VMMAO-YOLO: an ultra-lightweight and scale-aware detector for real-time defect detection of avionics thermistor wire solder joints
Xiaoqi YANG , Xingyue LIU , Qian WU , Guojun WEN , Shuang MEI , Guanglan LIAO , Tielin SHI
Front. Mech. Eng. ›› 2024, Vol. 19 ›› Issue (3) : 21
VMMAO-YOLO: an ultra-lightweight and scale-aware detector for real-time defect detection of avionics thermistor wire solder joints
The quality of the exposed avionics solder joints has a significant impact on the stable operation of the in-orbit spacecrafts. Nevertheless, the previously reported inspection methods for multi-scale solder joint defects generally suffer low accuracy and slow detection speed. Herein, a novel real-time detector VMMAO-YOLO is demonstrated based on variable multi-scale concurrency and multi-depth aggregation network (VMMANet) backbone and “one-stop” global information gather-distribute (OS-GD) module. Combined with infrared thermography technology, it can achieve fast and high-precision detection of both internal and external solder joint defects. Specifically, VMMANet is designed for efficient multi-scale feature extraction, which mainly comprises variable multi-scale feature concurrency (VMC) and multi-depth feature aggregation-alignment (MAA) modules. VMC can extract multi-scale features via multiple fix-sized and deformable convolutions, while MAA can aggregate and align multi-depth features on the same order for feature inference. This allows the low-level features with more spatial details to be transmitted in depth-wise, enabling the deeper network to selectively utilize the preceding inference information. The VMMANet replaces inefficient high-density deep convolution by increasing the width of intermediate feature levels, leading to a salient decline in parameters. The OS-GD is developed for efficacious feature extraction, aggregation and distribution, further enhancing the global information gather and deployment capability of the network. On a self-made solder joint image data set, the VMMAO-YOLO achieves a mean average precision mAP@0.5 of 91.6%, surpassing all the mainstream YOLO-series models. Moreover, the VMMAO-YOLO has a body size of merely 19.3 MB and a detection speed up to 119 frame per second, far superior to the prevalent YOLO-series detectors.
defect detection of solder joints / VMMAO-YOLO / ultra-lightweight and high-performance / multi-scale feature extraction / VMC and MAA modules / OS-GD
| [1] |
Bian Y C, Fu G H, Hou Q S, Sun B, Liao G L, Han H D. Using improved YOLOv5s for defect detection of thermistor wire solder joints based on infrared thermography. In: Proceedings of the 5th International Conference on Automation, Control and Robots. Nanning: IEEE, 2021, 29–32 |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016, 779–788 |
| [8] |
Redmon J, Farhadi A. YOLOv3: an incremental improvement. 2018, arXiv:1804.02767 |
| [9] |
Zhu X K, Lyu S C, Wang X, Zhao Q. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Montreal: IEEE, 2021, 2778–2788 |
| [10] |
Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023, 7464–7475 |
| [11] |
Aboah A, Wang B, Bagci U, Adu-Gyamfi Y. Real-time multi-class helmet violation detection using few-shot data sampling technique and YOLOv8. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Vancouver: IEEE, 2023, 5350–5358 |
| [12] |
Fan F L, Wang B Y, Zhu G L, Wu J H. Efficient faster R-CNN: used in PCB solder joint defects and components detection. In: Proceedings of the 4th IEEE International Conference on Computer and Communication Engineering Technology. Beijing: IEEE, 2021, 1–5 |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
Cherkasov N, Ivanov M, Ulanov A. Weld surface defect detection based on a laser scanning system and YOLOv5. In: Proceedings of the International Conference on Industrial Engineering, Applications and Manufacturing. Sochi: IEEE, 2023, 851–855 |
| [18] |
|
| [19] |
Zuo Y L, Wang J T, Song J L. Application of YOLO object detection network in weld surface defect detection. In: Proceedings of the 11th IEEE Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems. Jiaxing: IEEE, 2021, 704–710 |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
Liu S, Qi L, Qin H F, Shi J P, Jia J Y. Path aggregation network for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018, 8759–8768 |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
Jocher G, Chaurasia A, Qiu J. Ultralytics yolov8. 2023, available at Ultralytics |
| [33] |
Ding X H, Zhang X Y, Ma N N, Han J G, Ding G G, Sun J. RepVGG: making VGG-style ConvNets great again. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021, 13728–13737 |
| [34] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018, 7132–7141 |
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015, 1–9 |
| [39] |
|
| [40] |
|
| [41] |
Li J F, Wen Y, He L H. SCConv: spatial and channel reconstruction convolution for feature redundancy. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023, 6153–6162 |
| [42] |
He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016, 770–778 |
| [43] |
|
Higher Education Press
/
| 〈 |
|
〉 |