Viologen-based host–guest supramolecule with tunable intramolecular/intermolecular electron transfer chromism and dynamic fluorescence

Zhiang Bai , Haotian Zhang , Rui Xue , Xilong Lu , Xuyi Li , Walker MacSwain , Weiwei Zheng , Jiaqiang Xu , Yang Yu , Yue-Ling Bai

Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e583

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e583 DOI: 10.1002/agt2.583
RESEARCH ARTICLE

Viologen-based host–guest supramolecule with tunable intramolecular/intermolecular electron transfer chromism and dynamic fluorescence

Author information +
History +
PDF

Abstract

Viologen, as a type of strong electron acceptor, is prone to undergo electron transfer (ET) and change color under external stimuli. However, due to the easy aggregation of viologen molecules, they usually suffer from poor fluorescence emission in the condensed phase. Herein, a new viologen derivative of VioCl2·2Cl (12+·2Cl) was designed and synthesized, in which the fluorescence was enhanced by introducing Me-β-CD to weaken the interactions between viologen molecules. Then a viologen-based host-guest supramolecule of 12+@Me-β-CD was obtained by electrostatic interactions. Photo-/chemo-responded guest 12+ supplies 12+@Me-β-CD, a green and dark purple caused by intramolecular and intermolecular ET. Furthermore, 12+@Me-β-CD displays an additional thermal responsive purple color. The triple chromic behaviors all exhibit excellent reversibility and cycling stability. As expected, 12+@Me-β-CD exhibits strong photoluminescence (PL) in solid-liquid dual states, presenting an improved quantum yield (Φ) from 12+s = 0.37%, Φl = 16.74%) to 12+@Me-β-CDs = 10.45%, Φl = 25.86%), and the fluorescence intensity can be dynamically modulated by light, heat, and acid/base vapors. The multi-responsive chromism and tunable fluorescence of 12+@Me-β-CD allow for potential applications in information security and smart windows.

Keywords

chromism / cyclodextrins / dynamic fluorescence / host-guest supramolecules / viologens

Cite this article

Download citation ▾
Zhiang Bai, Haotian Zhang, Rui Xue, Xilong Lu, Xuyi Li, Walker MacSwain, Weiwei Zheng, Jiaqiang Xu, Yang Yu, Yue-Ling Bai. Viologen-based host–guest supramolecule with tunable intramolecular/intermolecular electron transfer chromism and dynamic fluorescence. Aggregate, 2024, 5(5): e583 DOI:10.1002/agt2.583

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Weidel, M. Russo, Monatsh. Chem. Verw. Teile Anderer Wiss. 1882, 3, 850.

[2]

L. Michaelis, E. S. Hill, J. Gen. Physiol. 1933, 16, 859.

[3]

X. Li, J. Yang, Y. W. Yang, Mater. Chem. Front. 2023, 7, 1463.

[4]

L. Li, Y. C. Zou, Y. Hua, X. N. Li, Z. H. Wang, H. Zhang, Dalton Trans. 2020, 49, 89.

[5]

D. D. Yang, H. W. Zheng, Q. F. Liang, Y. S. Shi, T. Xiao, X. J. Zheng, J. Solid State Chem. 2022, 310, 123044.

[6]

J. Luo, B. Hu, C. Debruler, T. L. Liu, Angew. Chem. Int. Ed. 2018, 57, 231.

[7]

Y. Luo, J. P. Liu, L. K. Li, S. Q. Zang, Inorg. Chem. 2023, 62, 14385.

[8]

M. J. Chang, W. N. Chen, H. D. Xue, D. L. Liang, X. F. Lu, G. Zhou, J. Mater. Chem. C 2020, 8, 16129.

[9]

P. V. Rathod, J. M. C. Puguan, H. Kim, Adv. Mater. Interfaces 2023, 10, 2201227.

[10]

T. Gong, P. Li, Q. Sui, J. Q. Chen, J. H. Xu, E. Q. Gao, J. Mater. Chem. A 2018, 6, 9236.

[11]

P. Li, M. Y. Guo, X. M. Yin, L. L. Gao, S. L. Yang, R. Bu, T. Gong, E. Q. Gao, Inorg. Chem. 2019, 58, 14167.

[12]

Q. P. Qin, J. Lu, C. Sun, M. S. Wang, G. C. Guo, Small 2023, 20, 2307333.

[13]

X. Q. Yu, M. S. Wang, G. C. Guo, Adv. Funct. Mater. 2023, 33, 2212907.

[14]

G. Das, T. Prakasam, S. Nuryyeva, D. S. Han, A. Abdel-Wahab, J. C. Olsen, K. Polychronopoulou, C. Plataslglesias, F. Ravaux, M. Jouiad, A. Trabolsi, J. Mater. Chem. A 2016, 4, 15361.

[15]

D.-D. Yang, H.-W. Zheng, Y.-H. Fang, Q.-F. Liang, Q.-Z. Han, Y.-S. Shi, X.-J. Zheng, Inorg. Chem. 2022, 61, 7513.

[16]

N. Chen, W. X. Yong, T. D. Xiong, G. D. Fu, J. Mater. Chem. C 2023, 11, 9570.

[17]

X. C. Wang, J. R. Kuang, P. C. Wu, Z. Zong, Z. X. Li, H. Wang, J. L. Li, P. L. Dai, K. Y. Zhang, S. J. Liu, W. Huang, Q. Zhao, Adv. Mater. 2022, 34, 2107013.

[18]

A. N. Woodward, J. M. Kolesar, S. R. Hall, N. A. Saleh, D. S. Jones, M. G. Walter, J. Am. Chem. Soc. 2017, 139, 8467.

[19]

I. Roy, S. Bobbala, J. Zhou, M. T. Nguyen, S. K. M. Nalluri, Y. Wu, D. P. Ferris, E. A. Scott, M. R. Wasielewski, J. F. Stoddart, J. Am. Chem. Soc. 2018, 140, 7206.

[20]

M. R. Geraskina, A. S. Dutton, M. J. Juetten, S. A. Wood, A. H. Winter, Angew. Chem. Int. Ed. 2017, 56, 9435.

[21]

M. Freitag, L. Gundlach, P. Piotrowiak, E. Galoppini, J. Am. Chem. Soc. 2012, 134, 3358.

[22]

X. L. Ni, S. Y. Chen, Y. P. Yang, Z. Tao, J. Am. Chem. Soc. 2016, 138, 6177.

[23]

J. Boger, R. J. Corcoran, J. M. Lehn, Helvetica Chimica Acta 1978, 61.

[24]

Y. Liu, K.-R. Wang, D.-S. Guo, B.-P. Jiang, Adv. Funct. Mater. 2009, 19, 2230.

[25]

Q. Wang, M. C. Liu, W. Q. Sun, R. L. Lin, R. G. Lin, J. X. Liu, J. Phys. Chem. C 2022, 126, 844.

[26]

D. X. Xia, L. W. Fan, M. F. Ye, W. Q. Sun, R. L. Lin, J. X. Liu, Mater. Adv. 2023, 4, 5215.

[27]

T. Jiang, X. Wang, J. Wang, G. P. Hu, X. Ma, ACS Appl. Mater. Interfaces 2019, 11, 14399.

[28]

Z. Liu, X. Dai, Y. Sun, Y. Liu, Aggregate 2020, 1, 31.

[29]

Q. Wang, J. Z. Guo, C. Zhang, W. Q. Sun, R. L. Lin, M. F. Ye, J. X. Liu, J. Phys. Chem. C 2022, 126, 18900.

[30]

X. P. Yin, X. X. Li, X. Y. Li, M. Biczysko, S. R. Zhu, J. Q. Xu, Y. L. Bai, Chem. Sci. 2023, 14, 7016.

[31]

V. Annibaldi, T. Yu, C. B. Breslin, J. Inclusion Phenom. Macrocyclic Chem. 2020, 96, 155.

[32]

S. Li, K. Liu, X. C. Feng, Z. X. Li, Z. Y. Zhang, B. Wang, M. J. Li, Y. L. Bai, L. Cui, C. J. Li, Nat. Commun. 2022, 13, 2850.

[33]

K. D. Xu, Z. Y. Zhang, C. M. Yu, B. Wang, M. Dong, X. Q. Zeng, R. Gou, L. Cui, C. J. Li, Angew. Chem. Int. Ed. 2020, 59, 7214.

[34]

S. T. Zhang, Y. X. Dai, S. Y. Luo, Y. Gao, N. Gao, K. Wang, B. Zou, B. Yang, Y. G. Ma, Adv. Funct. Mater. 2017, 27, 1602276.

[35]

T. Gong, Q. Sui, P. Li, X. F. Meng, L. J. Zhou, J. Q. Chen, J. H. Xu, L. Wang, E. Q. Gao, Small 2019, 15, 1803468.

[36]

X. Li, C. Huang, Y. Fan, Z. Bai, B.-L. An, J. Xu, W. Zheng, Y.-L. Bai, ACS Appl. Mater. Interfaces 2023, 15, 46022.

[37]

Y. Q. Zheng, Z. F. Yao, T. Lei, J. H. Dou, C. Y. Yang, L. Zou, X. Y. Meng, W. Ma, J. Y. Wang, J. Pei, Adv. Mater. 2017, 29, 1701072.

[38]

Y. W. Wang, M. H. Li, S. Q. Zhang, X. Fang, M. J. Lin, CrystEngComm 2021, 23, 6267.

[39]

Q. Wang, X. F. Wang, W. Q. Sun, R. L. Lin, M. F. Ye, J. X. Liu, ACS Appl. Mater. Interfaces 2023, 15, 2479.

[40]

L. Liu, Q. Liu, R. Li, M. S. Wang, G. C. Guo, J. Am. Chem. Soc. 2021, 143, 2232.

[41]

X. W. Yu, H. Y. Zhang, J. H. Yu, Aggregate 2021, 2, 20.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/