Highly efficient organic light-emitting diodes and light-emitting electrochemical cells employing multiresonant thermally activated delayed fluorescent emitters with bulky donor or acceptor peripheral groups

Jingxiang Wang , Hassan Hafeez , Shi Tang , Tomas Matulaitis , Ludvig Edman , Ifor D.W. Samuel , Eli Zysman-Colman

Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e571

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e571 DOI: 10.1002/agt2.571
RESEARCH ARTICLE

Highly efficient organic light-emitting diodes and light-emitting electrochemical cells employing multiresonant thermally activated delayed fluorescent emitters with bulky donor or acceptor peripheral groups

Author information +
History +
PDF

Abstract

Multiresonant thermally activated delayed fluorescence (MR-TADF) emitters have been the focus of extensive design efforts as they are recognized to show bright, narrowband emission, which makes them very appealing for display applications. However, the planar geometry and relatively large singlet–triplet energy gap lead to, respectively, severe aggregation-caused quenching (ACQ) and slow reverse intersystem crossing (RISC). Here, a design strategy is proposed to address both issues. Two MR-TADF emitters triphenylphosphine oxide (TPPO)-tBu-DiKTa and triphenylamine (TPA)-tBu-DiKTa have been synthesized. Twisted ortho-substituted groups help increase the intermolecular distance and largely suppress the ACQ. In addition, the contributions from intermolecular charge transfer states in the case of TPA-tBu-DiKTa help to accelerate RISC. The organic light-emitting diodes (OLEDs) with TPPO-tBu-DiKTa and TPA-tBu-DiKTa exhibit high maximum external quantum efficiencies (EQEmax) of 24.4% and 31.0%, respectively. Notably, the device with 25 wt% TPA-tBu-DiKTa showed both high EQEmax of 28.0% and reduced efficiency roll-off (19.9% EQE at 1000 cd m−2) compared to the device with 5 wt% emitter (31.0% EQEmax and 11.0% EQE at 1000 cd m−2). The new emitters were also introduced into single-layer light-emitting electrochemical cells (LECs), equipped with air-stable electrodes. The LEC containing TPA-tBu-DiKTa dispersed at 0.5 wt% in a matrix comprising a mobility-balanced blend-host and an ionic liquid electrolyte delivered blue luminance with an EQEmax of 2.6% at 425 cd m−2. The high efficiencies of the OLEDs and LECs with TPA-tBu-DiKTa illustrate the potential for improving device performance when the DiKTa core is decorated with twisted bulky donors.

Keywords

aggregation-caused quenching / electroluminescence / long-range charge transfer / OLED / organic semiconductor / short-range charge transfer / TADF

Cite this article

Download citation ▾
Jingxiang Wang, Hassan Hafeez, Shi Tang, Tomas Matulaitis, Ludvig Edman, Ifor D.W. Samuel, Eli Zysman-Colman. Highly efficient organic light-emitting diodes and light-emitting electrochemical cells employing multiresonant thermally activated delayed fluorescent emitters with bulky donor or acceptor peripheral groups. Aggregate, 2024, 5(5): e571 DOI:10.1002/agt2.571

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.

[2]

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.

[3]

M. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29, 1605444.

[4]

M. Karaman, A. Kumar Gupta, S. Madayanad Suresh, T. Matulaitis, L. Mardegan, D. Tordera, H. J. Bolink, S. Wu, S. Warriner, I. D. Samuel, E. Zysman-Colman, Beilstein J. Org. Chem. 2022, 18, 1311.

[5]

S. Tang, P. Lundberg, Y. Tsuchiya, J. Ràfols-Ribé, Y. Liu, J. Wang, C. Adachi, L. Edman, Adv. Funct. Mater. 2022, 32, 2205967.

[6]

S. Kanagaraj, A. Puthanveedu, Y. Choe, Adv. Funct. Mater. 2020, 30, 1907126.

[7]

Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C. Adachi, J. Am. Chem. Soc. 2012, 134, 14706.

[8]

Y. Im, M. Kim, Y. J. Cho, J.-A. Seo, K. S. Yook, J. Y. Lee, Chem. Mater. 2017, 29, 1946.

[9]

T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777.

[10]

D. Hall, S. M. Suresh, P. L. dos Santos, E. Duda, S. Bagnich, A. Pershin, P. Rajamalli, D. B. Cordes, A. M. Z. Slawin, D. Beljonne, A. Köhler, I. D. W. Samuel, Y. Olivier, E. Zysman-Colman, Adv. Optical Mater. 2020, 8, 1901627.

[11]

Y. Yuan, X. Tang, X. Y. Du, Y. Hu, Y. J. Yu, Z. Q. Jiang, L. S. Liao, S. T. Lee, Adv. Optical Mater. 2019, 7, 1801536.

[12]

X. Li, Y. Z. Shi, K. Wang, M. Zhang, C. J. Zheng, D. M. Sun, G. L. Dai, X. C. Fan, D. Q. Wang, W. Liu, Y. Q. Li, J. Yu, X. M. Ou, C. Adachi, X. H. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 13472.

[13]

D. Sun, S. M. Suresh, D. Hall, M. Zhang, C. Si, D. B. Cordes, A. M. Z. Slawin, Y. Olivier, X. Zhang, E. Zysman-Colman, Mater. Chem. Front. 2020, 4, 2018.

[14]

X. Qiu, G. Tian, C. Lin, Y. Pan, X. Ye, B. Wang, D. Ma, D. Hu, Y. Luo, Y. Ma, Adv. Optical Mater. 2021, 9, 2001845.

[15]

F. Huang, K. Wang, Y. Z. Shi, X. C. Fan, X. Zhang, J. Yu, C. S. Lee, X. H. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 36089.

[16]

S. Wu, W. Li, K. Yoshida, D. Hall, S. Madayanad Suresh, T. Sayner, J. Gong, D. Beljonne, Y. Olivier, I. D. W. Samuel, E. Zysman-Colman, ACS Appl. Mater. Interfaces 2022, 14, 22341.

[17]

S. Y. Yang, S. N. Zou, F. C. Kong, X. J. Liao, Y. K. Qu, Z. Q. Feng, Y. X. Zheng, Z. Q. Jiang, L. S. Liao, Chem. Commun. 2021, 57, 11041.

[18]

Y.-J. Yu, S.-N. Zou, C.-C. Peng, Z.-Q. Feng, Y.-K. Qu, S.-Y. Yang, Z.-Q. Jiang, L.-S. Liao, J. Mater. Chem. C 2022, 10, 4941.

[19]

J.-F. Liu, S.-N. Zou, X. Chen, S.-Y. Yang, Y.-J. Yu, M.-K. Fung, Z.-Q. Jiang, L.-S. Liao, Mater. Chem. Front. 2022, 6, 966.

[20]

S. Wu, A. Kumar Gupta, K. Yoshida, J. Gong, D. Hall, D. B. Cordes, A. M. Z. Slawin, I. D. W. Samuel, E. Zysman-Colman, Angew. Chem. Int. Ed. 2022, 61, e202213697.

[21]

T. Wang, A. K. Gupta, D. B. Cordes, A. M. Slawin, E. Zysman-Colman, Adv. Optical Mater. 2023, 11, 2300114.

[22]

J. M. dos Santos, C.-Y. Chan, S. Tang, D. Hall, T. Matulaitis, D. B. Cordes, A. M. Z. Slawin, Y. Tsuchiya, L. Edman, C. Adachi, Y. Olivier, E. Zysman-Colman, J. Mater. Chem. C 2023, 11, 8263.

[23]

C. Cao, J. H. Tan, Z. L. Zhu, J. D. Lin, H. J. Tan, H. Chen, Y. Yuan, M. K. Tse, W. C. Chen, C. S. Lee, Angew. Chem. Int. Ed. 2023, 62, e202215226.

[24]

X. C. Fan, K. Wang, Y. Z. Shi, J. X. Chen, F. Huang, H. Wang, Y. N. Hu, Y. Tsuchiya, X. M. Ou, J. Yu, C. Adachi, X. H. Zhang, Adv. Optical Mater. 2022, 10, 2101789.

[25]

H. Min, I. S. Park, T. Yasuda, Angew. Chem. Int. Ed. 2021, 60, 7643.

[26]

L. Chen, J.-H. Cai, Y.-J. Yu, Y.-K. Qu, S.-Y. Yang, S.-N. Zou, R.-H. Liu, D.-Y. Zhou, L.-S. Liao, Z.-Q. Jiang, Sci. China Chem. 2024, 67, 351.

[27]

S. Wu, L. Zhang, J. Wang, A. Kumar Gupta, I. D. W. Samuel, E. Zysman-Colman, Angew. Chem. Int. Ed. 2023, 62, e202305182.

[28]

K. Stavrou, A. Danos, T. Hama, T. Hatakeyama, A. Monkman, ACS Appl. Mater. Interfaces 2021, 13, 8643.

[29]

Y. Zhang, J. Wei, D. Zhang, C. Yin, G. Li, Z. Liu, X. Jia, J. Qiao, L. Duan, Angew. Chem. Int. Ed. 2022, 61, e202113206.

[30]

H. Liu, H. Liu, J. Fan, J. Guo, J. Zeng, F. Qiu, Z. Zhao, B. Z. Tang, Adv. Optical Mater. 2020, 8, 2001027.

[31]

H. Liu, J. Zeng, J. Guo, H. Nie, Z. Zhao, B. Z. Tang, Angew. Chem. Int. Ed. 2018, 57, 9290.

[32]

R. Aoki, R. Komatsu, K. Goushi, M. Mamada, S. Y. Ko, J. W. Wu, V. Placide, A. D’Aléo, C. Adachi, Adv. Optical Mater. 2021, 9, 2001947.

[33]

S. Tang, J. M. dos Santos, J. Ràfols-Ribé, J. Wang, E. Zysman-Colman, L. Edman, Adv. Funct. Mater. 2023, 33, 2306170.

[34]

J. Wang, T. Matulaitis, S. Pagidi, E. Zysman-Colman, SID Symp. Dig. Tech. Pap. 2021, 52, 312.

[35]

T. H. Dunning Jr., J. Chem. Phys. 1989, 90, 1007.

[36]

C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.

[37]

A. Pershin, D. Hall, V. Lemaur, J. C Sancho-Garcia, L. Muccioli, E. Zysman-Colman, D. Beljonne, Y. Olivier, Nat. Commun. 2019, 10, 597.

[38]

D. Hall, J. C. Sancho-García, A. Pershin, G. Ricci, D. Beljonne, E. Zysman-Colman, Y. Olivier, J. Chem. Theory Comput. 2022, 18, 4903.

[39]

N. Mataga, Y. Kaifu, M. Koizumi, Bull. Chem. Soc. Jpn. 1956, 29, 465.

[40]

E. Lippert, Z. Elektrochem. 1957, 61, 962.

[41]

J. Wang, X. Zhai, C. Ji, M. Zhang, C. Yao, G. Xie, J. Zhang, X. Xi, Dyes Pigm. 2023, 219, 111586.

[42]

X. Wu, B.-K. Su, D.-G. Chen, D. Liu, C.-C. Wu, Z.-X. Huang, T.-C. Lin, C.-H. Wu, M. Zhu, E. Y. Li, W.-Y. Hung, W. Zhu, P.-T. Chou, Nat. Photonics 2021, 15, 780.

[43]

J. Wang, Y. Yang, F. Gu, X. Zhai, C. Yao, J. Zhang, C. Jiang, X. Xi, ACS Appl. Mater. Interfaces 2023, 15, 59643.

[44]

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740.

[45]

H. Chen, J. Zeng, R. Huang, J. Wang, J. He, H. Liu, D. Yang, D. Ma, Z. Zhao, B. Z. Tang, Aggregate 2023, 4, e244.

[46]

M. H. Tsai, Y. H. Hong, C. H. Chang, H. C. Su, C. C. Wu, A. Matoliukstyte, J. Simokaitiene, S. Grigalevicius, J. V. Grazulevicius, C. P. Hsu, Adv. Mater. 2007, 19, 862.

[47]

H. Miranda-Salinas, J. Wang, A. Danos, T. Matulaitis, K. Stavrou, A. P. Monkman, E. Zysman-Colman, J. Mater. Chem. C 2024, 12, 1996.

[48]

N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877.

[49]

H. Sasabe, Y. Chikayasu, S. Ohisa, H. Arai, T. Ohsawa, R. Komatsu, Y. Watanabe, D. Yokoyama, J. Kido, Front. Chem. 2020, 8, 427.

[50]

Q. Pei, G. Yu, C. Zhang, Y. Yang, A. J. Heeger, Science 1995, 269, 1086.

[51]

P. Matyba, K. Maturova, M. Kemerink, N. D. Robinson, L. Edman, Nat. Mater. 2009, 8, 672.

[52]

K. Yasuji, T. Sakanoue, F. Yonekawa, K. Kanemoto, Nat. Commun. 2023, 14, 992.

[53]

A. Sandström, H. F. Dam, F. C. Krebs, L. Edman, Nat. Commun. 2012, 3, 1002.

[54]

J. Zimmermann, L. Porcarelli, T. Rödlmeier, A. Sanchez-Sanchez, D. Mecerreyes, G. Hernandez-Sosa, Adv. Funct. Mater. 2018, 28, 1705795.

[55]

X. Dong, S. Wang, C. Gui, H. Shi, F. Cheng, B. Z. Tang, Tetrahedron 2018, 74, 497.

[56]

J. Ràfols-Ribé, X. Zhang, C. Larsen, P. Lundberg, E. M. Lindh, C. T. Mai, J. Mindemark, E. Gracia-Espino, L. Edman, Adv. Mater. 2022, 34, 2107849.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/