Journal home Browse Most accessed

Most accessed

  • Select all
  • RESEARCH ARTICLE
    Qun CHAO, Junhui ZHANG, Bing XU, Qiannan WANG, Fei LYU, Kun LI
    Frontiers of Mechanical Engineering, 2022, 17(1): 1. https://doi.org/10.1007/s11465-021-0657-z

    The power density of axial piston pumps can greatly benefit from increasing the speed level. However, traditional slippers in axial piston pumps are exposed to continuous sliding on the swash plate, suffering from serious wear at high rotational speeds. Therefore, this paper presents a new integrated slipper retainer mechanism for high-speed axial piston pumps, which can avoid direct contact between the slippers and the swash plate and thereby eliminate slipper wear under severe operating conditions. A lubrication model was developed for this specific slipper retainer mechanism, and experiments were carried out on a pump prototype operating at high rotational speed up to 10000 r/min. Experimental results qualitatively validated the theoretical model and confirmed the effectiveness of the new slipper design.

  • REVIEW ARTICLE
    Mingzheng LIU, Changhe LI, Yanbin ZHANG, Qinglong AN, Min YANG, Teng GAO, Cong MAO, Bo LIU, Huajun CAO, Xuefeng XU, Zafar SAID, Sujan DEBNATH, Muhammad JAMIL, Hafz Muhammad ALI, Shubham SHARMA
    Frontiers of Mechanical Engineering, 2021, 16(4): 649-697. https://doi.org/10.1007/s11465-021-0654-2

    Cutting fluid plays a cooling–lubrication role in the cutting of metal materials. However, the substantial usage of cutting fluid in traditional flood machining seriously pollutes the environment and threatens the health of workers. Environmental machining technologies, such as dry cutting, minimum quantity lubrication (MQL), and cryogenic cooling technology, have been used as substitute for flood machining. However, the insufficient cooling capacity of MQL with normal-temperature compressed gas and the lack of lubricating performance of cryogenic cooling technology limit their industrial application. The technical bottleneck of mechanical–thermal damage of difficult-to-cut materials in aerospace and other fields can be solved by combining cryogenic medium and MQL. The latest progress of cryogenic minimum quantity lubrication (CMQL) technology is reviewed in this paper, and the key scientific issues in the research achievements of CMQL are clarified. First, the application forms and process characteristics of CMQL devices in turning, milling, and grinding are systematically summarized from traditional settings to innovative design. Second, the cooling–lubrication mechanism of CMQL and its influence mechanism on material hardness, cutting force, tool wear, and workpiece surface quality in cutting are extensively revealed. The effects of CMQL are systematically analyzed based on its mechanism and application form. Results show that the application effect of CMQL is better than that of cryogenic technology or MQL alone. Finally, the prospect, which provides basis and support for engineering application and development of CMQL technology, is introduced considering the limitations of CMQL.

  • RESEARCH ARTICLE
    Zongwu XIE, Xiaoyu ZHAO, Zainan JIANG, Haitao YANG, Chongyang LI
    Frontiers of Mechanical Engineering, 2022, 17(1): 2. https://doi.org/10.1007/s11465-021-0658-y

    When free-floating space robots perform space tasks, the satellite base attitude is disturbed by the dynamic coupling. The disturbance of the base orientation may affect the communication between the space robot and the control center on earth. In this paper, the enhanced bidirectional approach is proposed to plan the manipulator trajectory and eliminate the final base attitude variation. A novel acceleration level state equation for the nonholonomic problem is proposed, and a new intermediate variable-based Lyapunov function is derived and solved for smooth joint trajectory and restorable base trajectories. In the method, the state equation is first proposed for dual-arm robots with and without end constraints, and the system stability is analyzed to obtain the system input. The input modification further increases the system stability and simplifies the calculation complexity. Simulations are carried out in the end, and the proposed method is validated in minimizing final base attitude change and trajectory smoothness. Moreover, the minute internal force during the coordinated operation and the considerable computing efficiency increases the feasibility of the method during space tasks.

  • RESEARCH ARTICLE
    Jiawen YAN, Bo PAN, Yili FU
    Frontiers of Mechanical Engineering, 2022, 17(1): 3. https://doi.org/10.1007/s11465-021-0659-x

    Applying a robot system in ultrasound-guided percutaneous intervention is an effective approach for prostate cancer diagnosis and treatment. The limited space for robot manipulation restricts structure volume and motion. In this paper, an 8-degree-of-freedom robot system is proposed for ultrasound probe manipulation, needle positioning, and needle insertion. A novel parallel structure is employed in the robot system for space saving, structural rigidity, and collision avoidance. The particle swarm optimization method based on informative value is proposed for kinematic parameter identification to calibrate the parallel structure accurately. The method identifies parameters in the modified kinematic model stepwise according to parameter discernibility. Verification experiments prove that the robot system can realize motions needed in targeting. By applying the calibration method, a reasonable, reliable forward kinematic model is built, and the average errors can be limited to 0.963 and 1.846 mm for insertion point and target point, respectively.

  • RESEARCH ARTICLE
    Yi ZHENG, Kun XU, Yaobin TIAN, Xilun DING
    Frontiers of Mechanical Engineering, 2022, 17(1): 8. https://doi.org/10.1007/s11465-021-0664-0

    With the widespread application of legged robot in various fields, the demand for a robot with high locomotion and manipulation ability is increasing. Adding an extra arm is a useful but general method for a legged robot to obtain manipulation ability. Hence, this paper proposes a novel hexapod robot with two integrated leg–arm limbs that obtain dexterous manipulation functions besides locomotion ability without adding an extra arm. The manipulation modes can be divided into coordinated manipulation condition and single-limb manipulation condition. The former condition mainly includes fixed coordinated clamping case and fixed coordinated shearing case. For the fixed coordinated clamping case, the degrees of freedom (DOFs) analysis of equivalent parallel mechanism by using screw theory and the constraint equation of two integrated limbs are established. For the fixed coordinated shearing case, the coordinated working space is determined, and an ideal coordinated manipulation ball is presented to guide the coordinated shearing task. In addition, the constraint analysis of two adjacent integrated limbs is performed. Then, mobile manipulation with one integrated leg–arm limb while using pentapod gait is discussed as the single-limb manipulation condition, including gait switching analysis between hexapod gait and pentapod gait, different pentapod gaits analysis, and a complex six-DOF manipulation while walking. Corresponding experiments are implemented, including clamping tasks with two integrated limbs, coordinated shearing task by using two integrated limbs, and mobile manipulation with pentapod gait. This robot provides a new approach to building a multifunctional locomotion platform.

  • RESEARCH ARTICLE
    Min CHENG, Zenan HAN, Ruqi DING, Junhui ZHANG, Bing XU
    Frontiers of Mechanical Engineering, 2021, 16(4): 698-710. https://doi.org/10.1007/s11465-021-0646-2

    The demand for redundant hydraulic manipulators that can implement complex heavy-duty tasks in unstructured areas is increasing; however, current manipulator layouts that remarkably differ from human arms make intuitive kinematic operation challenging to achieve. This study proposes a seven-degree-of-freedom (7-DOF) redundant anthropomorphic hydraulically actuated manipulator with a novel roll–pitch–yaw spherical wrist. A hybrid series–parallel mechanism is presented to achieve the spherical wrist design, which consists of two parallel linear hydraulic cylinders to drive the yaw/pitch 2-DOF wrist plate connected serially to the roll structure. Designed as a 1R PRRR-1S PU mechanism (“R”, “P”, “S”, and “U” denote revolute, prismatic, spherical, and universal joints, respectively; the underlined letter indicates the active joint), the 2-DOF parallel structure is partially decoupled to obtain simple forward/inverse kinematic solutions in which a closed-loop subchain “R PRR” is included. The 7-DOF manipulator is then designed, and its third joint axis goes through the spherical center to obtain closed-form inverse kinematic computation. The analytical inverse kinematic solution is drawn by constructing self-motion manifolds. Finally, a physical prototype is developed, and the kinematic analysis is validated via numerical simulation and test results.

  • RESEARCH ARTICLE
    Majun SONG, Sheng GUO, Anderson S. OLIVEIRA, Xiangyang WANG, Haibo QU
    Frontiers of Mechanical Engineering, 2021, 16(4): 747-764. https://doi.org/10.1007/s11465-021-0644-4

    Transfemoral amputees (TAs) have difficulty in mobility during walking, such as restricted movement of lower extremity and body instability, yet few transfemoral prostheses have explored human-like multiple motion characteristics by simple structures to fit the kinesiology, biomechanics, and stability of human lower extremity. In this work, the configurations of transfemoral prosthetic mechanism are synthesized in terms of human lower-extremity kinesiology. A hybrid transfemoral prosthetic (HTP) mechanism with multigait functions is proposed to recover the gait functions of TAs. The kinematic and mechanical performances of the designed parallel mechanism are analyzed to verify their feasibility in transfemoral prosthetic mechanism. Inspired by motion–energy coupling relationship of the knee, a wearable energy-damper clutched device that can provide energy in knee stance flexion to facilitate the leg off from the ground and can impede the leg’s swing velocity for the next stance phase is proposed. Its co-operation with the springs in the prismatic pairs enables the prosthetic mechanism to have the energy recycling ability under the gait rhythm of the knee joint. Results demonstrate that the designed HTP mechanism can replace the motion functions of the knee and ankle to realize its multimode gait and effectively decrease the peak power of actuators from 94.74 to 137.05 W while maintaining a good mechanical adaptive stability.

  • RESEARCH ARTICLE
    Lin WANG, Yuefa FANG, Luquan LI
    Frontiers of Mechanical Engineering, 2021, 16(4): 765-781. https://doi.org/10.1007/s11465-021-0655-1

    Generalized parallel mechanisms with a configurable moving platform have become popular in the research field of parallel mechanism. This type of gripper mechanism can be applied to grasp large or heavy objects in different environments that are dangerous and complex for humans. This study proposes a family of novel (5 + 1) degrees of freedom (three translations and two rotations plus an additional grasping motion) gripper mechanisms based on the generalized parallel mechanisms with a configurable moving platform. First, the configurable moving platform, which is a closed loop, is designed for grasping manipulation. The hybrid topological arrangement is determined to improve the stiffness of the manipulator and realize high load-to-weight ratios. A sufficient rule based on Lie group theory is proposed to synthesize the mechanism. The hybrid limb structure is also enumerated. A family of novel gripper mechanisms can be assembled through the hybrid limbs by satisfying the rule. Two examples of the gripper mechanisms with and without parallelogram pairs are shown in this study. A kinematic analysis of the example mechanism is presented. The workspace shows that the mechanism possesses high rotational capability. In addition, a stiffness analysis is performed.

  • RESEARCH ARTICLE
    Kexu LAI, Huajun CAO, Hongcheng LI, Benjie LI, Disheng HUANG
    Frontiers of Mechanical Engineering, 2022, 17(1): 12. https://doi.org/10.1007/s11465-021-0668-9

    Machine tools are one of the most representative machining systems in manufacturing. The energy consumption of machine tools has been a research hotspot and frontier for green low-carbon manufacturing. However, previous research merely regarded the material removal (MR) energy as useful energy consumption and ignored the useful energy consumed by thermal control (TC) for maintaining internal thermal stability and machining accuracy. In pursuit of energy-efficient, high-precision machining, more attention should be paid to the energy consumption of TC and the coupling relationship between MR and TC. Hence, the cutting energy efficiency model considering the coupling relationship is established based on the law of conservation of energy. An index of energy consumption ratio of TC is proposed to characterize its effect on total energy usage. Furthermore, the heat characteristics are analyzed, which can be adopted to represent machining accuracy. Experimental study indicates that TC is the main energy-consuming process of the precision milling machine tool, which overwhelms the energy consumption of MR. The forced cooling mode of TC results in a 7% reduction in cutting energy efficiency. Regression analysis shows that heat dissipation positively contributes 54.1% to machining accuracy, whereas heat generation negatively contributes 45.9%. This paper reveals the coupling effect of MR and TC on energy efficiency and machining accuracy. It can provide a foundation for energy-efficient, high-precision machining of machine tools.

  • RESEARCH ARTICLE
    Yiwei LIU, Shipeng CUI, Yongjun SUN
    Frontiers of Mechanical Engineering, 2021, 16(4): 711-725. https://doi.org/10.1007/s11465-021-0647-1

    The safety of human–robot interaction is an essential requirement for designing collaborative robotics. Thus, this paper aims to design a novel variable stiffness actuator (VSA) that can provide safer physical human–robot interaction for collaborative robotics. VSA follows the idea of modular design, mainly including a variable stiffness module and a drive module. The variable stiffness module transmits the motion from the drive module in a roundabout manner, making the modularization of VSA possible. As the key component of the variable stiffness module, a stiffness adjustment mechanism with a symmetrical structure is applied to change the positions of a pair of pivots in two levers linearly and simultaneously, which can eliminate the additional bending moment caused by the asymmetric structure. The design of the double-deck grooves in the lever allows the pivot to move freely in the groove, avoiding the geometric constraint between the parts. Consequently, the VSA stiffness can change from zero to infinity as the pivot moves from one end of the groove to the other. To facilitate building a manipulator in the future, an expandable electrical system with a distributed structure is also proposed. Stiffness calibration and control experiments are performed to evaluate the physical performance of the designed VSA. Experiment results show that the VSA stiffness is close to the theoretical design stiffness. Furthermore, the VSA with a proportional–derivative feedback plus feedforward controller exhibits a fast response for stiffness regulation and a good performance for position tracking.

  • RESEARCH ARTICLE
    Qianjie LIU, Shuang SONG, Huosheng HU, Tengchao HUANG, Chenyang LI, Qingyuan ZHU
    Frontiers of Mechanical Engineering, 2022, 17(1): 4. https://doi.org/10.1007/s11465-021-0660-4

    This paper presents an extended model predictive control (MPC) scheme for implementing optimal path following of autonomous vehicles, which has multiple constraints and an integrated model of vehicle and road dynamics. Road curvature and inclination factors are used in the construction of the vehicle dynamic model to describe its lateral and roll dynamics accurately. Sideslip, rollover, and vehicle envelopes are used as multiple constraints in the MPC controller formulation. Then, an extended MPC method solved by differential evolution optimization algorithm is proposed to realize optimal smooth path following based on driving path features. Finally, simulation and real experiments are carried out to evaluate the feasibility and the effectiveness of the extended MPC scheme. Results indicate that the proposed method can obtain the smooth transition to follow the optimal drivable path and satisfy the lateral dynamic stability and environmental constraints, which can improve the path following quality for better ride comfort and road availability of autonomous vehicles.

  • RESEARCH ARTICLE
    Kaiwei CAO, Jinghui HAN, Long XU, Tielin SHI, Guanglan LIAO, Zhiyong LIU
    Frontiers of Mechanical Engineering, 2022, 17(1): 5. https://doi.org/10.1007/s11465-021-0661-3

    Tool failures in machining processes often cause severe damages of workpieces and lead to large quantities of loss, making tool condition monitoring an important, urgent issue. However, problems such as practicability still remain in actual machining. Here, a real-time tool condition monitoring method integrated in an in situ fiber optic temperature measuring apparatus is proposed. A thermal simulation is conducted to investigate how the fluctuating cutting heats affect the measuring temperatures, and an intermittent cutting experiment is carried out, verifying that the apparatus can capture the rapid but slight temperature undulations. Fourier transform is carried out. The spectrum features are then selected and input into the artificial neural network for classification, and a caution is given if the tool is worn. A learning rate adaption algorithm is introduced, greatly reducing the dependence on initial parameters, making training convenient and flexible. The accuracy stays 90% and higher in variable argument processes. Furthermore, an application program with a graphical user interface is constructed to present real-time results, confirming the practicality.

  • RESEARCH ARTICLE
    Jie LIU, Kaibo ZHOU, Chaoying YANG, Guoliang LU
    Frontiers of Mechanical Engineering, 2021, 16(4): 829-839. https://doi.org/10.1007/s11465-021-0652-4

    Existing fault diagnosis methods usually assume that there are balanced training data for every machine health state. However, the collection of fault signals is very difficult and expensive, resulting in the problem of imbalanced training dataset. It will degrade the performance of fault diagnosis methods significantly. To address this problem, an imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning is proposed in this paper. Unsupervised autoencoder is firstly used to compress every monitoring signal into a low-dimensional vector as the node attribute in the SuperGraph. And the edge connections in the graph depend on the relationship between signals. On the basis, graph convolution is performed on the constructed SuperGraph to achieve imbalanced training dataset fault diagnosis for rotating machinery. Comprehensive experiments are conducted on a benchmarking publicized dataset and a practical experimental platform, and the results show that the proposed method can effectively achieve rotating machinery fault diagnosis towards imbalanced training dataset through graph feature learning.

  • RESEARCH ARTICLE
    Chaojie ZHUO, Peng ZHAO, Kaipeng JI, Jun XIE, Sheng YE, Peng CHENG, Jianzhong FU
    Frontiers of Mechanical Engineering, 2022, 17(1): 7. https://doi.org/10.1007/s11465-021-0663-1

    In die casting, the real-time measurement of the stress of the tie-bar helps ensure product quality and protect the machine itself. However, the traditional magnetic-attached strain gauge is installed in the mold and product operating area, which hinders the loading and unloading of the mold and the collection of die castings. In this paper, a method for real-time measurement of stress using ultrasonic technology is proposed. The stress variation of the tie-bar is analyzed, and a mathematical model between ultrasonic signal and stress based on acoustoelastic theory is established. Verification experiments show that the proposed method agrees with the strain gauge, and the maximum of the difference square is only 1.5678 (MPa)2. Furthermore, single-factor experiments are conducted. A higher ultrasonic frequency produces a better measurement accuracy, and the mean of difference squares at 2.5 and 5 MHz are 2.3234 and 0.6733 (MPa)2, respectively. Measurement accuracy is insensitive to probe location and tonnage of the die-casting machine. Moreover, the ultrasonic measurement method can be used to monitor clamping health status and inspect the dynamic pulling force of the tie-bar. This approach has the advantages of high precision, high repeatability, easy installation, and noninterference, which helps guide the production in die casting.

  • RESEARCH ARTICLE
    Yingjun WANG, Liang GAO, Jinping QU, Zhaohui XIA, Xiaowei DENG
    Frontiers of Mechanical Engineering, 2021, 16(4): 782-797. https://doi.org/10.1007/s11465-021-0648-0

    In isogeometric analysis (IGA), the boundary representation of computer-aided design (CAD) and the tensor-product non-uniform rational B-spline structure make the analysis of three-dimensional (3D) problems with irregular geometries difficult. In this paper, an IGA method for complex models is presented by reconstructing analysis-suitable models. The CAD model is represented by boundary polygons or point cloud and is embedded into a regular background grid, and a model reconstruction method is proposed to obtain the level set function of the approximate model, which can be directly used in IGA. Three 3D examples are used to test the proposed method, and the results demonstrate that the proposed method can deal with complex engineering parts reconstructed by boundary polygons or point clouds.

  • RESEARCH ARTICLE
    Hua ZHAO, Lu MENG, Shaoying LI, Jihong ZHU, Shangqin YUAN, Weihong ZHANG
    Frontiers of Mechanical Engineering, 2022, 17(1): 6. https://doi.org/10.1007/s11465-021-0662-2

    Aiming at the exploration and resource utilization activities on the Moon, in situ resource utilization and in situ manufacturing are proposed to minimize the dependence on the ground transportation supplies. In this paper, a laser-assisted additive manufacturing process is developed to fabricate lunar regolith composites with PA12/SiO2 mixing powders. The process parameters and composite material compositions are optimized in an appropriate range through orthogonal experiments to establish the relationship of process–structure–property for lunar regolith composites. The optimal combination of composite material compositions and process parameters are mixing ratio of 50/50 in volume, laser power of 30 W, scanning speed of 3500 mm/s, and scanning hatch space of 0.2 mm. The maximum tensile strength of lunar regolith composites reaches 9.248 MPa, and the maximum depth of surface variation is 120.79 μm, which indicates poor powder fusion and sintering quality. Thereafter, the mechanical properties of laser-sintered lunar regolith composites are implemented to the topology optimization design of complex structures. The effectiveness and the feasibility of this laser-assisted process are potentially developed for future lightweight design and manufacturing of the solar panel installed on the lunar rover.

  • RESEARCH ARTICLE
    Yu YANG, Hui CHENG, Biao LIANG, Guoyi HOU, Di ZHAO, Chun LIU, Kaifu ZHANG
    Frontiers of Mechanical Engineering, 2021, 16(4): 840-854. https://doi.org/10.1007/s11465-021-0643-5

    In this paper, an improved fractal interpolation model is proposed to reconstruct the surface topography of composite hole wall. This model adopts the maximum positive deviations and maximum negative deviations between the measured values and trend values to determine the contraction factors. Hole profiles in 24 directions are measured. Fractal parameters are calculated to evaluate the measured surface profiles. The maximum and minimum fractal dimension of the hole wall are 1.36 and 1.07, whereas the maximum and minimum fractal roughness are 4.05 × 10 −5 and 4.36 × 10 −10 m, respectively. Based on the two-dimensional evaluation results, three-dimensional surface topographies in five typical angles (0°, 45°, 90°, 135°, and 165°) are reconstructed using the improved model. Fractal parameter D s and statistical parameters Sa, Sq, and Sz are used to evaluate the reconstructed surfaces. Average error of D s, Sa, Sq, and Sz between the measured surfaces and the reconstructed surfaces are 1.53%, 3.60%, 5.60%, and 9.47%, respectively. Compared with the model in published literature, the proposed model has equal reconstruction effect in relatively smooth surface and is more advanced in relatively rough surface. Comparative results prove that the proposed model for calculating contraction factors is more reasonable.

  • RESEARCH ARTICLE
    Hexiang YUAN, Jiapeng YU, Duo JIA, Qiang LIU, Hui MA
    Frontiers of Mechanical Engineering, 2021, 16(4): 798-813. https://doi.org/10.1007/s11465-021-0645-3

    External pipe routing for aero-engine in limited three-dimensional space is a typical nondeterministic polynomial hard problem, where the parallel layout of pipes plays an important role in improving the utilization of layout space, facilitating pipe assembly, and maintenance. This paper presents an automatic multiple pipe routing method for aero-engine that focuses on parallel layout. The compressed visibility graph construction algorithm is proposed first to determine rapidly the rough path and interference relationship of the pipes to be routed. Based on these rough paths, the information of pipe grouping and sequencing are obtained according to the difference degree and interference degree, respectively. Subsequently, a coevolutionary improved differential evolution algorithm, which adopts the coevolutionary strategy, is used to solve multiple pipe layout optimization problem. By using this algorithm, pipes in the same group share the layout space information with one another, and the optimal layout solution of pipes in this group can be obtained in the same evolutionary progress. Furthermore, to eliminate the minor angle deviation of parallel pipes that would cause assembly stress in actual assembly, an accurate parallelization processing method based on the simulated annealing algorithm is proposed. Finally, the simulation results on an aero-engine demonstrate the feasibility and effectiveness of the proposed method.

  • RESEARCH ARTICLE
    Shiping ZUO, Jianfeng LI, Mingjie DONG, Guotong LI, Yu ZHOU
    Frontiers of Mechanical Engineering, 2021, 16(4): 726-746. https://doi.org/10.1007/s11465-021-0651-5

    Robot-assisted technology has been increasingly employed in the therapy of post stroke patients to deliver high-quality treatment and alleviate therapists’ burden. This paper introduces a novel parallel end traction apparatus (PETA) to supplement equipment selection. Considering the appearance and performance of the PETA, two types of special five-bar linkage mechanisms are selected as the potential configurations of the actuation execution unit because of their compact arrangement and parallel structure. Kinematic analysis of each mechanism, i.e., position solutions and Jacobian matrix, is carried out. Subsequently, a comparative study between the two mechanisms is conducted. In the established source of nondimensional parameter synthesis, the singularity, maximum continuous workspace, and performance variation trends are analyzed. Based on the evaluation results, the final scheme with determined configuration and corresponding near-optimized nondimensional parameters is obtained. Then, a prototype is constructed. By adding a lockable translational degree of freedom in the vertical direction, the PETA can provide 2D planar exercise and 3D spatial exercise. Finally, a control system is developed for passive exercise mode based on the derived inverse position solution, and preliminary experiments are performed to verify the applicability of the PETA.

  • RESEARCH ARTICLE
    Erheng CHEN, Hongcheng LI, Huajun CAO, Xuanhao WEN
    Frontiers of Mechanical Engineering, 2021, 16(4): 868-886. https://doi.org/10.1007/s11465-021-0656-0

    Die casting machines, which are the core equipment of the machinery manufacturing industry, consume great amounts of energy. The energy consumption prediction of die casting machines can support energy consumption quota, process parameter energy-saving optimization, energy-saving design, and energy efficiency evaluation; thus, it is of great significance for Industry 4.0 and green manufacturing. Nevertheless, due to the uncertainty and complexity of the energy consumption in die casting machines, there is still a lack of an approach for energy consumption prediction that can provide support for process parameter optimization and product design taking energy efficiency into consideration. To fill this gap, this paper proposes an energy consumption prediction approach for die casting machines driven by product parameters. Firstly, the system boundary of energy consumption prediction is defined, and subsequently, based on the energy consumption characteristics analysis, a theoretical energy consumption model is established. Consequently, a systematic energy consumption prediction approach for die casting machines, involving product, die, equipment, and process parameters, is proposed. Finally, the feasibility and reliability of the proposed energy consumption prediction approach are verified with the help of three die casting machines and six types of products. The results show that the prediction accuracy of production time and energy consumption reached 91.64% and 85.55%, respectively. Overall, the proposed approach can be used for the energy consumption prediction of different die casting machines with different products.

  • REVIEW ARTICLE
    Teng GAO, Yanbin ZHANG, Changhe LI, Yiqi WANG, Yun CHEN, Qinglong AN, Song ZHANG, Hao Nan LI, Huajun CAO, Hafiz Muhammad ALI, Zongming ZHOU, Shubham SHARMA
    Frontiers of Mechanical Engineering, 2022, 17(2): 24. https://doi.org/10.1007/s11465-022-0680-8

    Fiber-reinforced composites have become the preferred material in the fields of aviation and aerospace because of their high-strength performance in unit weight. The composite components are manufactured by near net-shape and only require finishing operations to achieve final dimensional and assembly tolerances. Milling and grinding arise as the preferred choices because of their precision processing. Nevertheless, given their laminated, anisotropic, and heterogeneous nature, these materials are considered difficult-to-machine. As undesirable results and challenging breakthroughs, the surface damage and integrity of these materials is a research hotspot with important engineering significance. This review summarizes an up-to-date progress of the damage formation mechanisms and suppression strategies in milling and grinding for the fiber-reinforced composites reported in the literature. First, the formation mechanisms of milling damage, including delamination, burr, and tear, are analyzed. Second, the grinding mechanisms, covering material removal mechanism, thermal mechanical behavior, surface integrity, and damage, are discussed. Third, suppression strategies are reviewed systematically from the aspects of advanced cutting tools and technologies, including ultrasonic vibration-assisted machining, cryogenic cooling, minimum quantity lubrication (MQL), and tool optimization design. Ultrasonic vibration shows the greatest advantage of restraining machining force, which can be reduced by approximately 60% compared with conventional machining. Cryogenic cooling is the most effective method to reduce temperature with a maximum reduction of approximately 60%. MQL shows its advantages in terms of reducing friction coefficient, force, temperature, and tool wear. Finally, research gaps and future exploration directions are prospected, giving researchers opportunity to deepen specific aspects and explore new area for achieving high precision surface machining of fiber-reinforced composites.

  • RESEARCH ARTICLE
    Xiaotong XU, Yutao LUO, Xue HAO
    Frontiers of Mechanical Engineering, 2021, 16(4): 887-900. https://doi.org/10.1007/s11465-021-0653-3

    Multispeed transmissions can enhance the dynamics and economic performance of electric vehicles (EVs), but the coordinated control of the drive motor and gear shift mechanism during gear shifting is still a difficult challenge because gear shifting may cause discomfort to the occupants. To improve the swiftness of gear shifting, this paper proposes a coordinated shift control method based on the dynamic tooth alignment (DTA) algorithm for nonsynchronizer automated mechanical transmissions (NSAMTs) of EVs. After the speed difference between the sleeve (SL) and target dog gear is reduced to a certain value by speed synchronization, angle synchronization is adopted to synchronize the SL quickly to the target tooth slot’s angular position predicted by the DTA. A two-speed planetary NSAMT is taken as an example to carry out comparative simulations and bench experiments. Results show that gear shifting duration and maximum jerk are reduced under the shift control with the proposed method, which proves the effectiveness of the proposed coordinated shift control method with DTA.

  • RESEARCH ARTICLE
    Zequan YAO, Chang FAN, Zhao ZHANG, Dinghua ZHANG, Ming LUO
    Frontiers of Mechanical Engineering, 2021, 16(4): 855-867. https://doi.org/10.1007/s11465-021-0649-z

    Machined surface roughness will affect parts’ service performance. Thus, predicting it in the machining is important to avoid rejects. Surface roughness will be affected by system position dependent vibration even under constant parameter with certain toolpath processing in the finishing. Aiming at surface roughness prediction in the machining process, this paper proposes a position-varying surface roughness prediction method based on compensated acceleration by using regression analysis. To reduce the stochastic error of measuring the machined surface profile height, the surface area is repeatedly measured three times, and Pauta criterion is adopted to eliminate abnormal points. The actual vibration state at any processing position is obtained through the single-point monitoring acceleration compensation model. Seven acceleration features are extracted, and valley, which has the highest R-square proving the effectiveness of the filtering features, is selected as the input of the prediction model by mutual information coefficients. Finally, by comparing the measured and predicted surface roughness curves, they have the same trends, with the average error of 16.28% and the minimum error of 0.16%. Moreover, the prediction curve matches and agrees well with the actual surface state, which verifies the accuracy and reliability of the model.

  • RESEARCH ARTICLE
    Zhixian SHEN, Laihao YANG, Baijie QIAO, Wei LUO, Xuefeng CHEN, Ruqiang YAN
    Frontiers of Mechanical Engineering, 2022, 17(1): 9. https://doi.org/10.1007/s11465-021-0665-z

    Gear wear is one of the most common gear failures, which changes the mesh relationship of normal gear. A new mesh relationship caused by gear wear affects meshing excitations, such as mesh stiffness and transmission error, and further increases vibration and noise level. This paper aims to establish the model of mesh relationship and reveal the vibration characteristics of external spur gears with gear wear. A geometric model for a new mesh relationship with gear wear is proposed, which is utilized to evaluate the influence of gear wear on mesh stiffness and unloaded static transmission error (USTE). Based on the mesh stiffness and USTE considering gear wear, a gear dynamic model is established, and the vibration characteristics of gear wear are numerically studied. Comparison with the experimental results verifies the proposed dynamic model based on the new mesh relationship. The numerical and experimental results indicate that gear wear does not change the structure of the spectrum, but it alters the amplitude of the meshing frequencies and their sidebands. Several condition indicators, such as root-mean-square, kurtosis, and first-order meshing frequency amplitude, can be regarded as important bases for judging gear wear state.

  • RESEARCH ARTICLE
    Xiaodong WANG, Dongxiang HOU, Bin LIU, Xuesong MEI, Xintian WANG, Renhan LIAN
    Frontiers of Mechanical Engineering, 2022, 17(2): 19. https://doi.org/10.1007/s11465-022-0675-5

    Ceramic structural parts are one of the most widely utilized structural parts in the industry. However, they usually contain defects following the pressing process, such as burrs. Therefore, additional trimming is usually required, despite the deformation challenges and difficulty in positioning. This paper proposes an ultrafast laser processing system for trimming complex ceramic structural parts. Opto-electromechanical cooperative control software is developed to control the laser processing system. The trimming problem of the ceramic cores used in aero engines is studied. The regional registration method is introduced based on the iterative closest point algorithm to register the path extracted from the computer-aided design model with the deformed ceramic core. A zonal and layering processing method for three-dimensional contours on complex surfaces is proposed to generate the working data of high-speed scanning galvanometer and the computer numerical control machine tool, respectively. The results show that the laser system and the method proposed in this paper are suitable for trimming complex non-datum parts such as ceramic cores. Compared with the results of manual trimming, the method proposed in this paper has higher accuracy, efficiency, and yield. The method mentioned above has been used in practical application with satisfactory results.

  • RESEARCH ARTICLE
    Aodi YANG, Xianda XIE, Nianmeng LUO, Jie ZHANG, Ning JIANG, Shuting WANG
    Frontiers of Mechanical Engineering, 2022, 17(1): 14. https://doi.org/10.1007/s11465-021-0670-2

    The variable density topology optimization (TO) method has been applied to various engineering fields because it can effectively and efficiently generate the conceptual design for engineering structures. However, it suffers from the problem of low continuity resulting from the discreteness of both design variables and explicit Heaviside filter. In this paper, an implicit Heaviside filter with high continuity is introduced to generate black and white designs for TO where the design space is parameterized by suitably graded truncated hierarchical B-splines (THB). In this approach, the fixed analysis mesh of isogeometric analysis is decoupled from the design mesh, whose adaptivity is implemented by truncated hierarchical B-spline subjected to an admissible requirement. Through the intrinsic local support and high continuity of THB basis, an implicit adaptively adjusted Heaviside filter is obtained to remove the checkboard patterns and generate black and white designs. Threefold advantages are attained in the proposed filter: a) The connection between analysis mesh and adaptive design mesh is easily established compared with the traditional adaptive TO method using nodal density; b) the efficiency in updating design variables is remarkably improved than the traditional implicit sensitivity filter based on B-splines under successive global refinement; and c) the generated black and white designs are preliminarily compatible with current commercial computer aided design system. Several numerical examples are used to verify the effectiveness of the proposed implicit Heaviside filter in compliance and compliant mechanism as well as heat conduction TO problems.

  • RESEARCH ARTICLE
    Qun CHAO, Jianfeng TAO, Chengliang LIU, Zhengliang LI
    Frontiers of Mechanical Engineering, 2022, 17(2): 15. https://doi.org/10.1007/s11465-021-0671-1

    The axial piston pumps in aerospace applications are often characterized by high-speed rotation to achieve great power density. However, their internal rotating parts are fully immersed in the casing oil during operation, leading to considerable churning losses (more than 10% of total power losses) at high rotational speeds. The churning losses deserve much attention at the design stage of high-speed axial piston pumps, but accurate analytical models are not available to estimate the drag torque associated with the churning losses. In this paper, we derive the analytical expressions of the drag torque acting on the key rotating parts immersed in oil, including the cylinder block and the multiple pistons in a circular array. The calculated drag torque agrees well with the experimental data over a wide range of rotational speeds from 1500 to 12000 r/min. The presented analytical model provides practical guidelines for reducing the churning losses in high-speed axial piston pumps or motors.

  • RESEARCH ARTICLE
    Xu WANG, Hongyang GU, Tianyang WANG, Wei ZHANG, Aihua LI, Fulei CHU
    Frontiers of Mechanical Engineering, 2021, 16(4): 814-828. https://doi.org/10.1007/s11465-021-0650-6

    The fault diagnosis of bearings is crucial in ensuring the reliability of rotating machinery. Deep neural networks have provided unprecedented opportunities to condition monitoring from a new perspective due to the powerful ability in learning fault-related knowledge. However, the inexplicability and low generalization ability of fault diagnosis models still bar them from the application. To address this issue, this paper explores a decision-tree-structured neural network, that is, the deep convolutional tree-inspired network (DCTN), for the hierarchical fault diagnosis of bearings. The proposed model effectively integrates the advantages of convolutional neural network (CNN) and decision tree methods by rebuilding the output decision layer of CNN according to the hierarchical structural characteristics of the decision tree, which is by no means a simple combination of the two models. The proposed DCTN model has unique advantages in 1) the hierarchical structure that can support more accuracy and comprehensive fault diagnosis, 2) the better interpretability of the model output with hierarchical decision making, and 3) more powerful generalization capabilities for the samples across fault severities. The multiclass fault diagnosis case and cross-severity fault diagnosis case are executed on a multicondition aeronautical bearing test rig. Experimental results can fully demonstrate the feasibility and superiority of the proposed method.

  • RESEARCH ARTICLE
    Tinggui CHEN, Bo WU, Dejie YU
    Frontiers of Mechanical Engineering, 2022, 17(1): 10. https://doi.org/10.1007/s11465-021-0666-y

    Rotating machine fault signal extraction becomes increasingly important in practical engineering applications. However, fault signals with low signal-to-noise ratios (SNRs) are difficult to extract, especially at the early stage of fault diagnosis. In this paper, 2D line-defect phononic crystals (PCs) consisting of periodic acrylic tubes with slit are proposed for weak signal detection. The defect band, namely, the formed resonance band of line-defect PCs enables the incident acoustic wave at the resonance frequency to be trapped and enhanced at the resonance cavity. The noise can be filtered by the band gap. As a result, fault signals with high SNRs can be obtained for fault feature extraction. The effectiveness of weak harmonic and periodic impulse signal detection via line-defect PCs are investigated in numerical and experimental studies. All the numerical and experimental results indicate that line-defect PCs can be well used for extracting weak harmonic and periodic impulse signals. This work will provide potential for extracting weak signals in many practical engineering applications.

  • RESEARCH ARTICLE
    Wenhao JI, Wei SUN, Donghai WANG, Zhonghua LIU
    Frontiers of Mechanical Engineering, 2022, 17(1): 11. https://doi.org/10.1007/s11465-021-0667-x

    In the design and troubleshooting of aero-engine pipeline, the vibration reduction of the pipeline system is often achieved by adjusting the hoop layout, provided that the shape of pipeline remains unchanged. However, in reality, the pipeline system with the best antivibration performance may be obtained only by adjusting the pipeline shape. In this paper, a typical spatial pipeline is taken as the research object, the length of straight-line segment is taken as the design variable, and an innovative optimization method of avoiding vibration of aero-engine pipeline is proposed. The relationship between straight-line segment length and parameters that determine the geometric characteristics of the pipeline, such as the position of key reference points, bending angle, and hoop position, are derived in detail. Based on this, the parametric finite element model of the pipeline system is established. Taking the maximum first-order natural frequency of pipeline as the optimization objective and introducing process constraints and vibration avoidance constraints, the optimization model of the pipeline system is established. The genetic algorithm and the golden section algorithm are selected to solve the optimization model, and the relevant solution procedure is described in detail. Finally, two kinds of pipelines with different total lengths are selected to carry out a case study. Based on the analysis of the influence of straight-line segment length on the vibration characteristics of the pipeline system, the optimization methods developed in this paper are demonstrated. Results show that the developed optimization method can obtain the optimal single value or interval of the straight-line segment length while avoiding the excitation frequency. In addition, the optimization efficiency of the golden section algorithm is remarkably higher than that of the genetic algorithm for length optimization of a single straight-line segment.