Journal home Browse Most accessed

Most accessed

  • Select all
    Dongxu WU, Fengzhou FANG
    Frontiers of Mechanical Engineering, 2021, 16(1): 1-31.

    Optical interferometry is a powerful tool for measuring and characterizing areal surface topography in precision manufacturing. A variety of instruments based on optical interferometry have been developed to meet the measurement needs in various applications, but the existing techniques are simply not enough to meet the ever-increasing requirements in terms of accuracy, speed, robustness, and dynamic range, especially in on-line or on-machine conditions. This paper provides an in-depth perspective of surface topography reconstruction for optical interferometric measurements. Principles, configurations, and applications of typical optical interferometers with different capabilities and limitations are presented. Theoretical background and recent advances of fringe analysis algorithms, including coherence peak sensing and phase-shifting algorithm, are summarized. The new developments in measurement accuracy and repeatability, noise resistance, self-calibration ability, and computational efficiency are discussed. This paper also presents the new challenges that optical interferometry techniques are facing in surface topography measurement. To address these challenges, advanced techniques in image stitching, on-machine measurement, intelligent sampling, parallel computing, and deep learning are explored to improve the functional performance of optical interferometry in future manufacturing metrology.

    Yin ZHANG, Jianwei WU, Kunpeng XING, Zhongpu WEN, Jiubin TAN
    Frontiers of Mechanical Engineering, 2020, 15(4): 517-537.

    This paper presents a dynamic and static error transfer model and uncertainty evaluation method for a high-speed variable-slit system based on a two- dimensional orthogonal double-layer air-floating guide rail structure. The motion accuracy of the scanning blade is affected by both the moving component it is attached to and the moving component of the following blade during high-speed motion. First, an error transfer model of the high-speed variable-slit system is established, and the influence coefficients are calculated for each source of error associated with the accuracy of the blade motion. Then, the maximum range of each error source is determined by simulation and experiment. Finally, the uncertainty of the blade displacement measurement is evaluated using the Monte Carlo method. The proposed model can evaluate the performance of the complex mechanical system and be used to guide the design.

    Adam BENNETT, Nan YU, Marco CASTELLI, Guoda CHEN, Alessio BALLERI, Takuya URAYAMA, Fengzhou FANG
    Frontiers of Mechanical Engineering, 2021, 16(1): 122-132.

    Microwave induced plasma torches find wide applications in material and chemical analysis. Investigation of a coaxial electrode microwave induced plasma (CE–MIP) torch is conducted in this study, making it available for glass surface modification and polishing. A dedicated nozzle is designed to inject secondary gases into the main plasma jet. This study details the adaptation of a characterisation process for CE–MIP technology. Microwave spectrum analysis is used to create a polar plot of the microwave energy being emitted from the coaxial electrode, where the microwave energy couples with the gas to generate the plasma jet. Optical emission spectroscopy analysis is also employed to create spatial maps of the photonic intensity distribution within the plasma jet when different additional gases are injected into it. The CE–MIP torch is experimentally tested for surface energy modification on glass where it creates a super-hydrophilic surface.

    Yuwang LIU, Dongqi WANG, Shangkui YANG, Jinguo LIU, Guangbo HAO
    Frontiers of Mechanical Engineering, 2021, 16(1): 32-45.

    Passive variable stiffness joints have unique advantages over active variable stiffness joints and are currently eliciting increased attention. Existing passive variable stiffness joints rely mainly on sensors and special control algorithms, resulting in a bandwidth-limited response speed of the joint. We propose a new passive power-source-free stiffness-self-adjustable mechanism that can be used as the elbow joint of a robot arm. The new mechanism does not require special stiffness regulating motors or sensors and can realize large-range self-adaptive adjustment of stiffness in a purely mechanical manner. The variable stiffness mechanism can automatically adjust joint stiffness in accordance with the magnitude of the payload, and this adjustment is a successful imitation of the stiffness adjustment characteristics of the human elbow. The response speed is high because sensors and control algorithms are not needed. The variable stiffness principle is explained, and the design of the variable stiffness mechanism is analyzed. A prototype is fabricated, and the associated hardware is set up to validate the analytical stiffness model and design experimentally.

    Wenyuan LI, Yu HUANG, Youmin RONG, Long CHEN, Guojun ZHANG, Zhangrui GAO
    Frontiers of Mechanical Engineering, 2021, 16(1): 97-110.

    Cutting quality and efficiency have always been important indicators of glass laser cutting. Laser scanning modes have two kinds, namely, the spiral and concentric circle scanning modes. These modes can achieve high-performance hole cutting of thick solar float glass using a 532-nm nanosecond laser. The mechanism of the glass laser cutting under these two different scanning modes has been described. Several experiments are conducted to explore the effect of machining parameters on cutting efficiency and quality under these two scanning modes. Results indicate that compared with the spiral scanning mode, the minimum area of edge chipping (218340 µm2) and the minimum Ra (3.01 µm) in the concentric circle scanning mode are reduced by 9.4% and 16.4% respectively. Moreover, the best cutting efficiency scanning mode is 14.2% faster than that in the spiral scanning mode. The best parameter combination for the concentric circle scanning mode is as follows: Scanning speed: 2200 mm/s, number of inner circles: 6, and circle spacing: 0.05 mm. This parameter combination reduces the chipping area and sidewall surface roughness by 8.8% and 9.6% respectively at the same cutting efficiency compared with the best spiral processing parameters. The range of glass processing that can be achieved in the concentric circle scanning mode is wider than that in the spiral counterpart. The analyses of surface topography, white spots, microstructures, and sidewall surface element composition are also performed. The study concluded that the concentric circle scanning mode shows evident advantages in the performance of solar float glass hole cutting.

    Tie ZHANG, Caicheng WU, Yanbiao ZOU
    Frontiers of Mechanical Engineering, 2020, 15(4): 645-658.

    As the traditional cross-coupling control method cannot meet the requirements for tracking accuracy and contour control accuracy in large curvature positions, an integrated control strategy of cross-coupling contour error compensation based on chord error constraint, which consists of a cross-coupling controller and an improved position error compensator, is proposed. To reduce the contour error, a PI-type cross-coupling controller is designed, with its stability being analyzed by using the contour error transfer function. Moreover, a feed rate regulator based on the chord error constraint is proposed, which performs speed planning with the maximum feed rate allowed by the large curvature position as the constraint condition, so as to meet the requirements of large curvature positions for the chord error. Besides, an improved position error compensation method is further presented by combining the feed rate regulator with the position error compensator, which improves the tracking accuracy via the advance compensation of tracking error. The biaxial experimental results of non-uniform rational B-splines curves indicate that the proposed integrated control strategy can significantly improve the tracking and contour control accuracy in biaxial contour following tasks.

    Peng ZOU, Xiangming CHEN, Hao CHEN, Guanhua XU
    Frontiers of Mechanical Engineering, 2020, 15(4): 558-570.

    Experimental and finite element research was conducted on the bolted interference fit of a single-lap laminated structure to reveal the damage propagation mechanism and strength change law. A typical single-lap statically loading experiment was performed, and a finite element damage prediction model was built based on intralaminar progress damage theory. The model was programmed with a user subroutine and an interlaminar cohesive zone method. The deformation and damage propagation of the specimen were analyzed, and the failure mechanism of intralaminar and interlaminar damage during loading was discussed. The effect of secondary bending moment on load translation and damage distribution was revealed. The experimental and simulated load–displacement curves were compared to validate the developed model’s reliability, and the ultimate bearing strengths under different fit percentages were predicted. An optimal percentage was also recommended.

    Guofeng MA, Renke KANG, Zhigang DONG, Sen YIN, Yan BAO, Dongming GUO
    Frontiers of Mechanical Engineering, 2020, 15(4): 538-546.

    Carbon fiber reinforced plastic (CFRP) composites are extremely attractive in the manufacturing of structural and functional components in the aircraft manufacturing field due to their outstanding properties, such as good fatigue resistance, high specific stiffness/strength, and good shock absorption. However, because of their inherent anisotropy, low interlamination strength, and abrasive characteristics, CFRP composites are considered difficult-to-cut materials and are prone to generating serious hole defects, such as delamination, tearing, and burrs. The advanced longitudinal–torsional coupled ultrasonic vibration assisted drilling (LTC-UAD) method has a potential application for drilling CFRP composites. At present, LTC-UAD is mainly adopted for drilling metal materials and rarely for CFRP. Therefore, this study analyzes the kinematic characteristics and the influence of feed rate on the drilling performance of LTC-UAD. Experimental results indicate that LTC-UAD can reduce the thrust force by 39% compared to conventional drilling. Furthermore, LTC-UAD can decrease the delamination and burr factors and improve the surface quality of the hole wall. Thus, LTC-UAD is an applicable process method for drilling components made with CFRP composites.

    Bo WANG, Feng ZHAO, Zixu ZHAO, Kunpeng XU
    Frontiers of Mechanical Engineering, 2020, 15(4): 571-584.

    Compared with traditional materials, composite materials have lower specific gravity, larger specific strength, larger specific modulus, and better designability structure and structural performance. However, the variability of structural properties hinders the control and prediction of the performance of composite materials. In this work, the Rayleigh–Ritz and orthogonal polynomial methods were used to derive the dynamic equations of composite materials and obtain the natural frequency expressions on the basis of the constitutive model of laminated composite materials. The correctness of the analytical model was verified by modal hammering and frequency sweep tests. On the basis of the established theoretical model, the influencing factors, including layers, thickness, and fiber angles, on the natural frequencies of laminated composites were analyzed. Furthermore, the coupling effects of layers, fiber angle, and lay-up sequence on the natural frequencies of composites were studied. Research results indicated that the proposed method could accurately and effectively analyze the influence of single and multiple factors on the natural frequencies of composite materials. Hence, this work provides a theoretical basis for preparing composite materials with different natural frequencies and meeting the requirements of different working conditions.

    Xiaojun GU, Xiuzhong SU, Jun WANG, Yingjie XU, Jihong ZHU, Weihong ZHANG
    Frontiers of Mechanical Engineering, 2020, 15(4): 547-557.

    Carbon fiber reinforced polymer (CFRP) composites have excellent mechanical properties, specifically, high specific stiffness and strength. However, most CFRP composites exhibit poor impact resistance. To overcome this limitation, this study presents a new plain-woven CFRP composite embedded with superelastic shape memory alloy (SMA) wires. Composite specimens are fabricated using the vacuum-assisted resin injection method. Drop-weight impact tests are conducted on composite specimens with and without SMA wires to evaluate the improvement of impact resistance. The material models of the CFRP composite and superelastic SMA wire are introduced and implemented into a finite element (FE) software by the explicit user-defined material subroutine. FE simulations of the drop-weight impact tests are performed to reveal the superelastic deformation and debonding failure of the SMA inserts. Improvement of the energy absorption capacity and toughness of the SMA-CFRP composite is confirmed by the comparison results.

    Yongqiang GUO, Chunguo XU, Jingtao HAN, Zhengyu WANG
    Frontiers of Mechanical Engineering, 2020, 15(4): 622-630.

    This study analyzed the deformation law of rear axles with variable wall thickness under bidirectional horizontal extrusion and found that necking was accompanied by upsetting deformation through theoretical calculation, numerical simulation, and experimental research. The sequence and occurrence of necking and upsetting deformations were obtained. A theory of deformation was proposed by controlling the distribution of temperature field. Effective processes to control the wall thickness of rear axle at different positions were also proposed. The ultimate limit deformation with a necking coefficient of 0.68 could be achieved using the temperature gradient coefficient. A new technology of two-step heating and two-step extrusion for a 13 t rear axle was developed, qualified test samples were obtained, and suggestions for further industrial application were put forward.

    Ning CHEN, Jieji ZHENG, Xianliang JIANG, Shixun FAN, Dapeng FAN
    Frontiers of Mechanical Engineering, 2020, 15(4): 585-599.

    Micro-stepping motion of ultrasonic motors satisfies biomedical applications, such as cell operation and nuclear magnetic resonance, which require a precise compact-structure non-magnetization positioning device. When the pulse number is relatively small, the stopping characteristics have a non-negligible effect on the entire stepwise process. However, few studies have been conducted to show the rule of the open-loop stepwise motion, especially the shutdown stage. In this study, the modal differences of the shutdown stage are found connected with amplitude and velocity at the turn-off instant. Changes of the length in the contact area and driving zone as well as the input currents, vibration states, output torque, and axial pressure are derived by a simulation model to further explore the rules. The speed curves and vibration results in functions of different pulse numbers are compared, and the stepwise motion can be described by a two-stage two-order transfer function. A test workbench based on the Field Programmable Gate Array is built for acquiring the speed, currents, and feedback voltages of the startup–shutdown stage accurately with the help of its excellent synchronization performances. Therefore, stator vibration, rotor velocity, and terminal displacements under different pulse numbers can be compared. Moreover, the two-stage two-order model is identified on the stepwise speed curves, and the fitness over 85% between the simulation and test verifies the model availability. Finally, with the optimization of the pulse number, the motor achieves 3.3 µrad in clockwise and counterclockwise direction.

    Yidan WANG, Renke KANG, Yan QIN, Qian MENG, Zhigang DONG
    Frontiers of Mechanical Engineering, 2021, 16(2): 285-297.

    Ultrasonic cutting with a disc cutter is an advanced machining method for the high-quality processing of Nomex honeycomb core. The machining quality is influenced by ultrasonic cutting parameters, as well as tool orientations, which are determined by the multi-axis machining requirements and the angle control of the cutting system. However, in existing research, the effect of the disc cutter orientation on the machining quality has not been studied in depth, and practical guidance for the use of disc cutters is lacking. In this work, the inclined ultrasonic cutting process with a disc cutter was analyzed, and cutting experiments with different inclination angles were conducted. The theoretical residual height models of the honeycomb core, as a result of the lead and tilt angles, were established and verified with the results obtained by a linear laser displacement sensor. Research shows that the residual height of the honeycomb core, as a result of the tilt angle, is much larger than that as a result of the lead angle. Furthermore, the tearing of the cell wall on the machined surface was observed, and the effects of the ultrasonic vibration, lead angle, and tilt angle on the tear rate and tear length of the cell wall were studied. Experimental results revealed that ultrasonic vibration can effectively decrease the tearing of the cell wall and improve the machining quality. Changes in the tilt angle have less effect than changes in the lead angle on the tearing of the cell wall. The determination of inclination angles should consider the actual processing requirements for the residual height and the machining quality of the cell wall. This study investigates the influence of the inclination angles of a disc cutter on the machining quality of Nomex honeycomb core in ultrasonic cutting and provides guidelines for machining.

    Yue ZHAO, Feng GAO, Qiao SUN, Yunpeng YIN
    Frontiers of Mechanical Engineering, 2021, 16(2): 271-284.

    Legged robots have potential advantages in mobility compared with wheeled robots in outdoor environments. The knowledge of various ground properties and adaptive locomotion based on different surface materials plays an important role in improving the stability of legged robots. A terrain classification and adaptive locomotion method for a hexapod robot named Qingzhui is proposed in this paper. First, a force-based terrain classification method is suggested. Ground contact force is calculated by collecting joint torques and inertial measurement unit information. Ground substrates are classified with the feature vector extracted from the collected data using the support vector machine algorithm. Then, an adaptive locomotion on different ground properties is proposed. The dynamic alternating tripod trotting gait is developed to control the robot, and the parameters of active compliance control change with the terrain. Finally, the method is integrated on a hexapod robot and tested by real experiments. Our method is shown effective for the hexapod robot to walk on concrete, wood, grass, and foam. The strategies and experimental results can be a valuable reference for other legged robots applied in outdoor environments.

    Shuting WANG, Liquan JIANG, Jie MENG, Yuanlong XIE, Han DING
    Frontiers of Mechanical Engineering, 2021, 16(2): 249-270.

    Practice experimentation that integrates the manufacturing processes and cutting-edge technologies of smart manufacturing (SM) is essential for future academic and applied engineering personnel. The broadening efficacy of hands-on experience in SM engineering education has been manifested. In this regard, a reference practical system is proposed in this study for hands-on training in SM crucial advancements. The system constructs a mobile robot-based production line (MRPL) to increase participants’ interest in theoretical learning and professional skills. The MRPL-based reference system includes the comprehensive principles and processes involved in modern SM factories from warehousing to logistics, processing, and testing. With key features of modularity, integrability, customizability, and open architecture, this system has a threefold objective. First, it is an interdisciplinary subject that enables students to translate classroom learning into authentic practices, thus facilitating knowledge synthesis and training involvements. Second, it offers effective support to cultivate the attributions and behavioral competencies of SM talents, such as perseverance, adaptability, and cooperation. Third, it promotes students’ capacities for critical thinking and problem solving so that they can deal with the difficulties that physical systems have and motivates them to pursue careers with new syllabi, functions, and process techno-logies. The received positive evaluations and assessments confirm that this MRPL-based reference system is beneficial for modern SM talent training in higher engineering education.

    Yonghan GUAN, Yan’an YAO, Chao LIU, Ruiming LI
    Frontiers of Mechanical Engineering, 2021, 16(2): 363-378.

    With recent relevant publications on stochastic motion robots in Nature, Science, and other journals, research on such robots has gained increasing attention. However, theoretical and applied research on stochastic motion in the field of robotics and mechanisms face many challenges due to the uncertainty of stochastic motion. Currently, a large gap remains in the research of stochastic motion mechanism. In this study, a novel mechanism that can conduct probabilistic rolling is proposed to reach a designated position and achieve overlying movement over a particular area. The mechanism consists of a regular tetrahedron frame, a central node, and four connecting linear actuators. According to mobility and kinematic analyses, the mechanism can implement probabilistic rolling. Each rolling gait has three probable rolling directions, and the mechanism rolls in one of the three directions in probability. A kinematic simulation is conducted, and a control method is proposed on the basis of the moving path analysis. Furthermore, the mathematical principle of probabilistic rolling is revealed in terms of probability theory and statistics. Lastly, a prototype is fabricated. To achieve the rolling function, the design of the linear actuators is improved, and the extension ratio is increased from 0.58 to 1.13. Then, tests are conducted. In a 4 m2 test site, the mechanism makes 11 moves to reach the target position and covers 29.25% of the site.

    Xingzheng CHEN, Congbo LI, Ying TANG, Li LI, Hongcheng LI
    Frontiers of Mechanical Engineering, 2021, 16(2): 221-248.

    Mechanical manufacturing industry consumes substantial energy with low energy efficiency. Increasing pressures from energy price and environmental directive force mechanical manufacturing industries to implement energy efficient technologies for reducing energy consumption and improving energy efficiency of their machining processes. In a practical machining process, cutting parameters are vital variables set by manufacturers in accordance with machining requirements of workpiece and machining condition. Proper selection of cutting parameters with energy consideration can effectively reduce energy consumption and improve energy efficiency of the machining process. Over the past 10 years, many researchers have been engaged in energy efficient cutting parameter optimization, and a large amount of literature have been published. This paper conducts a comprehensive literature review of current studies on energy efficient cutting parameter optimization to fully understand the recent advances in this research area. The energy consumption characteristics of machining process are analyzed by decomposing total energy consumption into electrical energy consumption of machine tool and embodied energy of cutting tool and cutting fluid. Current studies on energy efficient cutting parameter optimization by using experimental design method and energy models are reviewed in a comprehensive manner. Combined with the current status, future research directions of energy efficient cutting parameter optimization are presented.

    Jinghua XU, Hongsheng SHENG, Shuyou ZHANG, Jianrong TAN, Jinlian DENG
    Frontiers of Mechanical Engineering, 2021, 16(1): 133-150.

    Surface accuracy directly affects the surface quality and performance of mechanical parts. Circular hole, especially spatial non-planar hole set is the typical feature and working surface of mechanical parts. Compared with traditional machining methods, additive manufacturing (AM) technology can decrease the surface accuracy errors of circular holes during fabrication. However, an accuracy error may still exist on the surface of circular holes fabricated by AM due to the influence of staircase effect. This study proposes a surface accuracy optimization approach for mechanical parts with multiple circular holes for AM based on triangular fuzzy number (TFN). First, the feature lines on the manifold mesh are extracted using the dihedral angle method and normal tensor voting to detect the circular holes. Second, the optimal AM part build orientation is determined using the genetic algorithm to optimize the surface accuracy of the circular holes by minimizing the weighted volumetric error of the part. Third, the corresponding weights of the circular holes are calculated with the TFN analytic hierarchy process in accordance with the surface accuracy requirements. Lastly, an improved adaptive slicing algorithm is utilized to reduce the entire build time while maintaining the forming surface accuracy of the circular holes using digital twins via virtual printing. The effectiveness of the proposed approach is experimentally validated using two mechanical models.

    Laihao YANG, Zhu MAO, Shuming WU, Xuefeng CHEN, Ruqiang YAN
    Frontiers of Mechanical Engineering, 2021, 16(1): 196-220.

    This study aims at investigating the nonlinear dynamic behavior of rotating blade with transverse crack. A novel nonlinear rotating cracked blade model (NRCBM), which contains the spinning softening, centrifugal stiffening, Coriolis force, and crack closing effects, is developed based on continuous beam theory and strain energy release rate method. The rotating blade is considered as a cantilever beam fixed on the rigid hub with high rotating speed, and the crack is deemed to be open and close continuously in a trigonometric function way with the blade vibration. It is verified by the comparison with a finite element-based contact crack model and bilinear model that the proposed NRCBM can well capture the dynamic characteristics of the rotating blade with breathing crack. The dynamic behavior of rotating cracked blade is then investigated with NRCBM, and the nonlinear damage indicator (NDI) is introduced to characterize the nonlinearity caused by blade crack. The results show that NDI is a distinguishable indicator for the severity level estimation of the crack in rotating blade. It is found that severe crack (i.e., a closer crack position to blade root as well as larger crack depth) is expected to heavily reduce the stiffness of rotating blade and apparently result in a lower resonant frequency. Meanwhile, the super-harmonic resonances are verified to be distinguishable indicators for diagnosing the crack existence, and the third-order super-harmonic resonances can serve as an indicator for the presence of severe crack since it only distinctly appears when the crack is severe.

    Qiang GAO, Yuchuan ZHU, Changwen WU, Yulei JIANG
    Frontiers of Mechanical Engineering, 2021, 16(2): 420-434.

    Pilot two-stage proportional valves are widely used in high-power hydraulic systems. For the purpose of improving the dynamic performance, reliability, and digitization of the traditional proportional valve, a novel two-stage proportional valve with a pilot digital flow distribution is proposed from the viewpoint of the dual nozzle-flapper valve’s working principle. In particular, the dual nozzle-flapper is decoupled by two high-speed on/off valves (HSVs). First, the working principle and mathematical model of the proposed valve are determined. Then, the influences of the control parameters (duty cycle and switching frequency) and structural parameters (fixed orifice’s diameter and main valve’s spring) on the main valve’s motion are analyzed on the basis of theory, simulation, and experiment. In addition, in optimizing the value of the fixed orifice’s diameter, a new design criterion that considers the maximum pressure sensitivity, flow controllability, and flow linearization is proposed to improve the balance between the effective displacement and the displacement fluctuation of the main valve. The new scheme is verified by simulations and experiments. Experimental results of the closed-loop displacement tracking have demonstrated that the delay time of the main valve is always within 3.5 ms under different working conditions, and the tracking error can be significantly reduced using the higher switching frequency. The amplitude–frequency experiments indicate that a −3 dB-frequency of the proposed valve can reach 9.5 Hz in the case of ±50% full scale and 15 Hz in the case of 0%–50% full scale. The values can be further improved by increasing the flow rate of the pilot HSV.

    Jintao LIANG, Zhengfeng MING, Peida LI
    Frontiers of Mechanical Engineering, 2020, 15(4): 600-609.

    A primary permanent-magnet linear motor (PPMLM) has a robust secondary structure and high force density and is appropriate for direct-drive mechanical press. The structure of a four-side PPMLM drive press is presented based on our previous research. The entire press control system is constructed to realize various flexible forming processes. The control system scheme is determined in accordance with the mathematical model of PPMLM, and active disturbance rejection control is implemented in the servo controller. Field-circuit coupling simulation is applied to estimate the system’s performance. Then, a press prototype with 6 kN nominal force is fabricated, and the hardware platform of the control system is constructed for experimental study. Punch strokes with 0.06 m displacement are implemented at trapezoidal speeds of 0.1 and 0.2 m/s; the dynamic position tracking errors are less than 0.45 and 0.82 mm, respectively. Afterward, continuous reciprocating strokes are performed, and the positioning errors at the bottom dead center are less than 0.015 mm. Complex pulse trajectories are also achieved. The proposed PPMLM drive press exhibits a fast dynamic response and favorable tracking precision and is suitable for various forming processes.

    Aqeel AHMED, Muhammad WASIF, Anis FATIMA, Liming WANG, Syed Amir IQBAL
    Frontiers of Mechanical Engineering, 2021, 16(2): 298-314.

    The machining industry must maximize the machine tool utilization for its efficient and effective usage. Determining a feasible workpiece location is one of the significant tasks performed in an iterative way via machining simulations. The maximum utilization of five-axis machine tools depends upon the cutting system’s geometry, the configuration of the machine tool, and the workpiece’s location. In this research, a mathematical model has been developed to determine the workpiece’s feasible location in the five-axis machine tool for avoiding the number of iterations, which are usually performed to eliminate the global collision and axis limit errors. In this research, a generic arrangement of the five-axis machine tool has been selected. The mathematical model of post-processor has been developed by using kinematic modeling methods. The machine tool envelopes have been determined using the post-processor and axial limit. The tooltip reachable workspace is determined by incorporating the post-processor, optimal cutting system length, and machining envelope, thereby further developing an algorithm to determine the feasible workpiece setup parameters accurately. The algorithm’s application has been demonstrated using an example. Finally, the algorithm is validated for feasible workpiece setup parameters in a virtual environment. This research is highly applicable in the industry to eliminate the number of iterations performed for the suitable workpiece setup parameters.

    Genshen LIU, Huaiju LIU, Caichao ZHU, Tianyu MAO, Gang HU
    Frontiers of Mechanical Engineering, 2021, 16(1): 61-79.

    Fatigue failure of gear transmission is one of the key factors that restrict the performance and service life of wind turbines. One of the major concerns in gear transmission under random loading conditions is the disregard of dynamic fatigue reliability in conventional design methods. Various issues, such as overweight structure or insufficient fatigue reliability, require continuous improvements in the reliability-based design optimization (RBDO) methodology. In this work, a novel gear transmission optimization model based on dynamic fatigue reliability sensitivity is developed to predict the optimal structural parameters of a wind turbine gear transmission. In the model, the dynamic fatigue reliability of the gear transmission is evaluated based on stress–strength interference theory. Design variables are determined based on the reliability sensitivity and correlation coefficient of the initial design parameters. The optimal structural parameters with the minimum volume are identified using the genetic algorithm in consideration of the dynamic fatigue reliability constraints. Comparison of the initial and optimized structures shows that the volume decreases by 3.58% while ensuring fatigue reliability. This work provides new insights into the RBDO of transmission systems from the perspective of reliability sensitivity.

    Wenkun XIE, Fengzhou FANG
    Frontiers of Mechanical Engineering, 2020, 15(4): 631-644.

    The ever-increasing requirements for the scalable manufacturing of atomic-scale devices emphasize the significance of developing atomic-scale manufacturing technology. The mechanism of a single atomic layer removal in cutting is the key basic theoretical foundation for atomic-scale mechanical cutting. Material anisotropy is among the key decisive factors that could not be neglected in cutting at such a scale. In the present study, the crystallographic orientation effect on the cutting-based single atomic layer removal of monocrystalline copper is investigated by molecular dynamics simulation. When undeformed chip thickness is in the atomic scale, two kinds of single atomic layer removal mechanisms exist in cutting-based single atomic layer removal, namely, dislocation motion and extrusion, due to the differing atomic structures on different crystallographic planes. On close-packed crystallographic plane, the material removal is dominated by the shear stress-driven dislocation motion, whereas on non-close packed crystallographic planes, extrusion-dominated material removal dominates. To obtain an atomic, defect-free processed surface, the cutting needs to be conducted on the close-packed crystallographic planes of monocrystalline copper.

    Nianfeng WANG, Bicheng CHEN, Xiandong GE, Xianmin ZHANG, Wenbin WANG
    Frontiers of Mechanical Engineering, 2021, 16(1): 163-175.

    Crawling robots have elicited much attention in recent years due to their stable and efficient locomotion. In this work, several crawling robots are developed using two types of soft pneumatic actuators (SPAs), namely, an axial elongation SPA and a dual bending SPA. By constraining the deformation of the elastomeric chamber, the SPAs realize their prescribed motions, and the deformations subjected to pressures are characterized with numerical models. Experiments are performed for verification, and the results show good agreement. The SPAs are fabricated by casting and developed into crawling robots with 3D-printing connectors. Control schemes are presented, and crawling tests are performed. The speeds predicted by the numerical models agree well with the speeds in the experiments.

    Haixiao LIU, Li LI, Zhikang OUYANG, Wei SUN
    Frontiers of Mechanical Engineering, 2020, 15(4): 610-621.

    The design, fabrication, and testing of soft sensors that measure elastomer curvature and mechanical finger bending are described in this study. The base of the soft sensors is polydimethylsiloxane (PDMS), which is a translucent elastomer. The main body of the soft sensors consists of three layers of silicone rubber plate, and the sensing element is a microchannel filled with gallium-indium-tin (Ga-In-Sn) alloy, which is embedded in the elastomer. First, the working principle of soft sensors is investigated, and their structure is designed. Second, the relationship between curvature and resistance is determined. Third, several sensors with different specifications are built in accordance with the structural design. Experiments show that the sensors exhibit high accuracy when the curvature changes within a certain range. Lastly, the soft sensors are applied to the measurement of mechanical finger bending. Experiments show that soft curvature sensors can effectively reflect mechanical finger bending and can be used to measure the bending of mechanical fingers with high sensitivity within a certain working range.

    Liang XUE, Jie LIU, Guilin WEN, Hongxin WANG
    Frontiers of Mechanical Engineering, 2021, 16(1): 80-96.

    Topology optimization is a pioneer design method that can provide various candidates with high mechanical properties. However, high resolution is desired for optimum structures, but it normally leads to a computationally intractable puzzle, especially for the solid isotropic material with penalization (SIMP) method. In this study, an efficient, high-resolution topology optimization method is developed based on the super-resolution convolutional neural network (SRCNN) technique in the framework of SIMP. SRCNN involves four processes, namely, refinement, path extraction and representation, nonlinear mapping, and image reconstruction. High computational efficiency is achieved with a pooling strategy that can balance the number of finite element analyses and the output mesh in the optimization process. A combined treatment method that uses 2D SRCNN is built as another speed-up strategy to reduce the high computational cost and memory requirements for 3D topology optimization problems. Typical examples show that the high-resolution topology optimization method using SRCNN demonstrates excellent applicability and high efficiency when used for 2D and 3D problems with arbitrary boundary conditions, any design domain shape, and varied load.

    Yuhan JIA, Peng ZHAO, Jun XIE, Xuechun ZHANG, Hongwei ZHOU, Jianzhong FU
    Frontiers of Mechanical Engineering, 2021, 16(1): 186-195.

    This paper presents a single-electromagnet levitation device to measure the densities and detect the internal defects of antimagnetic materials. The experimental device has an electromagnet in its lower part and a pure iron core in the upper part. When the electromagnet is activated, samples can be levitated stably in a paramagnetic solution. Compared with traditional magnetic levitation devices, the single-electromagnet levitation device is adjustable. Different currents, electromagnet shapes, and distances between the electromagnet and iron core are used in the experiment depending on the type of samples. The magnetic field formed by the electromagnet is strong. When the concentration of the MnCl2 aqueous solution is 3 mol/L, the measuring range of the single-electromagnet levitation device ranges from 1.301 to 2.308 g/cm3. However, with the same concentration of MnCl2 aqueous solution (3 mol/L), the measuring range of a magnetic levitation device built with permanent magnets is only from 1.15 to 1.50 g/cm3. The single-electromagnet levitation device has a large measuring range and can realize accurate density measurement and defect detection of high-density materials, such as glass and aluminum alloy.

    Dingxuan ZHAO, Haojie YANG, Carbone GIUSEPPE, Wenhang LI, Tao NI, Shuangji YAO
    Frontiers of Mechanical Engineering, 2021, 16(1): 151-162.

    A Lagrange dynamic model is established based on small-angle approximation to improve the simulation model for shipborne helicopter landing collision. To describe fuselage motion effectively, the proposed model considers ship motion, the interaction of the tires with the deck, and tire slippage. A mechanism of sliding motion is built, and a real-time reliability analysis of the algorithm is implemented to validate the proposed model. Numerical simulations are also conducted under different operation conditions. Results show that the proposed dynamic model can simulate the collision motion of helicopter landing in real time. Several suggestions for helicopter pilot landing are likewise provided.

    Wenyuan LI, Guojun ZHANG, Long CHEN, Yu HUANG, Youmin RONG, Zhangrui GAO
    Frontiers of Mechanical Engineering, 2021, 16(1): 111-121.

    Solar rolled glass, with one micro-structure surface and another roughness surface, can cause diffuse refraction of the focused laser spot, and this phenomenon restricts the application of laser manufacturing. In this study, laser cutting of solar rolled glass with a thickness of 2.5 mm was successfully achieved with the help of dimethicone to ensure laser focusing. Dimethicone was coated on the top surface of the rolled glass processing zone, and a Z bottom–up multilayer increment with the X–Y spiral line was applied to control the cutting path. Different viscosity values of dimethicone were considered. Results showed that surface quality increased as the viscosity increased until a certain threshold was reached; afterward, the surface quality decreased or directly caused the cutting to fail. The minimum surface roughness (3.26 µm) of the processed surface (chipping: Width≤113.64 µm, area 215199 µm2) was obtained when the dimethicone viscosity and laser pulse frequency were 1000 mm2/s and 43 kHz (power 25.4 W), respectively. The micro-defects on the processed surface were few, and the edge chipping width and depth of the laser processed surface were small.