Multi-state photoluminescent properties of an overcrowded alkene-based molecular motor in aggregates

Yahan Shan , Jinyu Sheng , Qi Zhang , Marc C. A. Stuart , Da-Hui Qu , Ben L. Feringa

Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e584

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e584 DOI: 10.1002/agt2.584
RESEARCH ARTICLE

Multi-state photoluminescent properties of an overcrowded alkene-based molecular motor in aggregates

Author information +
History +
PDF

Abstract

Photoisomerization and photoluminescence are two distinct energy dissipation pathways in light-drivenmolecular motors. The photoisomerization properties of discrete molecular motors have been well established in solution, but their photoluminescent properties have been rarely reported—especially in aggregates. Here, it is shown that an overcrowded alkene-based molecular motor exhibits distinct dynamic properties in solution and aggregate states, for example, gel and solid states. Despite the poor emissive properties of molecular motors in solution, a bright emission is observed in the aggregate states, including in gel and the crystalline solid. The emission wavelength is highly dependent on the nature of the supramolecular packing and order in the aggregates. As a result, the fluorescent color can be readily tuned reversibly viamechanical grinding and vapor fuming, which provides a new platform for developing multi-stimuli functional materials.

Keywords

aggregation-induced emission / gelation-induced emission / mechanochromic fluorescence / molecular motor / photoluminescence

Cite this article

Download citation ▾
Yahan Shan, Jinyu Sheng, Qi Zhang, Marc C. A. Stuart, Da-Hui Qu, Ben L. Feringa. Multi-state photoluminescent properties of an overcrowded alkene-based molecular motor in aggregates. Aggregate, 2024, 5(5): e584 DOI:10.1002/agt2.584

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. S. Goodsell, The Machinery of Life, 2nd ed, Springer, New York 2009.

[2]

B. L. Feringa, Angew. Chem. Int. Ed. 2017, 56, 11060.

[3]

K. Kinbara, T. Aida, Chem. Rev. 2005, 105, 1377.

[4]

R. D. Astumian, Chem. Sci. 2017, 8, 840.

[5]

V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. Int. Ed. 2000, 39, 3348.

[6]

C. Mavroidis, A. Dubey, M. L. Yarmush, Annu. Rev. Biomed. Eng. 2004, 6, 363.

[7]

W. R. Browne, B. L. Feringa, Nat. Nanotechnol. 2006, 1, 25.

[8]

V. Balzani, A. Credi, M. Venturi, Chem. Soc. Rev. 2009, 38, 1542.

[9]

M. Baroncini, S. Silvi, A. Credi, Chem. Rev. 2020, 120, 200.

[10]

F. Lancia, A. Ryabchun, N. Katsonis, Nat. Rev. Chem. 2019, 3, 536.

[11]

D. R. S Pooler, A. S. Lubbe, S. Crespi, B. L. Feringa, Chem. Sci. 2021, 12, 14964.

[12]

S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer, Chem. Rev. 2015, 115, 10081.

[13]

Z. Zong, Q. Zhang, D.-H. Qu, CCS Chem. 2024, 6, 774-782.

[14]

J. Sheng, D. R. S. Pooler, B. L. Feringa, Chem. Soc. Rev. 2023, 52, 5875.

[15]

N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, B. L. Feringa, Nature 1999, 401, 152.

[16]

D. Roke, S. J. Wezenberg, B. L. Feringa, Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 9423.

[17]

J. Sheng, W. Danowski, A. Sardjan, S. Crespi, J. Hou, M. P. Domínguez, A. Ryabchun, W. J. Buma, W. Browne, B. L. Feringa, Nat. Chem. 2024,

[18]

T. Kudernac, N. Ruangsupapichat, M. Parschau, B. MacIá, N. Katsonis, S. R. Harutyunyan, K. H. Ernst, B. L. Feringa, Nature 2011, 479, 208.

[19]

J. Wang, B. L. Feringa, Science 2011, 331, 1429.

[20]

A. Ryabchun, F. Lancia, J. Chen, R. Plamont, D. Morozov, B. L. Feringa, N. Katsonis, Chem 2023, 9, 3544.

[21]

A. Ryabchun, F. Lancia, J. Chen, D. Morozov, B. L. Feringa, N. Katsonis, Adv. Mater. 2020, 32, 2004420.

[22]

J. Chen, F. K.-C. Leung, M. C. A. Stuart, T. Kajitani, T. Fukushima, E. van der Giessen, B. L. Feringa, Nat. Chem. 2018, 10, 132.

[23]

F. K.-C. Leung, T. Van Den Enk, T. Kajitani, J. Chen, M. C. A. Stuart, J. Kuipers, T. Fukushima, B. L. Feringa, J. Am. Chem. Soc. 2018, 140, 17724.

[24]

S. Chen, L. Yang, F. K. C. Leung, T. Kajitani, M. C. A. Stuart, T. Fukushima, P. Van Rijn, B. L. Feringa, J. Am. Chem. Soc. 2022, 144, 3543.

[25]

F. K.-C. Leung, T. Kajitani, M. C. A. Stuart, T. Fukushima, B. L. Feringa, Angew. Chem. Int. Ed. 2019, 58, 10985.

[26]

J. T. Foy, Q. Li, A. Goujon, J. Colard-Itté, G. Fuks, E. Moulin, O. Schiffmann, D. Dattler, D. P. Funeriu1, N. Giuseppone, Nat. Nanotechnol. 2015, 12, 540.

[27]

Q. Li, G. Fuks, E. Moulin, M. Maaloum, M. Rawiso, I. Kulic, J. T. Foy, N. Giuseppone, Nat. Nanotechnol. 2017, 10, 161.

[28]

T. van Leeuwen, A. S. Lubbe, P. Štacko, S. J. Wezenberg, B. L. Feringa, Nat. Rev. Chem. 2017, 1, 96.

[29]

Q. Zhang, D. H. Qu, H. Tian, B. L. Feringa, Matter 2020, 3, 355.

[30]

W. Danowski, F. Castiglioni, A. S. Sardjan, S. Krause, L. Pfeifer, D. Roke, A. Comotti, W. R. Browne, B. L. Feringa, J. Am. Chem. Soc. 2020, 142, 9048.

[31]

C. Stähler, L. Grunenberg, M. W. Terban, W. R. Browne, D. Doellerer, M. Kathan, M. Etter, B. V. Lotsch, B. L. Feringa, S. Krause, Chem. Sci. 2022, 13, 8253.

[32]

F. Castiglioni, W. Danowski, J. Perego, F. K.-C. Leung, P. Sozzani, S. Bracco, S. J. Wezenberg, A. Comotti, B. L. Feringa, Nat. Chem. 2020, 12, 595.

[33]

W. Danowski, T. van Leeuwen, S. Abdolahzadeh, D. Roke, W. R. Browne, S. J. Wezenberg, B. L. Feringa, Nat. Nanotechnol. 2019, 14, 488.

[34]

J. Sheng, J. Perego, W. Danowski, S. Bracco, S. Chen, X. Zhu, C. X. Bezuidenhout, S. Krause, W. R. Browne, P. Sozzani, A. Comotti, B. L. Feringa, Chem 2023, 9, 2701.

[35]

W. Danowski, T. Van Leeuwen, W. R. Browne, B. L. Feringa, Nanoscale Adv. 2021, 3, 24.

[36]

S. Krause, B. L. Feringa, Nat. Rev. Chem. 2020, 4, 550.

[37]

F. Xu, S. Crespi, G. Pacella, Y. Fu, M. C. A. Stuart, Q. Zhang, G. Portale, B. L. Feringa, J. Am. Chem. Soc. 2022, 144, 6019.

[38]

L. E. Franken, Y. Wei, J. Chen, E. J. Boekema, D. Zhao, M. C. A. Stuart, B. L. Feringa, J. Am. Chem. Soc. 2018, 140, 7860.

[39]

R. Toyoda, N. V Hoang, K. G. Moghaddam, S. Crespi, D. R. S. Pooler, S. Faraji, M. S. Pshenichnikov, B. L. Feringa, Nat. Commun. 2022, 13, 5765.

[40]

L. Pfeifer, N. V Hoang, S. Crespi, M. S. Pshenichnikov, B. L. Feringa, Sci. Adv. 2023, 8, eadd0410.

[41]

Y. Shan, Q. Zhang, J. Sheng, M. C. A. Stuart, D. Qu, B. L. Feringa, Angew. Chem. Int. Ed. 2023, 62, e2023105.

[42]

M. Vlatkovic, L. Bernardi, E. Otten, B. L. Feringa, Chem. Commun. 2014, 50, 7773.

[43]

R. Dorel, B. L. Feringa, Angew. Chem. Int. Ed. 2020, 59, 785.

[44]

S. J. Wezenberg, C. M. Croisetu, M. C. A. Stuart, B. L. Feringa, Chem. Sci. 2016, 7, 4341.

[45]

S. Chen, F. K. C. Leung, M. C. A. Stuart, C. Wang, B. L. Feringa, J. Am. Chem. Soc. 2020, 142, 10163.

[46]

F. Xu, L. Pfeifer, M. C. A. Stuart, F. K. C. Leung, B. L. Feringa, Chem. Commun. 2020, 56, 7451.

[47]

M. Vlatković, B. L. Feringa, S. J. Wezenberg, Angew. Chem. Int. Ed. 2016, 55, 1001.

[48]

S. J. Wezenberg, M. Vlatković, J. C. M. Kistemaker, B. L. Feringa, J. Am. Chem. Soc. 2014, 136, 16784.

[49]

C. Kulkarni, E. W. Meijer, A. R. A. Palmans, Acc. Chem. Res. 2017, 50, 1928.

[50]

Y. Feng, Z. Zhang, W. Tang, Y. Dai, Exploration 2023, 3, 20220173.

[51]

Z. Zhao, J. W. Y. Lam, B. Z. Tang, Soft Matter 2013, 9, 4564.

[52]

J. Zhang, H. Zhang, J. W. Y. Lam, B. Z. Tang, Chem. Res. Chin. Univ. 2021, 37, 1.

[53]

J. Zhang, L. Hu, K. Zhang, J. Liu, X. Li, H. Wang, Z. Wang, H. H. Y. Sung, I. D. Williams, Z. Zeng, J. W. Y. Lam, H. Zhang, B. Z. Tang, J. Am. Chem. Soc. 2021, 143, 9565.

[54]

J. Zhang, H. Shen, X. Liu, X. Yang, S. L. Broman, H. Wang, Q. Li, J. W. Y. Lam, H. Zhang, M. Cacciarini, M. B. Nielsen, B. Z. Tang, Angew. Chem. Int. Ed. 2022, 61, e202208460

[55]

G. Feng, W. Tan, S. Karuthedath, C. Li, X. Jiao, A. C. Y. Liu, H. Venugopal, Z. Tang, L. Ye, F. Laquai, C. R. McNeill, W. Li, Angew. Chem. Int. Ed. 2021, 60, 25499.

[56]

Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361.

[57]

A. P. Sivadas, N. S. S. Kumar, D. D. Prabhu, S. Varghese, S. K. Prasad, D. S. S. Rao, S. Das, J. Am. Chem. Soc. 2014, 136, 5416.

[58]

C. Wang, Z. Li, Mater. Chem. Front. 2017, 1, 2174.

[59]

Y. Shi, S. Wang, W. Tao, J. Guo, S. Xie, Y. Ding, G. Xu, C. Chen, X. Sun, Z. Zhang, Z. He, P. Wei, B. Z. Tang, Nat. Commun. 2022, 13, 1882.

[60]

S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hägele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni, Angew. Chem. Int. Ed. 2007, 46, 4832.

[61]

Q. Li, Z. Li, Acc. Chem. Res. 2020, 53, 962.

[62]

G. Shi, D. Xue, Prog. Nat. Sci.: Mater. Int. 2022, 32, 674.

[63]

B. He, J. Huang, J. Zhang, H. H. Y. Sung, J. W. Y. Lam, Z. Zhang, S. Yan, D. Wang, J. Zhang, B. Z. Tang, Angew. Chem. Int. Ed. 2022, 61, e202117709

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/