Femtosecond laser-acoustic modeling and simulation for AlCu nanofilm nondestructive testing

Zhongyu WANG , Jing MIN , Jing HU , Zehan WANG , Xiuguo CHEN , Zirong TANG , Shiyuan LIU

Front. Mech. Eng. ›› 2024, Vol. 19 ›› Issue (5) : 33

PDF (4260KB)
Front. Mech. Eng. ›› 2024, Vol. 19 ›› Issue (5) : 33 DOI: 10.1007/s11465-024-0810-6
RESEARCH ARTICLE

Femtosecond laser-acoustic modeling and simulation for AlCu nanofilm nondestructive testing

Author information +
History +
PDF (4260KB)

Abstract

Photoacoustic detection has shown excellent performance in measuring thickness and detecting defects in metal nanofilms. However, existing research on ultrafast lasers mainly focuses on using picosecond or nanosecond lasers for large-scale material processing and measurement. The theoretical study of femtosecond laser sources for photoacoustic nondestructive testing (NDT) in nanoscale thin film materials receives much less emphasis, leading to a lack of a complete physical model that covers the entire process from excitation to measurement. In this study, we developed a comprehensive physical model that combines the two-temperature model with the acoustic wave generation and detection model. On the basis of the physical model, we established a simulation model to visualize the ultrafast laser-material interaction process. The damage threshold of the laser source is determined, and the effect of key parameters (laser fluence, pulse duration, and wavelength) for AlCu nanofilms on the femtosecond photoacoustic NDT process is discussed using numerical results from the finite element model. The numerical results under certain parameters show good agreement with the experimental results.

Graphical abstract

Keywords

femtosecond photoacoustic / nondestructive testing / metal nanofilm / ultrafast laser-matter interaction / modeling and simulation / semiconductor manufacturing

Cite this article

Download citation ▾
Zhongyu WANG, Jing MIN, Jing HU, Zehan WANG, Xiuguo CHEN, Zirong TANG, Shiyuan LIU. Femtosecond laser-acoustic modeling and simulation for AlCu nanofilm nondestructive testing. Front. Mech. Eng., 2024, 19(5): 33 DOI:10.1007/s11465-024-0810-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Thomsen C, Grahn H T, Maris H J, Tauc J. Surface generation and detection of phonons by picosecond light pulses. Physical Review B, 1986, 34(6): 4129–4138

[2]

Dubois M, Drake Jr. T E. Evolution of industrial laser-ultrasonic systems for the inspection of composites. Nondestructive Testing and Evaluation, 2011, 26(3–4): 213–228

[3]

Matsuda O, Larciprete M C, Li Voti R, Wright O B. Fundamentals of picosecond laser ultrasonics. Ultrasonics, 2015, 56: 3–20

[4]

Manohar S, Razansky D. Photoacoustics: a historical review. Advances in Optics and Photonics, 2016, 8(4): 586–617

[5]

Hurley D H. Pump-probe laser ultrasonics: characterization of material microstructure. IEEE Nanotechnology Magazine, 2019, 13(3): 29–38

[6]

Zhang K X, Chen D, Wang S, Yao Z J, Feng W, Guo S F. Flexible and high-intensity photoacoustic transducer with PDMS/CSNPs nanocomposite for inspecting thick structure using laser ultrasonics. Composites Science and Technology, 2022, 228: 109667

[7]

Antonelli G A, Maris H J, Malhotra S G, Harper J M E. Picosecond ultrasonics study of the vibrational modes of a nanostructure. Journal of Applied Physics, 2002, 91(5): 3261–3267

[8]

Chou K Y, Wu C L, Shen C C, Sheu J K, Sun C K. Terahertz photoacoustic generation using ultrathin nickel nanofilms. Journal of Physical Chemistry C, 2021, 125(5): 3134–3142

[9]

Ji G N, Zhu W Y, Jia X X, Ji S F, Han D P, Gao Z X, Liu H, Wang Y, Han T. AuNP/Cu-TCPP(Fe) metal-organic framework nanofilm: a paper-based electrochemical sensor for non-invasive detection of lactate in sweat. Nanoscale, 2023, 15(10): 5023–5035

[10]

Zheng S, Wang C G, Li J X, Wang W Q, Yu Q, Wang C W, Wang S Q. Graphene oxide-based three-dimensional au nanofilm with high-density and controllable hotspots: a powerful film-type SERS tag for immunochromatographic analysis of multiple mycotoxins in complex samples. Chemical Engineering Journal, 2022, 448: 137760

[11]

Rodriguez-Davila R A, Chapman R A, Shamsi Z H, Castillo S J, Young C D, Quevedo-López M A. Low temperature, highly stable ZnO thin-film transistors. Microelectronic Engineering, 2023, 279: 112063

[12]

Gamaly E G. The physics of ultra-short laser interaction with solids at non-relativistic intensities. Physics Reports, 2011, 508(4–5): 91–243

[13]

Anisimov S I, Kapeliovich B L, Perel’man T L. Electron emission from metal surfaces exposed to ultrashort laser pulses. Journal of Experimental and Theoretical Physics, 1974, 39(2): 375–377

[14]

Falkovsky L A, Mishchenko E G. Electron-lattice kinetics of metals heated by ultrashort laser pulses. Journal of Experimental and Theoretical Physics, 1999, 88(1): 84–88

[15]

Chen J K, Beraun J E, Grimes L E, Tzou D Y. Modeling of femtosecond laser-induced non-equilibrium deformation in metal films. International Journal of Solids and Structures, 2002, 39(12): 3199–3216

[16]

Povarnitsyn M E, Andreev N E, Apfelbaum E M, Itina T E, Khishchenko K V, Kostenko O F, Levashov P R, Veysman M E. A wide-range model for simulation of pump-probe experiments with metals. Applied Surface Science, 2012, 258(23): 9480–9483

[17]

Ancona A, Döring S, Jauregui C, Röser F, Limpert J, Nolte S, Tünnermann A. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers. Optics Letters, 2009, 34(21): 3304–3306

[18]

Heise G, Trappendreher D, Ilchmann F, Weiss R S, Wolf B, Huber H. Picosecond laser structuring of thin film platinum layers covered with tantalum pentoxide isolation. Journal of Applied Physics, 2012, 112(1): 013110

[19]

Bonse J, Krüger J. Structuring of thin films by ultrashort laser pulses. Applied Physics A, 2023, 129(1): 14

[20]

Del Fatti N, Voisin C, Christofilos D, Vallée F, Flytzanis C. Acoustic vibration of metal films and nanoparticles. The Journal of Physical Chemistry A, 2000, 104(18): 4321–4326

[21]

Yamaguchi S, Tahara T. Coherent acoustic phonons in a thin gold film probed by femtosecond surface plasmon resonance. Journal of Raman Spectroscopy, 2008, 39(11): 1703–1706

[22]

Grossmann M, Schubert M, He C, Brick D, Scheer E, Hettich M, Gusev V, Dekorsy T. Characterization of thin-film adhesion and phonon lifetimes in Al/Si membranes by picosecond ultrasonics. New Journal of Physics, 2017, 19(5): 053019

[23]

Grossmann M, Klingele M, Scheel P, Ristow O, Hettich M, He C, Waitz R, Schubert M F, Bruchhausen A E, Gusev V E, Scheer E, Dekorsy T. Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes. Physical Review B, 2013, 88(20): 205202

[24]

Saito T, Matsuda O, Wright O B. Picosecond acoustic phonon pulse generation in nickel and chromium. Physical Review B, 2003, 67(20): 205421

[25]

O'hara K E, Hu X Y, Cahill D G. Characterization of nanostructured metal films by picosecond acoustics and interferometry. Journal of Applied Physics, 2001, 90(9): 4852–4858

[26]

Richardson C J K, Ehrlich M J, Wagner J W. Interferometric detection of ultrafast thermoelastic transients in thin films: theory with supporting experiment. Journal of the Optical Society of America B: Optical Physics, 1999, 16(6): 1007–1015

[27]

Devos A, Lerouge C. Evidence of laser-wavelength effect in picosecond ultrasonics: possible connection with interband transitions. Physical Review Letters, 2001, 86(12): 2669–2672

[28]

AnisimovS I, Rethfeld B. Theory of ultrashort laser pulse interaction with a metal. In: KonovV I, Libenson M N, eds. Nonresonant Laser-Matter Interaction (NLMI-9). St. Petersburg: SPIE, 1997, 192–203

[29]

Qiu T Q, Tien C L. Femtosecond laser heating of multi-layer metals—I. Analysis. International Journal of Heat and Mass Transfer, 1994, 37(17): 2789–2797

[30]

Qiu T Q, Juhasz T, Suarez C, Bron W E, Tien C L. Femtosecond laser heating of multi-layer metals—II. Experiments. International Journal of Heat and Mass Transfer, 1994, 37(17): 2799–2808

[31]

Matsuda O, Wright O B. Reflection and transmission of light in multilayers perturbed by picosecond strain pulse propagation. Journal of the Optical Society of America B: Optical Physics, 2002, 19(12): 3028–3041

[32]

Lin Z B, Zhigilei L V, Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Physical Review B, 2008, 77(7): 075133

[33]

Chen J K, Beraun J E, Tzou D Y. Thermomechanical response of metal films heated by ultrashort-pulsed lasers. Journal of Thermal Stresses, 2002, 25(6): 539–558

[34]

KittleC. Introduction to Solid State Physics. New York: John Wiles & Sons, 1967

[35]

Zhang J Y, Zhang X, Liu G, Wang R H, Zhang G J, Sun J. Length scale dependent yield strength and fatigue behavior of nanocrystalline Cu thin films. Materials Science and Engineering: A, 2011, 528(25–26): 7774–7780

[36]

McPeak K M, Jayanti S V, Kress S J P, Meyer S, Iotti S, Rossinelli A, Norris D J. Plasmonic films can easily be better: rules and recipes. ACS Photonics, 2015, 2(3): 326–333

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4260KB)

1509

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/