Atomic-iodine-substituted polydiacetylene nanospheres with boosted intersystem crossing and nonradiative transition through complete radiative transition blockade for ultraeffective phototherapy

Dan Zhao , Lingling Zhang , Mingming Yin , Zhenyan He , Fang Fang , Minle Zhan , Sidan Tian , Fanling Meng , Liang Luo

Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e576

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (5) : e576 DOI: 10.1002/agt2.576
RESEARCH ARTICLE

Atomic-iodine-substituted polydiacetylene nanospheres with boosted intersystem crossing and nonradiative transition through complete radiative transition blockade for ultraeffective phototherapy

Author information +
History +
PDF

Abstract

The energy dissipation pathways of a photosensitizer for phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), compete directly with that of its fluorescence (FL) emission. Enriching heavy atoms on the π- conjugated systems and aggregation-caused quenching are two effective methods to turn off the FL emission of photosensitizers, which is expected to boost the intersystem crossing (for PDT) and nonradiative transition (for PTT) of photosensitizers for maximized phototherapeutic efficacy. Following this approach, an all-iodinesubstituted polydiacetylene aggregate poly(diiododiacetylene) (PIDA) has been developed, which shows a superior near infrared absorption (ϵ808nm = 26.1 g−1 cm−1 L) with completely blocked FL, as well as high efficiency of reactive oxygen species generation (nearly 45 folds of indocyanine green) and photothermal conversion (33.4%). To make the insoluble fibrillar PIDA aggregates favorable for systemic administration, they are converted into nanospheres through a pre-polymerization morphology transformation strategy. The in vivo study on a 4T1 tumor-bearing mouse model demonstrates that PIDA nanospheres can almost eliminate the tumor entirely in 16 days and prolong the survival time of mice to over 60 days, validating their effective phototherapeutic response through the strategy of inhibiting FL for boosted intersystem crossing and nonradiative transition.

Keywords

blocked fluorescence emission / heavy atom effect / morphology transformation / phototherapy / polydiacetylene aggregate

Cite this article

Download citation ▾
Dan Zhao, Lingling Zhang, Mingming Yin, Zhenyan He, Fang Fang, Minle Zhan, Sidan Tian, Fanling Meng, Liang Luo. Atomic-iodine-substituted polydiacetylene nanospheres with boosted intersystem crossing and nonradiative transition through complete radiative transition blockade for ultraeffective phototherapy. Aggregate, 2024, 5(5): e576 DOI:10.1002/agt2.576

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Guo, S. Wang, L. Zhao, Q. Zong, T. Li, G. Ling, P. Zhang, Biomaterials 2022, 282, 121425.

[2]

B. Jang, J. Park, C. Tung, I. Kim, Y. Choi, ACS Nano 2011, 5, 1086.

[3]

Q. Guan, L. Zhou, Y. Li, W. Li, S. Wang, C. Song, Y. Dong, ACS Nano 2019, 13, 13304.

[4]

D. Li, X. Chen, D. Wang, H. Wu, H. Wen, L. Wang, Q. Jin, D. Wang, J. Ji, Z. B. Tang, Biomaterials 2022, 283, 121476.

[5]

Q. Zhang, X. Wang, G. Kuang, Y. Zhao, Bioact. Mater. 2023, 24, 185.

[6]

G. He, M. He, R. Wang, X. Li, H. Hu, D. Wang, Z. Wang, Y. Lu, N. Xu, J. Du, J. Fan, X. Peng, W. Sun, Angew. Chem. Int. Ed. 2023, 62, e202218768.

[7]

C. Ou, L. An, Z. Zhao, F. Gao, L. Zheng, C. Xu, K. Zhang, J. Shao, L. Xie, X. Dong, Aggregate 2022, 4, e290.

[8]

D. Xi, N. Xu, X. Xia, C. Shi, X. Li, D. Wang, S. Long, J. Fan, W. Sun, X. Peng, Adv. Mater. 2022, 34, e2106797.

[9]

Y. Liu, K. Long, T. Wang, W. Kang, W. Wang, Aggregate 2022, 4, e284.

[10]

G. Feng, G. Zhang, D. Ding, Chem. Soc. Rev. 2020, 49, 8179.

[11]

Y. Li, Y. Liao, J. Zhang, E. Huang, L. Ji, Z. Zhang, R. Zhao, Z. Zhang, B. Yang, Y. Zhang, B. Xu, G. Qin, X. Zhang, Angew. Chem. Int. Ed. 2021, 60, 27113.

[12]

C. Chen, X. Ni, H. Tian, Q. Liu, D. Guo, D. Ding, Angew. Chem. Int. Ed. 2020, 59, 10008.

[13]

M. Su, Q. Han, X. Yan, Y. Liu, P. Luo, W. Zhai, Q. Zhang, L. Li, C. Li, ACS Nano 2021, 15, 5032.

[14]

Q. Zou, J. Bao, X. Yan, Small Methods 2022, 6, e2101359.

[15]

S. Ye, J. Rao, S. Qiu, J. Zhao, H. He, Z. Yan, T. Yang, Y. Deng, H. Ke, H. Yang, Y. Zhao, Z. Guo, H. Chen, Adv. Mater. 2018, 30, e1801216.

[16]

H. Bian, D. Ma, X. Zhang, K. Xin, Y. Yang, X. Peng, Y. Xiao, Small 2021, 17, e2100398.

[17]

Y. Jiang, X. Duan, J. Bai, H. Tian, D. Ding, Y. Geng, Biomaterials 2020, 255, 120179.

[18]

M. Liang, X. Mu, Y. Li, Y. Tan, X. Hao, Y. Tang, Z. Wang, W. Feng, Y. Lu, X. Zhou, Adv. Funct. Mater. 2023, 33, 2302112.

[19]

K. Wen, H. Tan, Q. Peng, H. Chen, H. Ma, L. Wang, A. Peng, Q. Shi, X. Cai, H. Huang, Adv. Mater. 2022, 34, e2108146.

[20]

K. Wen, L. Wu, X. Wu, Y. Lu, T. Duan, H. Ma, A. Peng, Q. Shi, H. Huang, Angew. Chem. Int. Ed. 2020, 59, 12756.

[21]

Z. Wang, Y. Gao, M. Hussain, S. Kundu, V. Rane, M. Hayvali, E. Yildiz, J. Zhao, H. Yaglioglu, R. Das, L. Luo, J. Li, Chem. Eur. J. 2018, 24, 18663.

[22]

K. Wen, X. Xu, J. Chen, L. Lv, L. Wu, Y. Hu, X. Wu, G. Liu, A. Peng, H. Huang, ACS Appl. Mater. Interfaces 2019, 11, 17884.

[23]

Z. Cheng, T. Zhang, W. Wang, Q. Shen, Y. Hong, J. Shao, X. Xie, Z. Fei, X. Dong, Chin. Chem. Lett. 2021, 32, 1580.

[24]

L. Luo, C. Wilhelm, C. Young, C. Grey, G. Halada, K. Xiao, I. Ivanov, J. Howe, D. Geohegan, N. Goroff, Macromolecules 2011, 44, 2626.

[25]

L. Luo, C. Wilhelm, A. Sun, C. Grey, J. Lauher, N. Goroff, J. Am. Chem. Soc. 2008, 130, 7702.

[26]

M. Yin, X. Liu, Z. Lei, Y. Gao, J. Liu, S. Tian, Z. Liang, Y. Wang, F. Meng, L. Luo, Nat. Commun. 2022, 13, 2625.

[27]

M. Yin, Y. Chen, X. Liu, S. Tian, L. Zhao, Y. Bai, H. Wang, J. Lin, D. Jiang, Z. Lei, F. Meng, D. Tian, L. Luo, ACS Nano 2023, 17, 3873.

[28]

G. Xu, C. Li, C. Chi, L. Wu, Y. Sun, J. Zhao, X. Xia, S. Gou, Nat. Commun. 2022, 13, 3064.

[29]

R. Jiang, J. Dai, X. Dong, Q. Wang, Z. Meng, J. Guo, Y. Yu, S. Wang, F. Xia, Z. Zhao, X. Lou, Z. B. Tang, Adv. Mater. 2021, 33, e2101158.

[30]

D. Kim, Int. J. Quantum Chem. 2015, 116, 651.

[31]

S. Sunoqrot, J. Bugno, D. Lantvit, J. Burdette, S. Hong, J. Controlled Release 2014, 191, 115.

[32]

W. Shao, C. Yang, F. Li, J. Wu, N. Wang, Q. Ding, J. Gao, D. Ling, Nano-Micro Lett. 2020, 12, 147.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/