Journal home Browse Most cited

Most cited

  • Select all
    Nannan GUO, Ming C. LEU
    Frontiers of Mechanical Engineering, 0: 215-243.

    Additive manufacturing (AM) technology has been researched and developed for more than 20 years. Rather than removing materials, AM processes make three-dimensional parts directly from CAD models by adding materials layer by layer, offering the beneficial ability to build parts with geometric and material complexities that could not be produced by subtractive manufacturing processes. Through intensive research over the past two decades, significant progress has been made in the development and commercialization of new and innovative AM processes, as well as numerous practical applications in aerospace, automotive, biomedical, energy and other fields. This paper reviews the main processes, materials and applications of the current AM technology and presents future research needs for this technology.

    Pai ZHENG, Honghui WANG, Zhiqian SANG, Ray Y. ZHONG, Yongkui LIU, Chao LIU, Khamdi MUBAROK, Shiqiang YU, Xun XU
    Frontiers of Mechanical Engineering, 2018, 13(2): 137-150.

    Information and communication technology is undergoing rapid development, and many disruptive technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, have emerged. These technologies are permeating the manufacturing industry and enable the fusion of physical and virtual worlds through cyber-physical systems (CPS), which mark the advent of the fourth stage of industrial production (i.e., Industry 4.0). The widespread application of CPS in manufacturing environments renders manufacturing systems increasingly smart. To advance research on the implementation of Industry 4.0, this study examines smart manufacturing systems for Industry 4.0. First, a conceptual framework of smart manufacturing systems for Industry 4.0 is presented. Second, demonstrative scenarios that pertain to smart design, smart machining, smart control, smart monitoring, and smart scheduling, are presented. Key technologies and their possible applications to Industry 4.0 smart manufacturing systems are reviewed based on these demonstrative scenarios. Finally, challenges and future perspectives are identified and discussed.

    Kailong LIU, Kang LI, Qiao PENG, Cheng ZHANG
    Frontiers of Mechanical Engineering, 2019, 14(1): 47-64.

    Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

    Bo SONG, Xiao ZHAO, Shuai LI, Changjun HAN, Qingsong WEI, Shifeng WEN, Jie LIU, Yusheng SHI
    Frontiers of Mechanical Engineering, 2015, 10(2): 111-125.

    Selective laser melting (SLM), as one of the additive manufacturing technologies, is widely investigated to fabricate metal parts. In SLM, parts are manufactured directly from powders in a layer-by-layer fashion; SLM also provides several advantages, such as production of complex parts with high three-dimensional accuracy, compared with other additive manufacturing technologies. Therefore, SLM can be applied in aeronautics, astronautics, medicine, and die and mould industry. However, this technique differs from traditional methods, such as casting and forging; for instance, the former greatly differs in terms of microstructure and properties of products. This paper summarizes relevant studies on metal material fabrication through SLM. Based on a work completed in Huazhong Univ. Sci Tech., Rapid Manuf. Center (HUST-RMC) and compared with characteristics described in other reported studies, microstructure, properties, dimensional accuracy, and application of SLM are presented.

    Yoram KOREN, Xi GU, Weihong GUO
    Frontiers of Mechanical Engineering, 2018, 13(2): 121-136.

    Reconfigurable manufacturing systems (RMSs), which possess the advantages of both dedicated serial lines and flexible manufacturing systems, were introduced in the mid-1990s to address the challenges initiated by globalization. The principal goal of an RMS is to enhance the responsiveness of manufacturing systems to unforeseen changes in product demand. RMSs are cost-effective because they boost productivity, and increase the lifetime of the manufacturing system. Because of the many streams in which a product may be produced on an RMS, maintaining product precision in an RMS is a challenge. But the experience with RMS in the last 20 years indicates that product quality can be definitely maintained by inserting in-line inspection stations. In this paper, we formulate the design and operational principles for RMSs, and provide a state-of-the-art review of the design and operations methodologies of RMSs according to these principles. Finally, we propose future research directions, and deliberate on how recent intelligent manufacturing technologies may advance the design and operations of RMSs.

    Shuncong ZHONG
    Frontiers of Mechanical Engineering, 2019, 14(3): 273-281.

    Terahertz (THz) waves, whose frequencies range between microwave and infrared, are part of the electromagnetic spectrum. A gap exists in THz literature because investigating THz waves is difficult due to the weak characteristics of the waves and the lack of suitable THz sources and detectors. Recently, THz nondestructive testing (NDT) technology has become an interesting topic. This review outlines several typical THz devices and systems and engineering applications of THz NDT techniques in composite materials, thermal barrier coatings, car paint films, marine protective coatings, and pharmaceutical tablet coatings. THz imaging has higher resolution but lower penetration than ultrasound imaging. This review presents the significance and advantages provided by the emerging THz NDT technique.

    Mingzheng LIU, Changhe LI, Yanbin ZHANG, Qinglong AN, Min YANG, Teng GAO, Cong MAO, Bo LIU, Huajun CAO, Xuefeng XU, Zafar SAID, Sujan DEBNATH, Muhammad JAMIL, Hafz Muhammad ALI, Shubham SHARMA
    Frontiers of Mechanical Engineering, 2021, 16(4): 649-697.

    Cutting fluid plays a cooling–lubrication role in the cutting of metal materials. However, the substantial usage of cutting fluid in traditional flood machining seriously pollutes the environment and threatens the health of workers. Environmental machining technologies, such as dry cutting, minimum quantity lubrication (MQL), and cryogenic cooling technology, have been used as substitute for flood machining. However, the insufficient cooling capacity of MQL with normal-temperature compressed gas and the lack of lubricating performance of cryogenic cooling technology limit their industrial application. The technical bottleneck of mechanical–thermal damage of difficult-to-cut materials in aerospace and other fields can be solved by combining cryogenic medium and MQL. The latest progress of cryogenic minimum quantity lubrication (CMQL) technology is reviewed in this paper, and the key scientific issues in the research achievements of CMQL are clarified. First, the application forms and process characteristics of CMQL devices in turning, milling, and grinding are systematically summarized from traditional settings to innovative design. Second, the cooling–lubrication mechanism of CMQL and its influence mechanism on material hardness, cutting force, tool wear, and workpiece surface quality in cutting are extensively revealed. The effects of CMQL are systematically analyzed based on its mechanism and application form. Results show that the application effect of CMQL is better than that of cryogenic technology or MQL alone. Finally, the prospect, which provides basis and support for engineering application and development of CMQL technology, is introduced considering the limitations of CMQL.

    Peng ZHAO, Haibing GU, Haoyang MI, Chengchen RAO, Jianzhong FU, Lih-sheng TURNG
    Frontiers of Mechanical Engineering, 2018, 13(1): 107-119.

    Tissue engineering (TE) is an integrated discipline that involves engineering and natural science in the development of biological materials to replace, repair, and improve the function of diseased or missing tissues. Traditional medical and surgical treatments have been reported to have side effects on patients caused by organ necrosis and tissue loss. However, engineered tissues and organs provide a new way to cure specific diseases. Scaffold fabrication is an important step in the TE process. This paper summarizes and reviews the widely used scaffold fabrication methods, including conventional methods, electrospinning, three-dimensional printing, and a combination of molding techniques. Furthermore, the differences among the properties of tissues, such as pore size and distribution, porosity, structure, and mechanical properties, are elucidated and critically reviewed. Some studies that combine two or more methods are also reviewed. Finally, this paper provides some guidance and suggestions for the future of scaffold fabrication.

    Waseem AKHTAR,Jianfei SUN,Pengfei SUN,Wuyi CHEN,Zawar SALEEM
    Frontiers of Mechanical Engineering, 2014, 9(2): 106-119.

    Nickel based super-alloys are widely employed in aircraft engines and gas turbines due to their high temperature strength, corrosion resistance and, excellent thermal fatigue properties. Conversely, these alloys are very difficult to machine and cause rapid wear of the cutting tool, frequent tool changes are thus required resulting in low economy of the machining process. This study provides a detailed review of the tool wear mechanism in the machining of nickel based super-alloys. Typical tool wear mechanisms found by different researchers are analyzed in order to find out the most prevalent wear mechanism affecting the tool life. The review of existing works has revealed interesting findings about the tool wear mechanisms in the machining of these alloys. Adhesion wear is found to be the main phenomenon leading to the cutting tool wear in this study.

    Teng GAO, Yanbin ZHANG, Changhe LI, Yiqi WANG, Yun CHEN, Qinglong AN, Song ZHANG, Hao Nan LI, Huajun CAO, Hafiz Muhammad ALI, Zongming ZHOU, Shubham SHARMA
    Frontiers of Mechanical Engineering, 2022, 17(2): 24.

    Fiber-reinforced composites have become the preferred material in the fields of aviation and aerospace because of their high-strength performance in unit weight. The composite components are manufactured by near net-shape and only require finishing operations to achieve final dimensional and assembly tolerances. Milling and grinding arise as the preferred choices because of their precision processing. Nevertheless, given their laminated, anisotropic, and heterogeneous nature, these materials are considered difficult-to-machine. As undesirable results and challenging breakthroughs, the surface damage and integrity of these materials is a research hotspot with important engineering significance. This review summarizes an up-to-date progress of the damage formation mechanisms and suppression strategies in milling and grinding for the fiber-reinforced composites reported in the literature. First, the formation mechanisms of milling damage, including delamination, burr, and tear, are analyzed. Second, the grinding mechanisms, covering material removal mechanism, thermal mechanical behavior, surface integrity, and damage, are discussed. Third, suppression strategies are reviewed systematically from the aspects of advanced cutting tools and technologies, including ultrasonic vibration-assisted machining, cryogenic cooling, minimum quantity lubrication (MQL), and tool optimization design. Ultrasonic vibration shows the greatest advantage of restraining machining force, which can be reduced by approximately 60% compared with conventional machining. Cryogenic cooling is the most effective method to reduce temperature with a maximum reduction of approximately 60%. MQL shows its advantages in terms of reducing friction coefficient, force, temperature, and tool wear. Finally, research gaps and future exploration directions are prospected, giving researchers opportunity to deepen specific aspects and explore new area for achieving high precision surface machining of fiber-reinforced composites.

    Arun KRISHNAN, Fengzhou FANG
    Frontiers of Mechanical Engineering, 2019, 14(3): 299-319.

    Laser polishing is a technology of smoothening the surface of various materials with highly intense laser beams. When these beams impact on the material surface to be polished, the surface starts to be melted due to the high temperature. The melted material is then relocated from the ‘peaks to valleys’ under the multidirectional action of surface tension. By varying the process parameters such as beam intensity, energy density, spot diameter, and feed rate, different rates of surface roughness can be achieved. High precision polishing of surfaces can be done using laser process. Currently, laser polishing has extended its applications from photonics to molds as well as bio-medical sectors. Conventional polishing techniques have many drawbacks such as less capability of polishing freeform surfaces, environmental pollution, long processing time, and health hazards for the operators. Laser polishing on the other hand eliminates all the mentioned drawbacks and comes as a promising technology that can be relied for smoothening of initial topography of the surfaces irrespective of the complexity of the surface. Majority of the researchers performed laser polishing on materials such as steel, titanium, and its alloys because of its low cost and reliability. This article gives a detailed overview of the laser polishing mechanism by explaining various process parameters briefly to get a better understanding about the entire polishing process. The advantages and applications are also explained clearly to have a good knowledge about the importance of laser polishing in the future.

    Shutian LIU,Quhao LI,Wenjiong CHEN,Liyong TONG,Gengdong CHENG
    Frontiers of Mechanical Engineering, 2015, 10(2): 126-137.

    Additive manufacturing (AM) technologies, such as selective laser sintering (SLS) and fused deposition modeling (FDM), have become the powerful tools for direct manufacturing of complex parts. This breakthrough in manufacturing technology makes the fabrication of new geometrical features and multiple materials possible. Past researches on designs and design methods often focused on how to obtain desired functional performance of the structures or parts, specific manufacturing capabilities as well as manufacturing constraints of AM were neglected. However, the inherent constraints in AM processes should be taken into account in design process. In this paper, the enclosed voids, one type of manufacturing constraints of AM, are investigated. In mathematics, enclosed voids restriction expressed as the solid structure is simply-connected. We propose an equivalent description of simply-connected constraint for avoiding enclosed voids in structures, named as virtual temperature method (VTM). In this method, suppose that the voids in structure are filled with a virtual heating material with high heat conductivity and solid areas are filled with another virtual material with low heat conductivity. Once the enclosed voids exist in structure, the maximum temperature value of structure will be very high. Based upon this method, the simply-connected constraint is equivalent to maximum temperature constraint. And this method can be easily used to formulate the simply-connected constraint in topology optimization. The effectiveness of this description method is illustrated by several examples. Based upon topology optimization, an example of 3D cantilever beam is used to illustrate the trade-off between manufacturability and functionality. Moreover, the three optimized structures are fabricated by FDM technology to indicate further the necessity of considering the simply-connected constraint in design phase for AM.

    Xuefeng CHEN, Shibin WANG, Baijie QIAO, Qiang CHEN
    Frontiers of Mechanical Engineering, 2018, 13(2): 264-291.

    Machinery fault diagnosis has progressed over the past decades with the evolution of machineries in terms of complexity and scale. High-value machineries require condition monitoring and fault diagnosis to guarantee their designed functions and performance throughout their lifetime. Research on machinery Fault diagnostics has grown rapidly in recent years. This paper attempts to summarize and review the recent R&D trends in the basic research field of machinery fault diagnosis in terms of four main aspects: Fault mechanism, sensor technique and signal acquisition, signal processing, and intelligent diagnostics. The review discusses the special contributions of Chinese scholars to machinery fault diagnostics. On the basis of the review of basic theory of machinery fault diagnosis and its practical applications in engineering, the paper concludes with a brief discussion on the future trends and challenges in machinery fault diagnosis.

    Dehui XU, Yuelin WANG, Bin XIONG, Tie LI
    Frontiers of Mechanical Engineering, 2017, 12(4): 557-566.

    In the past decade, micro-electromechanical systems (MEMS)-based thermoelectric infrared (IR) sensors have received considerable attention because of the advances in micromachining technology. This paper presents a review of MEMS-based thermoelectric IR sensors. The first part describes the physics of the device and discusses the figures of merit. The second part discusses the sensing materials, thermal isolation microstructures, absorber designs, and packaging methods for these sensors and provides examples. Moreover, the status of sensor implementation technology is examined from a historical perspective by presenting findings from the early years to the most recent findings.

    Julong YUAN, Binghai LYU, Wei HANG, Qianfa DENG
    Frontiers of Mechanical Engineering, 2017, 12(2): 158-180.

    Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the developments of ultra-precision machining technologies, especially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.

    Elijah Kwabena ANTWI, Kui LIU, Hao WANG
    Frontiers of Mechanical Engineering, 2018, 13(2): 251-263.

    Brittle materials have been widely employed for industrial applications due to their excellent mecha-nical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteristics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously.

    Shang GAO, Han HUANG
    Frontiers of Mechanical Engineering, 2017, 12(1): 18-32.

    Device miniaturization is an emerging advanced technology in the 21st century. The miniaturization of devices in different fields requires production of micro- and nano-scale components. The features of these components range from the sub-micron to a few hundred microns with high tolerance to many engineering materials. These fields mainly include optics, electronics, medicine, bio-technology, communications, and avionics. This paper reviewed the recent advances in micro- and nano-machining technologies, including micro-cutting, micro-electrical-discharge machining, laser micro-machining, and focused ion beam machining. The four machining technologies were also compared in terms of machining efficiency, workpiece materials being machined, minimum feature size, maximum aspect ratio, and surface finish.

    Hadi MIYANAJI, Morgan ORTH, Junaid Muhammad AKBAR, Li YANG
    Frontiers of Mechanical Engineering, 2018, 13(4): 504-512.

    Originally developed decades ago, the binder jetting additive manufacturing (BJ-AM) process possesses various advantages compared to other additive manufacturing (AM) technologies such as broad material compatibility and technological expandability. However, the adoption of BJ-AM has been limited by the lack of knowledge with the fundamental understanding of the process principles and characteristics, as well as the relatively few systematic design guideline that are available. In this work, the process design considerations for BJ-AM in green part fabrication were discussed in detail in order to provide a comprehensive perspective of the design for additive manufacturing for the process. Various process factors, including binder saturation, in-process drying, powder spreading, powder feedstock characteristics, binder characteristics and post-process curing, could significantly affect the printing quality of the green parts such as geometrical accuracy and part integrity. For powder feedstock with low flowability, even though process parameters could be optimized to partially offset the printing feasibility issue, the qualities of the green parts will be intrinsically limited due to the existence of large internal voids that are inaccessible to the binder. In addition, during the process development, the balanced combination between the saturation level and in-process drying is of critical importance in the quality control of the green parts.

    Tianfeng ZHOU,Xiaohua LIU,Zhiqiang LIANG,Yang LIU,Jiaqing XIE,Xibin WANG
    Frontiers of Mechanical Engineering, 2017, 12(1): 46-65.

    Optical microstructures are increasingly applied in several fields, such as optical systems, precision measurement, and microfluid chips. Microstructures include microgrooves, microprisms, and microlenses. This paper presents an overview of optical microstructure fabrication through glass molding and highlights the applications of optical microstructures in mold fabrication and glass molding. The glass-mold interface friction and adhesion are also discussed. Moreover, the latest advancements in glass molding technologies are detailed, including new mold materials and their fabrication methods, viscoelastic constitutive modeling of glass, and microstructure molding process, as well as ultrasonic vibration-assisted molding technology.

    Wentao YAN, Stephen LIN, Orion L. KAFKA, Cheng YU, Zeliang LIU, Yanping LIAN, Sarah WOLFF, Jian CAO, Gregory J. WAGNER, Wing Kam LIU
    Frontiers of Mechanical Engineering, 2018, 13(4): 482-492.

    This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the process-structure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a high-efficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.

    Jinhao Qiu, Hao Jiang, Hongli Ji, Kongjun ZHU
    Frontiers of Mechanical Engineering, 2009, 4(2): 153-159.

    This paper investigates and compares the efficiencies of four different interfaces for vibration-based energy harvesting systems. Among those four circuits, two circuits adopt the synchronous switching technique, in which the circuit is switched synchronously with the vibration. In this study, a simple source-less trigger circuit used to control the synchronized switch is proposed and two interface circuits of energy harvesting systems are designed based on the trigger circuit. To validate the effectiveness of the proposed circuits, an experimental system was established and the power harvested by those circuits from a vibration beam was measured. Experimental results show that the two new circuits can increase the harvested power by factors 2.6 and 7, respectively, without consuming extra power in the circuits.

    Qun CHAO, Junhui ZHANG, Bing XU, Qiannan WANG, Fei LYU, Kun LI
    Frontiers of Mechanical Engineering, 2022, 17(1): 1.

    The power density of axial piston pumps can greatly benefit from increasing the speed level. However, traditional slippers in axial piston pumps are exposed to continuous sliding on the swash plate, suffering from serious wear at high rotational speeds. Therefore, this paper presents a new integrated slipper retainer mechanism for high-speed axial piston pumps, which can avoid direct contact between the slippers and the swash plate and thereby eliminate slipper wear under severe operating conditions. A lubrication model was developed for this specific slipper retainer mechanism, and experiments were carried out on a pump prototype operating at high rotational speed up to 10000 r/min. Experimental results qualitatively validated the theoretical model and confirmed the effectiveness of the new slipper design.

    Kamal JANGRA, Sandeep GROVER, Aman AGGARWAL
    Frontiers of Mechanical Engineering, 2012, 7(3): 288-299.

    Wire electrical discharge machining (WEDM) is a well known process for generating intricate and complex geometries in hard metal alloys and metal matrix composites with high precision. In present work, intricate machining of WC-5.3%Co composite on WEDM has been reported. Taguchi’s design of experiment has been utilised to investigate the process parameters for four machining characteristics namely material removal rate, surface roughness, angular error and radial overcut. In order to optimize the four machining characteristics simultaneously, grey relational analysis (GRA) coupled with entropy measurement method has been employed. Through GRA, grey relational grade has been computed as a performance index for predicting the optimal parameters setting for multi machining characteristics. Using Analysis of Variance (ANOVA) on grey relational grade, significant parameters affecting the multi-machining characteristics has been determined. Confirmatory results prove the potential of present approach.

    He WANG, Liguo CHEN, Lining SUN
    Frontiers of Mechanical Engineering, 2017, 12(4): 510-525.

    Digital microfluidics (DMF) is a versatile microfluidics technology that has significant application potential in the areas of automation and miniaturization. In DMF, discrete droplets containing samples and reagents are controlled to implement a series of operations via electrowetting-on-dielectric. This process works by applying electrical potentials to an array of electrodes coated with a hydrophobic dielectric layer. Unlike microchannels, DMF facilitates precise control over multiple reaction processes without using complex pump, microvalve, and tubing networks. DMF also presents other distinct features, such as portability, less sample consumption, shorter chemical reaction time, flexibility, and easier combination with other technology types. Due to its unique advantages, DMF has been applied to a broad range of fields (e.g., chemistry, biology, medicine, and environment). This study reviews the basic principles of droplet actuation, configuration design, and fabrication of the DMF device, as well as discusses the latest progress in DMF from the biochemistry perspective.

    Frontiers of Mechanical Engineering, 2014, 9(2): 177-190.

    In the present paper, three complicated nonlinear differential equations in the field of vibration, which are Vanderpol, Rayleigh and Duffing equations, have been analyzed and solved completely by Algebraic Method (AGM). Investigating this kind of equations is a very hard task to do and the obtained solution is not accurate and reliable. This issue will be emerged after comparing the achieved solutions by numerical method (Runge-Kutte 4th). Based on the comparisons which have been made between the gained solutions by AGM and numerical method, it is possible to indicate that AGM can be successfully applied for various differential equations particularly for difficult ones. The results reveal that this method is not only very effective and simple, but also reliable, and can be applied for other complicated nonlinear problems.

    Frontiers of Mechanical Engineering, 2014, 9(1): 75-80.

    In this paper the reliability and performance of a vapour compression refrigeration system with ZnO nanoparticles in the working fluid was investigated experimentally. Nanorefrigerant was synthesized on the basis of the concept of the nanofluids, which was prepared by mixing ZnO nanoparticles with R152a refrigerant. The conventional refrigerant R134a has a global warming potential (GWP) of 1300 whereas R152a has a significant reduced value of GWP of 140 only. An experimental test rig is designed and fabricated indigenously in the laboratory to carry out the investigations. ZnO nanoparticles with refrigerant mixture were used in HFC R152a refrigeration system. The system performance with nanoparticles was then investigated. The concentration of nano ZnO ranges in the order of 0.1% v, 0.3% v and 0.5%v with particle size of 50 nm and 150 g of R152a was charged and tests were conducted. The compressor suction pressure, discharge pressure and evaporator temperature were measured. The results indicated that ZnO nanorefrigerant works normally and safely in the system. The ZnO nanoparticle concentration is an important factor considered for heat transfer enhancement in the refrigeration system. The performance of the system was significantly improved with 21% less energy consumption when 0.5%v ZnO-R152a refrigerant. Both the suction pressure and discharge pressure were lowered by 10.5% when nanorefrigerant was used. The evaporator temperature was reduced by 6% with the use of nanorefrigerant. Hence ZnO nanoparticles could be used in refrigeration system to considerably reduce energy consumption. The usage of R152a with zero ozone depleting potential (ODP) and very less GWP and thus provides a green and clean environment. The complete experimental results and their analysis are reported in the main paper.

  • Research articles
    Giuseppe CARBONE, Marco CECCARELLI,
    Frontiers of Mechanical Engineering, 2010, 5(3): 270-278.
    This paper addresses the problem of a numerical evaluation of the stiffness performance for multibody robotic systems. An overview is presented with basic formulation concerning indices that are proposed in literature. New indices are also outlined. Stiffness indices are computed and compared for a case study. Results are used for comparing the effectiveness of the stiffness indices. The main goal is to propose a performance index describing synthetically the elastostatic response of a multibody robotic system and also for design purposes.
    Yuying YANG, Min YANG, Changhe LI, Runze LI, Zafar SAID, Hafiz Muhammad ALI, Shubham SHARMA
    Frontiers of Mechanical Engineering, 2023, 18(1): 1.

    Bone grinding is an essential and vital procedure in most surgical operations. Currently, the insufficient cooling capacity of dry grinding, poor visibility of drip irrigation surgery area, and large grinding force leading to high grinding temperature are the technical bottlenecks of micro-grinding. A new micro-grinding process called ultrasonic vibration-assisted nanoparticle jet mist cooling (U-NJMC) is innovatively proposed to solve the technical problem. It combines the advantages of ultrasonic vibration (UV) and nanoparticle jet mist cooling (NJMC). Notwithstanding, the combined effect of multi parameter collaborative of U-NJMC on cooling has not been investigated. The grinding force, friction coefficient, specific grinding energy, and grinding temperature under dry, drip irrigation, UV, minimum quantity lubrication (MQL), NJMC, and U-NJMC micro-grinding were compared and analyzed. Results showed that the minimum normal grinding force and tangential grinding force of U-NJMC micro-grinding were 1.39 and 0.32 N, which were 75.1% and 82.9% less than those in dry grinding, respectively. The minimum friction coefficient and specific grinding energy were achieved using U-NJMC. Compared with dry, drip, UV, MQL, and NJMC grinding, the friction coefficient of U-NJMC was decreased by 31.3%, 17.0%, 19.0%, 9.8%, and 12.5%, respectively, and the specific grinding energy was decreased by 83.0%, 72.7%, 77.8%, 52.3%, and 64.7%, respectively. Compared with UV or NJMC alone, the grinding temperature of U-NJMC was decreased by 33.5% and 10.0%, respectively. These results showed that U-NJMC provides a novel approach for clinical surgical micro-grinding of biological bone.

    Zhenjing DUAN, Changhe LI, Yanbin ZHANG, Min YANG, Teng GAO, Xin LIU, Runze LI, Zafar SAID, Sujan DEBNATH, Shubham SHARMA
    Frontiers of Mechanical Engineering, 2023, 18(1): 4.

    Aerospace aluminum alloy is the most used structural material for rockets, aircraft, spacecraft, and space stations. The deterioration of surface integrity of dry machining and the insufficient heat transfer capacity of minimal quantity lubrication have become the bottleneck of lubrication and heat dissipation of aerospace aluminum alloy. However, the excellent thermal conductivity and tribological properties of nanofluids are expected to fill this gap. The traditional milling force models are mainly based on empirical models and finite element simulations, which are insufficient to guide industrial manufacturing. In this study, the milling force of the integral end milling cutter is deduced by force analysis of the milling cutter element and numerical simulation. The instantaneous milling force model of the integral end milling cutter is established under the condition of dry and nanofluid minimal quantity lubrication (NMQL) based on the dual mechanism of the shear effect on the rake face of the milling cutter and the plow cutting effect on the flank surface. A single factor experiment is designed to introduce NMQL and the milling feed factor into the instantaneous milling force coefficient. The average absolute errors in the prediction of milling forces for the NMQL are 13.3%, 2.3%, and 7.6% in the x-, y-, and z-direction, respectively. Compared with the milling forces obtained by dry milling, those by NMQL decrease by 21.4%, 17.7%, and 18.5% in the x-, y-, and z-direction, respectively.

    Xin CUI, Changhe LI, Yanbin ZHANG, Wenfeng DING, Qinglong AN, Bo LIU, Hao Nan LI, Zafar SAID, Shubham SHARMA, Runze LI, Sujan DEBNATH
    Frontiers of Mechanical Engineering, 2023, 18(1): 3.

    The substitution of biolubricant for mineral cutting fluids in aerospace material grinding is an inevitable development direction, under the requirements of the worldwide carbon emission strategy. However, serious tool wear and workpiece damage in difficult-to-machine material grinding challenges the availability of using biolubricants via minimum quantity lubrication. The primary cause for this condition is the unknown and complex influencing mechanisms of the biolubricant physicochemical properties on grindability. In this review, a comparative assessment of grindability is performed using titanium alloy, nickel-based alloy, and high-strength steel. Firstly, this work considers the physicochemical properties as the main factors, and the antifriction and heat dissipation behaviours of biolubricant in a high temperature and pressure interface are comprehensively analysed. Secondly, the comparative assessment of force, temperature, wheel wear and workpiece surface for titanium alloy, nickel-based alloy, and high-strength steel confirms that biolubricant is a potential replacement of traditional cutting fluids because of its improved lubrication and cooling performance. High-viscosity biolubricant and nano-enhancers with high thermal conductivity are recommended for titanium alloy to solve the burn puzzle of the workpiece. Biolubricant with high viscosity and high fatty acid saturation characteristics should be used to overcome the bottleneck of wheel wear and nickel-based alloy surface burn. The nano-enhancers with high hardness and spherical characteristics are better choices. Furthermore, a different option is available for high-strength steel grinding, which needs low-viscosity biolubricant to address the debris breaking difficulty and wheel clogging. Finally, the current challenges and potential methods are proposed to promote the application of biolubricant.