A brief review on key technologies in the battery management system of electric vehicles

Kailong LIU , Kang LI , Qiao PENG , Cheng ZHANG

Front. Mech. Eng. ›› 2019, Vol. 14 ›› Issue (1) : 47 -64.

PDF (455KB)
Front. Mech. Eng. ›› 2019, Vol. 14 ›› Issue (1) : 47 -64. DOI: 10.1007/s11465-018-0516-8
REVIEW ARTICLE
REVIEW ARTICLE

A brief review on key technologies in the battery management system of electric vehicles

Author information +
History +
PDF (455KB)

Abstract

Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

Keywords

battery management system / battery modelling / battery state estimation / battery charging

Cite this article

Download citation ▾
Kailong LIU, Kang LI, Qiao PENG, Cheng ZHANG. A brief review on key technologies in the battery management system of electric vehicles. Front. Mech. Eng., 2019, 14(1): 47-64 DOI:10.1007/s11465-018-0516-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abada S, Marlair G, Lecocq A, . Safety focused modeling of lithium-ion batteries: A review. Journal of Power Sources, 2016, 306: 178–192

[2]

Rao Z, Wang S. A review of power battery thermal energy management. Renewable & Sustainable Energy Reviews, 2011, 15(9): 4554–4571

[3]

Park B, Lee C H, Xia C, . Characterization of gel polymer electrolyte for suppressing deterioration of cathode electrodes of Li ion batteries on high-rate cycling at elevated temperature. Electrochimica Acta, 2016, 188: 78–84

[4]

Li J, Han Y, Zhou S. Advances in Battery Manufacturing, Services, and Management Systems.Hoboken: John Wiley-IEEE Press, 2016

[5]

Lu L, Han X, Li J, Hua J, . A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 2013, 226: 272–288

[6]

Rahman M A, Anwar S, Izadian A. Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method. Journal of Power Sources, 2016, 307: 86–97

[7]

Sung W, Shin C B. Electrochemical model of a lithium-ion battery implemented into an automotive battery management system. Computers & Chemical Engineering, 2015, 76: 87–97

[8]

Shen W J, Li H X. Parameter identification for the electrochemical model of Li-ion battery. In: Proceedings of 2016 International Conference on System Science and Engineering (ICSSE). Puli: IEEE, 2016, 1–4

[9]

Mastali M, Samadani E, Farhad S, Fraser R, Fowler M. Three-dimensional multi-particle electrochemical model of LiFePO4 cells based on a resistor network methodology. Electrochimica Acta, 2016, 190: 574–587

[10]

Han X, Ouyang M, Lu L, . Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part I: Diffusion simplification and single particle model. Journal of Power Sources, 2015, 278: 802–813

[11]

Zou C, Manzie C, Nešić D. A framework for simplification of PDE-based lithium-ion battery models. IEEE Transactions on Control Systems Technology, 2016, 24(5): 1594–1609

[12]

Yuan S, Jiang L, Yin C, . A transfer function type of simplified electrochemical model with modified boundary conditions and Padé approximation for Li-ion battery: Part 2. Modeling and parameter estimation. Journal of Power Sources, 2017, 352: 258–271

[13]

Bartlett A, Marcicki J, Onori S, . Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery. IEEE Transactions on Control Systems Technology, 2016, 24(2): 384–399

[14]

Zhang L, Wang Z, Hu X, . A comparative study of equivalent circuit models of ultracapacitors for electric vehicles. Journal of Power Sources, 2015, 274: 899–906

[15]

Nejad S, Gladwin D T, Stone D A. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states. Journal of Power Sources, 2016, 316: 183–196

[16]

Zhang X, Lu J, Yuan S, . A novel method for identification of lithium-ion battery equivalent circuit model parameters considering electrochemical properties. Journal of Power Sources, 2017, 345: 21–29

[17]

Widanage W D, Barai A, Chouchelamane G H, . Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 1: Signal design. Journal of Power Sources, 2016, 324: 70–78

[18]

Gong X, Xiong R, Mi C C. A data-driven bias-correction-method-based lithium-ion battery modeling approach for electric vehicle applications. IEEE Transactions on Industry Applications, 2016, 52(2): 1759–1765

[19]

Wang Q K, He Y J, Shen J N, . A unified modeling framework for lithium-ion batteries: An artificial neural network based thermal coupled equivalent circuit model approach. Energy, 2017, 138: 118–132

[20]

Deng Z, Yang L, Cai Y, . Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery. Energy, 2016, 112: 469–480

[21]

Sbarufatti C, Corbetta M, Giglio M, . Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks. Journal of Power Sources, 2017, 344: 128–140

[22]

Li Y, Chattopadhyay P, Xiong S, . Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge. Applied Energy, 2016, 184: 266–275

[23]

Richter F, Kjelstrup S, Vie P J, . Thermal conductivity and internal temperature profiles of Li-ion secondary batteries. Journal of Power Sources, 2017, 359: 592–600

[24]

Dai H, Zhu L, Zhu J, . Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries. Journal of Power Sources, 2015, 293: 351–365

[25]

Raijmakers L H, Danilov D L, van Lammeren J P, . Non-zero intercept frequency: An accurate method to determine the integral temperature of Li-ion batteries. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3168–3178 doi:10.1109/TIE.2016.2516961

[26]

Lee K T, Dai M J, Chuang C C. Temperature-compensated model for lithium-ion polymer batteries with extended Kalman filter state-of-charge estimation for an implantable charger. IEEE Transactions on Industrial Electronics, 2018, 65(1): 589–596

[27]

Mehne J, Nowak W. Improving temperature predictions for Li-ion batteries: Data assimilation with a stochastic extension of a physically-based, thermo-electrochemical model. Journal of Energy Storage, 2017, 12: 288–296

[28]

Guo M, Kim G H, White R E. A three-dimensional multi-physics model for a Li-ion battery. Journal of Power Sources, 2013, 240: 80–94

[29]

Jeon D H, Baek S M. Thermal modeling of cylindrical lithium ion battery during discharge cycle. Energy Conversion and Management, 2011, 52(8–9): 2973–2981

[30]

Jaguemont J, Omar N, Martel F, . Streamline three-dimensional thermal model of a lithium titanate pouch cell battery in extreme temperature conditions with module simulation. Journal of Power Sources, 2017, 367: 24–33

[31]

Lin X, Perez H E, Siegel J B, . Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring. IEEE Transactions on Control Systems Technology, 2013, 21(5): 1745–1755

[32]

Shah K, Vishwakarma V, Jain A. Measurement of multiscale thermal transport phenomena in Li-ion cells: A review. Journal of Electrochemical Energy Conversion and Storage, 2016, 13(3): 030801

[33]

Chen D, Jiang J, Li X, . Modeling of a pouch lithium ion battery using a distributed parameter equivalent circuit for internal non-uniformity analysis. Energies, 2016, 9(11): 865 doi:10.3390/en9110865

[34]

Muratori M, Canova M, Guezennec Y, . A reduced-order model for the thermal dynamics of Li-ion battery cells. IFAC Proceedings Volumes, 2010, 43(7): 192–197

[35]

Kim Y, Mohan S, Siegel S J, . The estimation of temperature distribution in cylindrical battery cells under unknown cooling conditions. IEEE Transactions on Control Systems Technology, 2014, 22(6): 2277–2286

[36]

Hu X, Asgari S, Yavuz I, . A transient reduced order model for battery thermal management based on singular value decomposition. In: Proceedings of 2014 IEEE Energy Conversion Congress and Exposition (ECCE). Pittsburgh: IEEE, 2014, 3971–3976

[37]

Lin X, Perez H E, Mohan S, . A lumped-parameter electro-thermal model for cylindrical batteries. Journal of Power Sources, 2014, 257: 1–11

[38]

Perez H, Hu X, Dey S, . Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics. IEEE Transactions on Vehicular Technology, 2017, 66(9): 7761–7770

[39]

Dey S, Ayalew B. Real-time estimation of lithium-ion concentration in both electrodes of a lithium-ion battery cell utilizing electrochemical-thermal coupling. Journal of Dynamic Systems, Measurement, and Control, 2017, 139(3): 031007

[40]

Goutam S, Nikolian A, Jaguemont J, . Three-dimensional electro-thermal model of li-ion pouch cell: Analysis and comparison of cell design factors and model assumptions. Applied Thermal Engineering, 2017, 126: 796–808

[41]

Jiang J, Ruan H, Sun B, . A reduced low-temperature electro-thermal coupled model for lithium-ion batteries. Applied Energy, 2016, 177: 804–816

[42]

Basu S, Hariharan K S, Kolake S M, . Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system. Applied Energy, 2016, 181: 1–13

[43]

Xiong R, Cao J, Yu Q, . Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access: Practical Innovations, Open Solutions, 2017, PP(99): 1 doi:10.1109/ACCESS.2017.2780258

[44]

Baccouche I, Jemmali S, Manai B, . Improved OCV model of a Li-ion NMC battery for online SOC estimation using the extended Kalman filter. Energies, 2017, 10(6): 764

[45]

Lin C, Yu Q, Xiong R, . A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries. Applied Energy, 2017, 205: 892–902

[46]

Grandjean T R, McGordon A, Jennings P A. Structural identifiability of equivalent circuit models for Li-ion batteries. Energies, 2017, 10(1): 90

[47]

Tang S X, Camacho-Solorio L, Wang Y, . State-of-charge estimation from a thermal-electrochemical model of lithium-ion batteries. Automatica, 2017, 83: 206–219

[48]

Li J, Wang L, Lyu C, .State of charge estimation based on a simplified electrochemical model for a single LiCoO2 battery and battery pack. Energy, 2017, 133: 572–583

[49]

Wang Y, Zhang C, Chen Z. On-line battery state-of-charge estimation based on an integrated estimator. Applied Energy, 2017, 185: 2026–2032

[50]

Acuña D E, Orchard M E. Particle-filtering-based failure prognosis via sigma-points: Application to lithium-ion battery state-of-charge monitoring. Mechanical Systems and Signal Processing, 2017, 85: 827–848

[51]

Zou C, Manzie C, Nešić D, . Multi-time-scale observer design for state-of-charge and state-of-health of a lithium-ion battery. Journal of Power Sources, 2016, 335: 121–130

[52]

Xiong B, Zhao J, Su Y, . State of charge estimation of vanadium redox flow battery based on sliding mode observer and dynamic model including capacity fading factor. IEEE Transactions on Sustainable Energy, 2017, 8(4): 1658–1667

[53]

Ye M, Guo H, Cao B. A model-based adaptive state of charge estimator for a lithium-ion battery using an improved adaptive particle filter. Applied Energy, 2017, 190: 740–748

[54]

Arabmakki E, Kantardzic M. SOM-based partial labeling of imbalanced data stream. Neurocomputing, 2017, 262: 120–133

[55]

Roscher M A, Assfalg J, Bohlen O S. Detection of utilizable capacity deterioration in battery systems. IEEE Transactions on Vehicular Technology, 2011, 60(1): 98–103

[56]

Coleman M, Hurley W G, Lee C K. An improved battery characterization method using a two-pulse load test. IEEE Transactions on Energy Conversion, 2008, 23(2): 708–713 doi:10.1109/TEC.2007.914329

[57]

Zhang J, Lee J. A review on prognostics and health monitoring of Li-ion battery. Journal of Power Sources, 2011, 196(15): 6007–6014

[58]

Jiang J, Lin Z, Ju Q, . Electrochemical impedance spectra for lithium-ion battery ageing considering the rate of discharge ability. Energy Procedia, 2017, 105: 844–849

[59]

Mingant R, Bernard J, Sauvant-Moynot V. Novel state-of-health diagnostic method for Li-ion battery in service. Applied Energy, 2016, 183: 390–398

[60]

Xiong R, Tian J, Mu H, . A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries. Applied Energy, 2017, 207: 372–383

[61]

Berecibar M, Gandiaga I, Villarreal I, . Critical review of state of health estimation methods of Li-ion batteries for real applications. Renewable & Sustainable Energy Reviews, 2016, 56: 572–587

[62]

Bi J, Zhang T, Yu H, . State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter. Applied Energy, 2016, 182: 558–568

[63]

Wang D, Yang F, Tsui K L, . Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter. IEEE Transactions on Instrumentation and Measurement, 2016, 65(6): 1282–1291

[64]

Gholizadeh M, Salmasi F R. Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1335–1344

[65]

Plett G L. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1: Introduction and state estimation. Journal of Power Sources, 2006, 161(2): 1356–1368

[66]

Remmlinger J, Buchholz M, Soczka-Guth T, . On-board state-of-health monitoring of lithium-ion batteries using linear parameter-varying models. Journal of Power Sources, 2013, 239: 689–695

[67]

Kim I S. A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer. IEEE Transactions on Power Electronics, 2010, 25(4): 1013–1022

[68]

Hu C, Youn B D, Chung J. A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation. Applied Energy, 2012, 92: 694–704

[69]

Du J, Liu Z, Wang Y, . An adaptive sliding mode observer for lithium-ion battery state of charge and state of health estimation in electric vehicles. Control Engineering Practice, 2016, 54: 81–90

[70]

Wang J, Liu P, Hicks-Garner J, . Cycle-life model for graphite-LiFePO4 cells. Journal of Power Sources, 2011, 196(8): 3942–3948 doi:10.1016/j.jpowsour.2010.11.134

[71]

Todeschini F, Onori S, Rizzoni G. An experimentally validated capacity degradation model for Li-ion batteries in PHEVs applications. IFAC Proceedings Volumes, 2012, 45(20): 456–461

[72]

Omar N, Monem M A, Firouz Y, . Lithium iron phosphate based battery—Assessment of the aging parameters and development of cycle life model. Applied Energy, 2014, 113: 1575–1585 doi:10.1016/j.apenergy.2013.09.003

[73]

Ecker M, Gerschler J B, Vogel J, . Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data. Journal of Power Sources, 2012, 215: 248–257

[74]

Suri G, Onori S. A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries. Energy, 2016, 96: 644–653

[75]

Ouyang M, Feng X, Han X, . A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery. Applied Energy, 2016, 165(C): 48–59

[76]

Gao Y, Jiang J, Zhang C, . Lithium-ion battery aging mechanisms and life model under different charging stresses. Journal of Power Sources, 2017, 356: 103–114

[77]

Wu L, Fu X, Guan Y. Review of the remaining useful life prognostics of vehicle lithium-ion batteries using data-driven methodologies. Applied Sciences, 2016, 6(6): 166

[78]

Rezvanizaniani S M, Liu Z, Chen Y, . Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility. Journal of Power Sources, 2014, 256: 110–124

[79]

Nuhic A, Terzimehic T, Soczka-Guth T, . Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. Journal of Power Sources, 2013, 239: 680–688

[80]

Klass V, Behm M, Lindbergh G. A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. Journal of Power Sources, 2014, 270: 262–272

[81]

Hu C, Jain G, Zhang P, . Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery. Applied Energy, 2014, 129: 49–55 doi:10.1016/j.apenergy.2014.04.077

[82]

You G, Park S, Oh D. Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach. Applied Energy, 2016, 176: 92–103

[83]

Hu C, Jain G, Schmidt C, . Online estimation of lithium-ion battery capacity using sparse Bayesian learning. Journal of Power Sources, 2015, 289: 105–113

[84]

Ng S S Y, Xing Y, Tsui K L. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Applied Energy, 2014, 118: 114–123

[85]

Liu D, Zhou J, Liao H, . A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics. IEEE Transactions on Systems, Man, and Cybernetics. Systems, 2015, 45(6): 915–928

[86]

Saha B, Goebel K, Poll S, . Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Transactions on Instrumentation and Measurement, 2009, 58(2): 291–296

[87]

He W, Williard N, Osterman M, . Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 2011, 196(23): 10314–10321

[88]

Zhang G, Ge S, Xu T, . Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures. Electrochimica Acta, 2016, 218: 149–155

[89]

Martinez-Cisneros C, Antonelli C, Levenfeld B, . Evaluation of polyolefin-based macroporous separators for high temperature Li-ion batteries. Electrochimica Acta, 2016, 216: 68–78

[90]

Li Z, Zhang J, Wu B, . Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples. Journal of Power Sources, 2013, 241: 536–553

[91]

Lee C Y, Lee S J, Tang M S, . In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors. Sensors (Basel), 2011, 11(12): 9942–9950

[92]

Kim Y, Mohan S, Siegel J B, . The estimation of temperature distribution in cylindrical battery cells under unknown cooling conditions. IEEE Transactions on Control Systems Technology, 2014, 22(6): 2277–2286

[93]

Lin X, Perez H E, Mohan S, . A lumped-parameter electro-thermal model for cylindrical batteries. Journal of Power Sources, 2014, 257: 1–11

[94]

Lin X, Perez H E, Siegel J B, . Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring. IEEE Transactions on Control Systems Technology, 2013, 21(5): 1745–1755

[95]

Samadani E, Farhad S, Scott W, . Empirical modeling of lithium-ion batteries based on electrochemical impedance spectroscopy tests. Electrochimica Acta, 2015, 160: 169–177

[96]

Srinivasan R, Carkhuff B G, Butler M H, . Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells. Electrochimica Acta, 2011, 56(17): 6198–6204

[97]

Srinivasan R. Monitoring dynamic thermal behavior of the carbon anode in a lithium-ion cell using a four-probe technique. Journal of Power Sources, 2012, 198: 351–358

[98]

Zhu J G, Sun Z C, Wei X Z, . A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement. Journal of Power Sources, 2015, 274: 990–1004

[99]

Raijmakers L H, Danilov D L, van Lammeren J P M, . Non-zero intercept frequency: An accurate method to determine the integral temperature of Li-ion batteries. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3168–3178

[100]

Beelen H, Raijmakers L, Donkers M, . A comparison and accuracy analysis of impedance-based temperature estimation methods for Li-ion batteries. Applied Energy, 2016, 175: 128–140

[101]

Liu K, Li K, Deng J. A novel hybrid data-driven method for Li-ion battery internal temperature estimation. In: Proceedings of 2016 UKACC 11th International Conference on Control (CONTROL). Belfast: IEEE, 2016

[102]

Bizeray A, Zhao S, Duncan S, . Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter. Journal of Power Sources, 2015, 296: 400–412

[103]

Zhang C, Li K, Deng J. Real-time estimation of battery internal temperature based on a simplified thermoelectric model. Journal of Power Sources, 2016, 302: 146–154

[104]

Berndt D. Maintenance-free Batteries: Lead-acid, Nickel-cadmium, Nickel-metal Hydride.Taunton: Research Studies Press, 1997

[105]

Hua A C C, Syue B Z W. Charge and discharge characteristics of lead-acid battery and LiFePO4 battery. In: Proceedings of 2010 International Power Electronics Conference (IPEC).Sapporo: IEEE, 2010, 1478–1483

[106]

Notten P, Veld J H G O, Beek J R G. Boostcharging Li-ion batteries: A challenging new charging concept. Journal of Power Sources, 2005, 145(1): 89–94

[107]

Kim T H, Park J S, Chang S K, . The current move of lithium ion batteries towards the next phase. Advanced Energy Materials, 2012, 2(7): 860–872

[108]

Li L, Tang X, Qu Y, . CC-CV charge protocol based on spherical diffusion model. Journal of Central South University of Technology, 2011, 18(2): 319–322

[109]

Liu K, Li K, Yang Z, . Battery optimal charging strategy based on a coupled thermoelectric model. In: Proceedings of 2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver: IEEE, 2016, 5084–5091

[110]

Cope R C, Podrazhansky Y. The art of battery charging. In: Proceedings of the Fourteenth Annual Battery Conference on Applications and Advances.Long Beach: IEEE, 1999, 233–235

[111]

Ikeya T, Sawada N, Takagi S, . Multi-step constant-current charging method for electric vehicle, valve-regulated, lead/acid batteries during night time for load-levelling. Journal of Power Sources, 1998, 75(1): 101–107

[112]

Ikeya T, Sawada N, Murakami J, . Multi-step constant-current charging method for an electric vehicle nickel/metal hydride battery with high-energy efficiency and long cycle life. Journal of Power Sources, 2002, 105(1): 6–12

[113]

Al-Haj Hussein A, Batarseh I. A review of charging algorithms for nickel and lithium battery chargers. IEEE Transactions on Vehicular Technology, 2011, 60(3): 830–838

[114]

Lee K T, Chuang C C, Wang Y H, . A low temperature increase transcutaneous battery charger for implantable medical devices. Journal of Mechanics in Medicine and Biology, 2016, 16(5): 1650069

[115]

Lee Y D, Park S Y. Rapid charging strategy in the constant voltage mode for a high power Li-ion battery. In: Proceedings of 2013 IEEE Energy Conversion Congress and Exposition. Denver: IEEE, 2013, 4725–4731

[116]

Yong S O, Rahim N A. Development of on-off duty cycle control with zero computational algorithm for CC-CV Li ion battery charger. In: Proceedings of IEEE Conference on Clean Energy and Technology (CEAT). Lankgkawi: IEEE, 2013, 422–426

[117]

Abdollahi A, Han X, Avvari G V, . Optimal battery charging, Part I: Minimizing time-to-charge, energy loss, and temperature rise for OCV-resistance battery model. Journal of Power Sources, 2016, 303: 388–398

[118]

Hsieh G C, Chen L R, Huang K S. Fuzzy-controlled Li-ion battery charge system with active state-of-charge controller. IEEE Transactions on Industrial Electronics, 2001, 48(3): 585–593

[119]

Liu K, Li K, Yang Z, . An advanced lithium-ion battery optimal charging strategy based on a coupled thermoelectric model. Electrochimica Acta, 2017, 225: 330–344

[120]

Liu K, Li K, Ma H, . Multi-objective optimization of charging patterns for lithium-ion battery management. Energy Conversion and Management, 2018 (in press)

[121]

He L, Kim E, Shin K G. Aware charging of lithium-ion battery cells. In: Proceedings of 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS).Vienna: IEEE, 2016, 1–10

[122]

Chen L R. PLL-based battery charge circuit topology. IEEE Transactions on Industrial Electronics, 2004, 51(6): 1344–1346

[123]

Chen L R, Chen J J, Chu N Y, . Current-pumped battery charger. IEEE Transactions on Industrial Electronics, 2008, 55(6): 2482–2488

[124]

Asadi H, Kaboli S H A, Mohammadi A, . Fuzzy-control-based five-step Li-ion battery charger by using AC impedance technique. In: Proceedings of Fourth International Conference on Machine Vision (ICMV 11). SPIE, 2012, 834939

[125]

Wang S C, Chen Y L, Liu Y H, . A fast-charging pattern search for Li-ion batteries with fuzzy-logic-based Taguchi method. In: Proceedings of 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA). Auckland: IEEE, 2015, 855–859

[126]

Liu C L, Wang S C, Chiang S S, . PSO-based fuzzy logic optimization of dual performance characteristic indices for fast charging of lithium-ion batteries. In: Proceedings of 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS). IEEE, 2013, 474–479

[127]

Wang S C, Liu Y H. A PSO-based fuzzy-controlled searching for the optimal charge pattern of Li-ion batteries. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2983–2993

[128]

Liu Y H, Hsieh C H, Luo Y F. Search for an optimal five-step charging pattern for Li-ion batteries using consecutive orthogonal arrays. IEEE Transactions on Energy Conversion, 2011, 26(2): 654–661

[129]

Vo T T, Chen X, Shen W, . New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation. Journal of Power Sources, 2015, 273: 413–422

[130]

Liu W, Sun X, Wu H, . A multistage current charging method for Li-ion battery bank considering balance of internal consumption and charging speed. In: Proceedings of IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). Hefei: IEEE, 2016, 1401–1406

[131]

Khan A B, Pham V L, Nguyen T T, . Multistage constant-current charging method for Li-ion batteries. In: Proceedings of IEEE Conference and Expo on Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). Busan: IEEE, 2016, 381–385

[132]

Chen Z, Xia B, Mi C C, . Loss-minimization-based charging strategy for lithium-ion battery. IEEE Transactions on Industry Applications, 2015, 51(5): 4121–4129

[133]

Wu X, Shi W, Du J. Multi-objective optimal charging method for lithium-ion batteries. Energies, 2017, 10(9): 1271

[134]

Liu K, Li K, Zhang C. Constrained generalized predictive control of battery charging process based on a coupled thermoelectric model. Journal of Power Sources, 2017, 347: 145–158

[135]

Xavier M A, Trimboli M S. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models. Journal of Power Sources, 2015, 285: 374–384

[136]

Zou C, Hu X, Wei Z,. Electrochemical estimation and control for lithium-ion battery health-aware fast charging. IEEE Transactions on Industrial Electronics, 2017, PP(99): 1 doi:10.1109/TIE.2017.2772154

[137]

Zhang C, Jiang J, Gao Y, . Charging optimization in lithium-ion batteries based on temperature rise and charge time. Applied Energy, 2017, 194: 569–577

[138]

Ma H, You P, Liu K, . Optimal battery charging strategy based on complex system optimization. In: Li K, Xue Y, Cui S, ., eds. Advanced Computational Methods in Energy, Power, Electric Vehicles, and Their Integration. LSMS 2017, ICSEE 2017. Communications in Computer and Information Science, Vol 763. Singapore: Springer, 2017, 371–378

[139]

Hu X, Li S, Peng H, . Charging time and loss optimization for LiNMC and LiFePO4 batteries based on equivalent circuit models. Journal of Power Sources, 2013, 239: 449–457

[140]

Perez H, Hu X, Dey S, . Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics. IEEE Transactions on Vehicular Technology, 2017, 66(9): 7761–7770

AI Summary AI Mindmap
PDF (455KB)

8341

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/