Progress in terahertz nondestructive testing: A review
Shuncong ZHONG
Progress in terahertz nondestructive testing: A review
Terahertz (THz) waves, whose frequencies range between microwave and infrared, are part of the electromagnetic spectrum. A gap exists in THz literature because investigating THz waves is difficult due to the weak characteristics of the waves and the lack of suitable THz sources and detectors. Recently, THz nondestructive testing (NDT) technology has become an interesting topic. This review outlines several typical THz devices and systems and engineering applications of THz NDT techniques in composite materials, thermal barrier coatings, car paint films, marine protective coatings, and pharmaceutical tablet coatings. THz imaging has higher resolution but lower penetration than ultrasound imaging. This review presents the significance and advantages provided by the emerging THz NDT technique.
terahertz pulsed imaging (TPI) / nondestructive testing (NDT) / composite material / thermal barrier coating
[1] |
Brown E, McIntosh K, Nichols K,
CrossRef
Google scholar
|
[2] |
Gu P, Tani M, Hyodo M,
CrossRef
Google scholar
|
[3] |
Smet J, Fonstad C, Hu Q. Intrawell and interwell intersubband transitions in multiple quantum wells for far-infrared sources. Journal of Applied Physics, 1996, 79(12): 9305–9320
CrossRef
Google scholar
|
[4] |
Jeong Y, Lee B, Kim S,
CrossRef
Google scholar
|
[5] |
Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
CrossRef
Google scholar
|
[6] |
Shen Y, Upadhya P, Linfield E,
CrossRef
Google scholar
|
[7] |
Tani M, Horita K, Kinoshita T,
CrossRef
Google scholar
|
[8] |
Yu C, Fan S, Sun Y,
|
[9] |
Ho L, Müller R, Gordon K C,
CrossRef
Google scholar
|
[10] |
Zhong S, Shen Y, Ho L,
CrossRef
Google scholar
|
[11] |
Shen Y. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review. International Journal of Pharmaceutics, 2011, 417(1–2): 48–60
CrossRef
Google scholar
|
[12] |
Lin H, Dong Y, Markl D,
CrossRef
Google scholar
|
[13] |
Tu W, Zhong S, Shen Y,
CrossRef
Google scholar
|
[14] |
Su K, Shen Y, Zeitler J A. Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 432–439
CrossRef
Google scholar
|
[15] |
Dong J, Locquet A, Citrin D S. Terahertz quantitative nondestructive evaluation of failure modes in polymer-coated steel. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 8400207
CrossRef
Google scholar
|
[16] |
Dong J, Bianca Jackson J, Melis M,
CrossRef
Google scholar
|
[17] |
Shen Y, Lo T, Taday P F,
CrossRef
Google scholar
|
[18] |
Federici J F, Schulkin B, Huang F,
CrossRef
Google scholar
|
[19] |
Woodward R M, Wallace V P, Arnone D D,
CrossRef
Google scholar
|
[20] |
Crawley D, Longbottom C, Wallace V P,
CrossRef
Google scholar
|
[21] |
Naito K, Kagawa Y, Utsuno S,
CrossRef
Google scholar
|
[22] |
Stoik C, Bohn M, Blackshire J. Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy. NDT & E International, 2010, 43(2): 106–115
CrossRef
Google scholar
|
[23] |
Lopato P. Double-sided terahertz imaging of multilayered glass fiber-reinforced polymer. Applied Sciences, 2017, 7(7): 661–674
CrossRef
Google scholar
|
[24] |
Watanabe M, Kuroda S, Yamawaki H,
CrossRef
Google scholar
|
[25] |
Fukuchi T, Fuse N, Okada M,
CrossRef
Google scholar
|
[26] |
Roth D J, Cosgriff L M, Harder B,
|
[27] |
Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33
CrossRef
Google scholar
|
[28] |
Strachan C J, Rades T, Newnham D A,
CrossRef
Google scholar
|
[29] |
Cheville R A, Grischkowsky D. Far-infrared terahertz time-domain spectroscopy of flames. Optics Letters, 1995, 20(15): 1646–1648
CrossRef
Google scholar
|
[30] |
Zhong S, Shen Y, Shen H,
CrossRef
Google scholar
|
[31] |
Yoneda H, Tokuyama K, Ueda K,
CrossRef
Google scholar
|
[32] |
Ropagnol X, Morandotti R, Ozaki T,
CrossRef
Google scholar
|
[33] |
Zhong S, Shen Y, Evans M,
CrossRef
Google scholar
|
[34] |
Shen H, Gan L, Newman N,
CrossRef
Google scholar
|
[35] |
Shen H, Newman N, Gan L,
CrossRef
Google scholar
|
[36] |
Liu L, Zhang Z, Gan L,
CrossRef
Google scholar
|
[37] |
Amenabar I, Lopez F, Mendikute A. In introductory review to THz non-destructive testing of composite material. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34(2): 152–169
CrossRef
Google scholar
|
[38] |
Stoik C D, Bohn M J, Blackshire J L. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Optics Express, 2008, 16(21): 17039
CrossRef
Google scholar
|
[39] |
Chady T, Przemyslaw P. Testing of glass-fiber reinforced composite materials using terahertz technique. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(3–4): 1599–1605
CrossRef
Google scholar
|
[40] |
Anbarasu A. Characterization of defects in fiber composites using terahertz imaging. Thesis for the Master’s Degree. Atlanta: Georgia Institute of Technology, 2008
|
[41] |
Fukuchi T, Ozeki T, Okada M,
CrossRef
Google scholar
|
[42] |
Fukuchi T, Fuse N, Okada M,
CrossRef
Google scholar
|
[43] |
Fukuchi T, Fuse N, Okada M,
CrossRef
Google scholar
|
[44] |
Chen C, Lee D, Pollock T,
CrossRef
Google scholar
|
[45] |
Yasui T, Yasuda T, Sawanaka K,
CrossRef
Google scholar
|
[46] |
Izutani Y, Akagi M, Kitagishi K. Measurements of paint thickness of automobiles by using THz time-domain spectroscopy. In: Proceedings of 37th International Conference on Infrared, Millimeter, and Terahertz Waves. Wollongong: IEEE, 2012
CrossRef
Google scholar
|
[47] |
Yasuda T, Iwata T, Araki T,
CrossRef
Google scholar
|
[48] |
Su K, Shen Y, Zeitler J A. Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 432–439
CrossRef
Google scholar
|
[49] |
Su K, May R K, Gregory I S,
CrossRef
Google scholar
|
[50] |
Cook D J, Sharpe S J, Lee S,
CrossRef
Google scholar
|
[51] |
Cook D J, Lee S, Sharpe S J,
CrossRef
Google scholar
|
[52] |
Tu W, Zhong S, Shen Y,
CrossRef
Google scholar
|
[53] |
Fitzgerald A J, Cole B E, Taday P F. Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging. Journal of Pharmaceutical Sciences, 2005, 94(1): 177–183
CrossRef
Google scholar
|
[54] |
Ho L, Müller R, Römer M,
CrossRef
Google scholar
|
[55] |
Zeitler J A, Shen Y, Baker C,
CrossRef
Google scholar
|
[56] |
Wallace V P, Taday P F, Fitzgerald A J,
CrossRef
Google scholar
|
[57] |
Ho L, Cuppok Y, Muschert S,
CrossRef
Google scholar
|
[58] |
May R K, Evans M J, Zhong S,
CrossRef
Google scholar
|
/
〈 | 〉 |