. Hadar, C. C. Stoumpos, B. W. Wessels, M. G. Kanatzidis, ACS Photonics 2018, 5, 4132.

[76]

M. L. Zaffalon, Y. Wu, F. Cova, L. Gironi, X. Li, V. Pinchetti, Y. Liu, M. Imran, A. Cemmi, I. Di Sarcina, L. Manna, H. Zeng, S. Brovelli, Adv. Funct. Mater. 2023, 33, 2305564.

[77]

E. Sysoeva, V. Tarasov, O. Zelenskaya, Nucl. Instrum. Methods Phys. Res. 2002, 486, 67.

[78]

S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter, G. J. Matt, H. Azimi, C. J. Brabec, J. Stangl, M. V. Kovalenko, W. Heiss, Nat. Photonics 2015, 9, 444.

[79]

R. C. Gracia, W. R. Snodgrass, Am. J. Health-Syst. Pharm. 2007, 64, 45.

[80]

H. Chen, K. Chang, X. Men, K. Sun, X. Fang, C. Ma, Y. Zhao, S. Yin, W. Qin, C. Wu, ACS Appl. Mater. Interfaces 2015, 7, 14477.

[81]

S. K. Bramble, K. E. Creer, W. Gui Qiang, B. Sheard, Forensic Sci. Int. 1993, 59, 3.

[82]

C.-F. Wang, R. Cheng, W.-Q. Ji, K. Ma, L. Ling, S. Chen, ACS Appl. Mater. Interfaces 2018, 10, 39205.

[83]

U. S. D Justice, The Fingerprint: Sourcebook, CreateSpace Independent Publishing Platform, Scotts Valley, California 2014.

[84]

J. Cho, J. H. Park, J. K. Kim, E. F. Schubert, Laser Photonics Rev. 2017, 11, 1600147.

[85]

M. Worku, L.-J. Xu, M. Chaaban, A. Ben-Akacha, B. Ma, APL Mater. 2020, 8, 010902.

[86]

S. Hariyani, J. Brgoch, Inorg. Chem. 2022, 61, 4205.

[87]

X. Li, J. D. Budai, F. Liu, J. Y. Howe, J. Zhang, X.-J. Wang, Z. Gu, C. Sun, R. S. Meltzer, Z. Pan, Light: Sci. Appl. 2013, 2, e50.

[88]

G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.

[89]

G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251.

[90]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[91]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[92]

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

[93]

C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.

[94]

A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, J. Chem. Phys. 2006, 125, 224106.

[95]

M. P. Ljungberg, J. J. Mortensen, L. G. M. Pettersson, J. Electron. Spectrosc. Relat. Phenom. 2011, 184, 427.

[96]

A. J. Garza, G. E. Scuseria, J. Phys. Chem. Lett. 2016, 7, 4165.

[97]

H. Xiao, J. Tahir-Kheli, W. A. Goddard III, J. Phys. Chem. Lett. 2011, 2, 212.

[98]

T. J. Boerner, S. Deems, T. R. Furlani, S. L. Knuth, J. Towns, in Practice and Experience in Advanced Research Computing, Association for Computing Machinery, Portland, OR, USA, 2023, 173.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/