A brief review on key technologies in the battery management system of electric vehicles

Kailong LIU, Kang LI, Qiao PENG, Cheng ZHANG

PDF(455 KB)
PDF(455 KB)
Front. Mech. Eng. ›› 2019, Vol. 14 ›› Issue (1) : 47-64. DOI: 10.1007/s11465-018-0516-8
REVIEW ARTICLE
REVIEW ARTICLE

A brief review on key technologies in the battery management system of electric vehicles

Author information +
History +

Abstract

Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

Keywords

battery management system / battery modelling / battery state estimation / battery charging

Cite this article

Download citation ▾
Kailong LIU, Kang LI, Qiao PENG, Cheng ZHANG. A brief review on key technologies in the battery management system of electric vehicles. Front. Mech. Eng., 2019, 14(1): 47‒64 https://doi.org/10.1007/s11465-018-0516-8

References

[1]
Abada S, Marlair G, Lecocq A, . Safety focused modeling of lithium-ion batteries: A review. Journal of Power Sources, 2016, 306: 178–192
CrossRef Google scholar
[2]
Rao Z, Wang S. A review of power battery thermal energy management. Renewable & Sustainable Energy Reviews, 2011, 15(9): 4554–4571
CrossRef Google scholar
[3]
Park B, Lee C H, Xia C, . Characterization of gel polymer electrolyte for suppressing deterioration of cathode electrodes of Li ion batteries on high-rate cycling at elevated temperature. Electrochimica Acta, 2016, 188: 78–84
CrossRef Google scholar
[4]
Li J, Han Y, Zhou S. Advances in Battery Manufacturing, Services, and Management Systems.Hoboken: John Wiley-IEEE Press, 2016
[5]
Lu L, Han X, Li J, Hua J, . A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 2013, 226: 272–288
CrossRef Google scholar
[6]
Rahman M A, Anwar S, Izadian A. Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method. Journal of Power Sources, 2016, 307: 86–97
CrossRef Google scholar
[7]
Sung W, Shin C B. Electrochemical model of a lithium-ion battery implemented into an automotive battery management system. Computers & Chemical Engineering, 2015, 76: 87–97
CrossRef Google scholar
[8]
Shen W J, Li H X. Parameter identification for the electrochemical model of Li-ion battery. In: Proceedings of 2016 International Conference on System Science and Engineering (ICSSE). Puli: IEEE, 2016, 1–4
CrossRef Google scholar
[9]
Mastali M, Samadani E, Farhad S, Fraser R, Fowler M. Three-dimensional multi-particle electrochemical model of LiFePO4 cells based on a resistor network methodology. Electrochimica Acta, 2016, 190: 574–587
CrossRef Google scholar
[10]
Han X, Ouyang M, Lu L, . Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part I: Diffusion simplification and single particle model. Journal of Power Sources, 2015, 278: 802–813
CrossRef Google scholar
[11]
Zou C, Manzie C, Nešić D. A framework for simplification of PDE-based lithium-ion battery models. IEEE Transactions on Control Systems Technology, 2016, 24(5): 1594–1609
CrossRef Google scholar
[12]
Yuan S, Jiang L, Yin C, . A transfer function type of simplified electrochemical model with modified boundary conditions and Padé approximation for Li-ion battery: Part 2. Modeling and parameter estimation. Journal of Power Sources, 2017, 352: 258–271
CrossRef Google scholar
[13]
Bartlett A, Marcicki J, Onori S, . Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery. IEEE Transactions on Control Systems Technology, 2016, 24(2): 384–399
CrossRef Google scholar
[14]
Zhang L, Wang Z, Hu X, . A comparative study of equivalent circuit models of ultracapacitors for electric vehicles. Journal of Power Sources, 2015, 274: 899–906
CrossRef Google scholar
[15]
Nejad S, Gladwin D T, Stone D A. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states. Journal of Power Sources, 2016, 316: 183–196
CrossRef Google scholar
[16]
Zhang X, Lu J, Yuan S, . A novel method for identification of lithium-ion battery equivalent circuit model parameters considering electrochemical properties. Journal of Power Sources, 2017, 345: 21–29
CrossRef Google scholar
[17]
Widanage W D, Barai A, Chouchelamane G H, . Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 1: Signal design. Journal of Power Sources, 2016, 324: 70–78
CrossRef Google scholar
[18]
Gong X, Xiong R, Mi C C. A data-driven bias-correction-method-based lithium-ion battery modeling approach for electric vehicle applications. IEEE Transactions on Industry Applications, 2016, 52(2): 1759–1765
[19]
Wang Q K, He Y J, Shen J N, . A unified modeling framework for lithium-ion batteries: An artificial neural network based thermal coupled equivalent circuit model approach. Energy, 2017, 138: 118–132
CrossRef Google scholar
[20]
Deng Z, Yang L, Cai Y, . Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery. Energy, 2016, 112: 469–480
CrossRef Google scholar
[21]
Sbarufatti C, Corbetta M, Giglio M, . Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks. Journal of Power Sources, 2017, 344: 128–140
CrossRef Google scholar
[22]
Li Y, Chattopadhyay P, Xiong S, . Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge. Applied Energy, 2016, 184: 266–275
CrossRef Google scholar
[23]
Richter F, Kjelstrup S, Vie P J, . Thermal conductivity and internal temperature profiles of Li-ion secondary batteries. Journal of Power Sources, 2017, 359: 592–600
CrossRef Google scholar
[24]
Dai H, Zhu L, Zhu J, . Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries. Journal of Power Sources, 2015, 293: 351–365
CrossRef Google scholar
[25]
Raijmakers L H, Danilov D L, van Lammeren J P, . Non-zero intercept frequency: An accurate method to determine the integral temperature of Li-ion batteries. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3168–3178 doi:10.1109/TIE.2016.2516961
[26]
Lee K T, Dai M J, Chuang C C. Temperature-compensated model for lithium-ion polymer batteries with extended Kalman filter state-of-charge estimation for an implantable charger. IEEE Transactions on Industrial Electronics, 2018, 65(1): 589–596
CrossRef Google scholar
[27]
Mehne J, Nowak W. Improving temperature predictions for Li-ion batteries: Data assimilation with a stochastic extension of a physically-based, thermo-electrochemical model. Journal of Energy Storage, 2017, 12: 288–296
CrossRef Google scholar
[28]
Guo M, Kim G H, White R E. A three-dimensional multi-physics model for a Li-ion battery. Journal of Power Sources, 2013, 240: 80–94
CrossRef Google scholar
[29]
Jeon D H, Baek S M. Thermal modeling of cylindrical lithium ion battery during discharge cycle. Energy Conversion and Management, 2011, 52(8–9): 2973–2981
CrossRef Google scholar
[30]
Jaguemont J, Omar N, Martel F, . Streamline three-dimensional thermal model of a lithium titanate pouch cell battery in extreme temperature conditions with module simulation. Journal of Power Sources, 2017, 367: 24–33
CrossRef Google scholar
[31]
Lin X, Perez H E, Siegel J B, . Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring. IEEE Transactions on Control Systems Technology, 2013, 21(5): 1745–1755
CrossRef Google scholar
[32]
Shah K, Vishwakarma V, Jain A. Measurement of multiscale thermal transport phenomena in Li-ion cells: A review. Journal of Electrochemical Energy Conversion and Storage, 2016, 13(3): 030801
CrossRef Google scholar
[33]
Chen D, Jiang J, Li X, . Modeling of a pouch lithium ion battery using a distributed parameter equivalent circuit for internal non-uniformity analysis. Energies, 2016, 9(11): 865 doi:10.3390/en9110865
[34]
Muratori M, Canova M, Guezennec Y, . A reduced-order model for the thermal dynamics of Li-ion battery cells. IFAC Proceedings Volumes, 2010, 43(7): 192–197
CrossRef Google scholar
[35]
Kim Y, Mohan S, Siegel S J, . The estimation of temperature distribution in cylindrical battery cells under unknown cooling conditions. IEEE Transactions on Control Systems Technology, 2014, 22(6): 2277–2286
CrossRef Google scholar
[36]
Hu X, Asgari S, Yavuz I, . A transient reduced order model for battery thermal management based on singular value decomposition. In: Proceedings of 2014 IEEE Energy Conversion Congress and Exposition (ECCE). Pittsburgh: IEEE, 2014, 3971–3976
CrossRef Google scholar
[37]
Lin X, Perez H E, Mohan S, . A lumped-parameter electro-thermal model for cylindrical batteries. Journal of Power Sources, 2014, 257: 1–11
CrossRef Google scholar
[38]
Perez H, Hu X, Dey S, . Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics. IEEE Transactions on Vehicular Technology, 2017, 66(9): 7761–7770
CrossRef Google scholar
[39]
Dey S, Ayalew B. Real-time estimation of lithium-ion concentration in both electrodes of a lithium-ion battery cell utilizing electrochemical-thermal coupling. Journal of Dynamic Systems, Measurement, and Control, 2017, 139(3): 031007
CrossRef Google scholar
[40]
Goutam S, Nikolian A, Jaguemont J, . Three-dimensional electro-thermal model of li-ion pouch cell: Analysis and comparison of cell design factors and model assumptions. Applied Thermal Engineering, 2017, 126: 796–808
CrossRef Google scholar
[41]
Jiang J, Ruan H, Sun B, . A reduced low-temperature electro-thermal coupled model for lithium-ion batteries. Applied Energy, 2016, 177: 804–816
CrossRef Google scholar
[42]
Basu S, Hariharan K S, Kolake S M, . Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system. Applied Energy, 2016, 181: 1–13
CrossRef Google scholar
[43]
Xiong R, Cao J, Yu Q, . Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access: Practical Innovations, Open Solutions, 2017, PP(99): 1 doi:10.1109/ACCESS.2017.2780258
[44]
Baccouche I, Jemmali S, Manai B, . Improved OCV model of a Li-ion NMC battery for online SOC estimation using the extended Kalman filter. Energies, 2017, 10(6): 764
CrossRef Google scholar
[45]
Lin C, Yu Q, Xiong R, . A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries. Applied Energy, 2017, 205: 892–902
CrossRef Google scholar
[46]
Grandjean T R, McGordon A, Jennings P A. Structural identifiability of equivalent circuit models for Li-ion batteries. Energies, 2017, 10(1): 90
CrossRef Google scholar
[47]
Tang S X, Camacho-Solorio L, Wang Y, . State-of-charge estimation from a thermal-electrochemical model of lithium-ion batteries. Automatica, 2017, 83: 206–219
CrossRef Google scholar
[48]
Li J, Wang L, Lyu C, .State of charge estimation based on a simplified electrochemical model for a single LiCoO2 battery and battery pack. Energy, 2017, 133: 572–583
CrossRef Google scholar
[49]
Wang Y, Zhang C, Chen Z. On-line battery state-of-charge estimation based on an integrated estimator. Applied Energy, 2017, 185: 2026–2032
CrossRef Google scholar
[50]
Acuña D E, Orchard M E. Particle-filtering-based failure prognosis via sigma-points: Application to lithium-ion battery state-of-charge monitoring. Mechanical Systems and Signal Processing, 2017, 85: 827–848
CrossRef Google scholar
[51]
Zou C, Manzie C, Nešić D, . Multi-time-scale observer design for state-of-charge and state-of-health of a lithium-ion battery. Journal of Power Sources, 2016, 335: 121–130
CrossRef Google scholar
[52]
Xiong B, Zhao J, Su Y, . State of charge estimation of vanadium redox flow battery based on sliding mode observer and dynamic model including capacity fading factor. IEEE Transactions on Sustainable Energy, 2017, 8(4): 1658–1667
CrossRef Google scholar
[53]
Ye M, Guo H, Cao B. A model-based adaptive state of charge estimator for a lithium-ion battery using an improved adaptive particle filter. Applied Energy, 2017, 190: 740–748
CrossRef Google scholar
[54]
Arabmakki E, Kantardzic M. SOM-based partial labeling of imbalanced data stream. Neurocomputing, 2017, 262: 120–133
CrossRef Google scholar
[55]
Roscher M A, Assfalg J, Bohlen O S. Detection of utilizable capacity deterioration in battery systems. IEEE Transactions on Vehicular Technology, 2011, 60(1): 98–103
CrossRef Google scholar
[56]
Coleman M, Hurley W G, Lee C K. An improved battery characterization method using a two-pulse load test. IEEE Transactions on Energy Conversion, 2008, 23(2): 708–713 doi:10.1109/TEC.2007.914329
[57]
Zhang J, Lee J. A review on prognostics and health monitoring of Li-ion battery. Journal of Power Sources, 2011, 196(15): 6007–6014
CrossRef Google scholar
[58]
Jiang J, Lin Z, Ju Q, . Electrochemical impedance spectra for lithium-ion battery ageing considering the rate of discharge ability. Energy Procedia, 2017, 105: 844–849
CrossRef Google scholar
[59]
Mingant R, Bernard J, Sauvant-Moynot V. Novel state-of-health diagnostic method for Li-ion battery in service. Applied Energy, 2016, 183: 390–398
CrossRef Google scholar
[60]
Xiong R, Tian J, Mu H, . A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries. Applied Energy, 2017, 207: 372–383
CrossRef Google scholar
[61]
Berecibar M, Gandiaga I, Villarreal I, . Critical review of state of health estimation methods of Li-ion batteries for real applications. Renewable & Sustainable Energy Reviews, 2016, 56: 572–587
CrossRef Google scholar
[62]
Bi J, Zhang T, Yu H, . State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter. Applied Energy, 2016, 182: 558–568
CrossRef Google scholar
[63]
Wang D, Yang F, Tsui K L, . Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter. IEEE Transactions on Instrumentation and Measurement, 2016, 65(6): 1282–1291
CrossRef Google scholar
[64]
Gholizadeh M, Salmasi F R. Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1335–1344
CrossRef Google scholar
[65]
Plett G L. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1: Introduction and state estimation. Journal of Power Sources, 2006, 161(2): 1356–1368
CrossRef Google scholar
[66]
Remmlinger J, Buchholz M, Soczka-Guth T, . On-board state-of-health monitoring of lithium-ion batteries using linear parameter-varying models. Journal of Power Sources, 2013, 239: 689–695
CrossRef Google scholar
[67]
Kim I S. A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer. IEEE Transactions on Power Electronics, 2010, 25(4): 1013–1022
CrossRef Google scholar
[68]
Hu C, Youn B D, Chung J. A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation. Applied Energy, 2012, 92: 694–704
CrossRef Google scholar
[69]
Du J, Liu Z, Wang Y, . An adaptive sliding mode observer for lithium-ion battery state of charge and state of health estimation in electric vehicles. Control Engineering Practice, 2016, 54: 81–90
CrossRef Google scholar
[70]
Wang J, Liu P, Hicks-Garner J, . Cycle-life model for graphite-LiFePO4 cells. Journal of Power Sources, 2011, 196(8): 3942–3948 doi:10.1016/j.jpowsour.2010.11.134
[71]
Todeschini F, Onori S, Rizzoni G. An experimentally validated capacity degradation model for Li-ion batteries in PHEVs applications. IFAC Proceedings Volumes, 2012, 45(20): 456–461
[72]
Omar N, Monem M A, Firouz Y, . Lithium iron phosphate based battery—Assessment of the aging parameters and development of cycle life model. Applied Energy, 2014, 113: 1575–1585 doi:10.1016/j.apenergy.2013.09.003
[73]
Ecker M, Gerschler J B, Vogel J, . Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data. Journal of Power Sources, 2012, 215: 248–257
CrossRef Google scholar
[74]
Suri G, Onori S. A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries. Energy, 2016, 96: 644–653
CrossRef Google scholar
[75]
Ouyang M, Feng X, Han X, . A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery. Applied Energy, 2016, 165(C): 48–59
CrossRef Google scholar
[76]
Gao Y, Jiang J, Zhang C, . Lithium-ion battery aging mechanisms and life model under different charging stresses. Journal of Power Sources, 2017, 356: 103–114
CrossRef Google scholar
[77]
Wu L, Fu X, Guan Y. Review of the remaining useful life prognostics of vehicle lithium-ion batteries using data-driven methodologies. Applied Sciences, 2016, 6(6): 166
CrossRef Google scholar
[78]
Rezvanizaniani S M, Liu Z, Chen Y, . Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility. Journal of Power Sources, 2014, 256: 110–124
CrossRef Google scholar
[79]
Nuhic A, Terzimehic T, Soczka-Guth T, . Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. Journal of Power Sources, 2013, 239: 680–688
CrossRef Google scholar
[80]
Klass V, Behm M, Lindbergh G. A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. Journal of Power Sources, 2014, 270: 262–272
CrossRef Google scholar
[81]
Hu C, Jain G, Zhang P, . Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery. Applied Energy, 2014, 129: 49–55 doi:10.1016/j.apenergy.2014.04.077
[82]
You G, Park S, Oh D. Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach. Applied Energy, 2016, 176: 92–103
CrossRef Google scholar
[83]
Hu C, Jain G, Schmidt C, . Online estimation of lithium-ion battery capacity using sparse Bayesian learning. Journal of Power Sources, 2015, 289: 105–113
CrossRef Google scholar
[84]
Ng S S Y, Xing Y, Tsui K L. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Applied Energy, 2014, 118: 114–123
CrossRef Google scholar
[85]
Liu D, Zhou J, Liao H, . A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics. IEEE Transactions on Systems, Man, and Cybernetics. Systems, 2015, 45(6): 915–928
CrossRef Google scholar
[86]
Saha B, Goebel K, Poll S, . Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Transactions on Instrumentation and Measurement, 2009, 58(2): 291–296
CrossRef Google scholar
[87]
He W, Williard N, Osterman M, . Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 2011, 196(23): 10314–10321
CrossRef Google scholar
[88]
Zhang G, Ge S, Xu T, . Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures. Electrochimica Acta, 2016, 218: 149–155
CrossRef Google scholar
[89]
Martinez-Cisneros C, Antonelli C, Levenfeld B, . Evaluation of polyolefin-based macroporous separators for high temperature Li-ion batteries. Electrochimica Acta, 2016, 216: 68–78
CrossRef Google scholar
[90]
Li Z, Zhang J, Wu B, . Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples. Journal of Power Sources, 2013, 241: 536–553
CrossRef Google scholar
[91]
Lee C Y, Lee S J, Tang M S, . In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors. Sensors (Basel), 2011, 11(12): 9942–9950
CrossRef Google scholar
[92]
Kim Y, Mohan S, Siegel J B, . The estimation of temperature distribution in cylindrical battery cells under unknown cooling conditions. IEEE Transactions on Control Systems Technology, 2014, 22(6): 2277–2286
CrossRef Google scholar
[93]
Lin X, Perez H E, Mohan S, . A lumped-parameter electro-thermal model for cylindrical batteries. Journal of Power Sources, 2014, 257: 1–11
CrossRef Google scholar
[94]
Lin X, Perez H E, Siegel J B, . Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring. IEEE Transactions on Control Systems Technology, 2013, 21(5): 1745–1755
CrossRef Google scholar
[95]
Samadani E, Farhad S, Scott W, . Empirical modeling of lithium-ion batteries based on electrochemical impedance spectroscopy tests. Electrochimica Acta, 2015, 160: 169–177
CrossRef Google scholar
[96]
Srinivasan R, Carkhuff B G, Butler M H, . Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells. Electrochimica Acta, 2011, 56(17): 6198–6204
CrossRef Google scholar
[97]
Srinivasan R. Monitoring dynamic thermal behavior of the carbon anode in a lithium-ion cell using a four-probe technique. Journal of Power Sources, 2012, 198: 351–358
CrossRef Google scholar
[98]
Zhu J G, Sun Z C, Wei X Z, . A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement. Journal of Power Sources, 2015, 274: 990–1004
CrossRef Google scholar
[99]
Raijmakers L H, Danilov D L, van Lammeren J P M, . Non-zero intercept frequency: An accurate method to determine the integral temperature of Li-ion batteries. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3168–3178
CrossRef Google scholar
[100]
Beelen H, Raijmakers L, Donkers M, . A comparison and accuracy analysis of impedance-based temperature estimation methods for Li-ion batteries. Applied Energy, 2016, 175: 128–140
CrossRef Google scholar
[101]
Liu K, Li K, Deng J. A novel hybrid data-driven method for Li-ion battery internal temperature estimation. In: Proceedings of 2016 UKACC 11th International Conference on Control (CONTROL). Belfast: IEEE, 2016
CrossRef Google scholar
[102]
Bizeray A, Zhao S, Duncan S, . Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter. Journal of Power Sources, 2015, 296: 400–412
CrossRef Google scholar
[103]
Zhang C, Li K, Deng J. Real-time estimation of battery internal temperature based on a simplified thermoelectric model. Journal of Power Sources, 2016, 302: 146–154
CrossRef Google scholar
[104]
Berndt D. Maintenance-free Batteries: Lead-acid, Nickel-cadmium, Nickel-metal Hydride.Taunton: Research Studies Press, 1997
[105]
Hua A C C, Syue B Z W. Charge and discharge characteristics of lead-acid battery and LiFePO4 battery. In: Proceedings of 2010 International Power Electronics Conference (IPEC).Sapporo: IEEE, 2010, 1478–1483
CrossRef Google scholar
[106]
Notten P, Veld J H G O, Beek J R G. Boostcharging Li-ion batteries: A challenging new charging concept. Journal of Power Sources, 2005, 145(1): 89–94
CrossRef Google scholar
[107]
Kim T H, Park J S, Chang S K, . The current move of lithium ion batteries towards the next phase. Advanced Energy Materials, 2012, 2(7): 860–872
CrossRef Google scholar
[108]
Li L, Tang X, Qu Y, . CC-CV charge protocol based on spherical diffusion model. Journal of Central South University of Technology, 2011, 18(2): 319–322
CrossRef Google scholar
[109]
Liu K, Li K, Yang Z, . Battery optimal charging strategy based on a coupled thermoelectric model. In: Proceedings of 2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver: IEEE, 2016, 5084–5091
CrossRef Google scholar
[110]
Cope R C, Podrazhansky Y. The art of battery charging. In: Proceedings of the Fourteenth Annual Battery Conference on Applications and Advances.Long Beach: IEEE, 1999, 233–235
CrossRef Google scholar
[111]
Ikeya T, Sawada N, Takagi S, . Multi-step constant-current charging method for electric vehicle, valve-regulated, lead/acid batteries during night time for load-levelling. Journal of Power Sources, 1998, 75(1): 101–107
CrossRef Google scholar
[112]
Ikeya T, Sawada N, Murakami J, . Multi-step constant-current charging method for an electric vehicle nickel/metal hydride battery with high-energy efficiency and long cycle life. Journal of Power Sources, 2002, 105(1): 6–12
CrossRef Google scholar
[113]
Al-Haj Hussein A, Batarseh I. A review of charging algorithms for nickel and lithium battery chargers. IEEE Transactions on Vehicular Technology, 2011, 60(3): 830–838
CrossRef Google scholar
[114]
Lee K T, Chuang C C, Wang Y H, . A low temperature increase transcutaneous battery charger for implantable medical devices. Journal of Mechanics in Medicine and Biology, 2016, 16(5): 1650069
CrossRef Google scholar
[115]
Lee Y D, Park S Y. Rapid charging strategy in the constant voltage mode for a high power Li-ion battery. In: Proceedings of 2013 IEEE Energy Conversion Congress and Exposition. Denver: IEEE, 2013, 4725–4731
CrossRef Google scholar
[116]
Yong S O, Rahim N A. Development of on-off duty cycle control with zero computational algorithm for CC-CV Li ion battery charger. In: Proceedings of IEEE Conference on Clean Energy and Technology (CEAT). Lankgkawi: IEEE, 2013, 422–426
CrossRef Google scholar
[117]
Abdollahi A, Han X, Avvari G V, . Optimal battery charging, Part I: Minimizing time-to-charge, energy loss, and temperature rise for OCV-resistance battery model. Journal of Power Sources, 2016, 303: 388–398
CrossRef Google scholar
[118]
Hsieh G C, Chen L R, Huang K S. Fuzzy-controlled Li-ion battery charge system with active state-of-charge controller. IEEE Transactions on Industrial Electronics, 2001, 48(3): 585–593
CrossRef Google scholar
[119]
Liu K, Li K, Yang Z, . An advanced lithium-ion battery optimal charging strategy based on a coupled thermoelectric model. Electrochimica Acta, 2017, 225: 330–344
CrossRef Google scholar
[120]
Liu K, Li K, Ma H, . Multi-objective optimization of charging patterns for lithium-ion battery management. Energy Conversion and Management, 2018 (in press)
[121]
He L, Kim E, Shin K G. Aware charging of lithium-ion battery cells. In: Proceedings of 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS).Vienna: IEEE, 2016, 1–10
CrossRef Google scholar
[122]
Chen L R. PLL-based battery charge circuit topology. IEEE Transactions on Industrial Electronics, 2004, 51(6): 1344–1346
CrossRef Google scholar
[123]
Chen L R, Chen J J, Chu N Y, . Current-pumped battery charger. IEEE Transactions on Industrial Electronics, 2008, 55(6): 2482–2488
CrossRef Google scholar
[124]
Asadi H, Kaboli S H A, Mohammadi A, . Fuzzy-control-based five-step Li-ion battery charger by using AC impedance technique. In: Proceedings of Fourth International Conference on Machine Vision (ICMV 11). SPIE, 2012, 834939
[125]
Wang S C, Chen Y L, Liu Y H, . A fast-charging pattern search for Li-ion batteries with fuzzy-logic-based Taguchi method. In: Proceedings of 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA). Auckland: IEEE, 2015, 855–859
CrossRef Google scholar
[126]
Liu C L, Wang S C, Chiang S S, . PSO-based fuzzy logic optimization of dual performance characteristic indices for fast charging of lithium-ion batteries. In: Proceedings of 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS). IEEE, 2013, 474–479
[127]
Wang S C, Liu Y H. A PSO-based fuzzy-controlled searching for the optimal charge pattern of Li-ion batteries. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2983–2993
CrossRef Google scholar
[128]
Liu Y H, Hsieh C H, Luo Y F. Search for an optimal five-step charging pattern for Li-ion batteries using consecutive orthogonal arrays. IEEE Transactions on Energy Conversion, 2011, 26(2): 654–661
CrossRef Google scholar
[129]
Vo T T, Chen X, Shen W, . New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation. Journal of Power Sources, 2015, 273: 413–422
CrossRef Google scholar
[130]
Liu W, Sun X, Wu H, . A multistage current charging method for Li-ion battery bank considering balance of internal consumption and charging speed. In: Proceedings of IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). Hefei: IEEE, 2016, 1401–1406
CrossRef Google scholar
[131]
Khan A B, Pham V L, Nguyen T T, . Multistage constant-current charging method for Li-ion batteries. In: Proceedings of IEEE Conference and Expo on Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). Busan: IEEE, 2016, 381–385
CrossRef Google scholar
[132]
Chen Z, Xia B, Mi C C, . Loss-minimization-based charging strategy for lithium-ion battery. IEEE Transactions on Industry Applications, 2015, 51(5): 4121–4129
CrossRef Google scholar
[133]
Wu X, Shi W, Du J. Multi-objective optimal charging method for lithium-ion batteries. Energies, 2017, 10(9): 1271
CrossRef Google scholar
[134]
Liu K, Li K, Zhang C. Constrained generalized predictive control of battery charging process based on a coupled thermoelectric model. Journal of Power Sources, 2017, 347: 145–158
CrossRef Google scholar
[135]
Xavier M A, Trimboli M S. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models. Journal of Power Sources, 2015, 285: 374–384
CrossRef Google scholar
[136]
Zou C, Hu X, Wei Z,. Electrochemical estimation and control for lithium-ion battery health-aware fast charging. IEEE Transactions on Industrial Electronics, 2017, PP(99): 1 doi:10.1109/TIE.2017.2772154
[137]
Zhang C, Jiang J, Gao Y, . Charging optimization in lithium-ion batteries based on temperature rise and charge time. Applied Energy, 2017, 194: 569–577
CrossRef Google scholar
[138]
Ma H, You P, Liu K, . Optimal battery charging strategy based on complex system optimization. In: Li K, Xue Y, Cui S, ., eds. Advanced Computational Methods in Energy, Power, Electric Vehicles, and Their Integration. LSMS 2017, ICSEE 2017. Communications in Computer and Information Science, Vol 763. Singapore: Springer, 2017, 371–378
[139]
Hu X, Li S, Peng H, . Charging time and loss optimization for LiNMC and LiFePO4 batteries based on equivalent circuit models. Journal of Power Sources, 2013, 239: 449–457
CrossRef Google scholar
[140]
Perez H, Hu X, Dey S, . Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics. IEEE Transactions on Vehicular Technology, 2017, 66(9): 7761–7770
CrossRef Google scholar

Acknowledgements

This work was financially supported by UK EPSRC under the ‘Intelligent Grid Interfaced Vehicle Eco-charging (iGIVE) project EP/L001063/1 and NSFC under grants Nos. 61673256, 61533010 and 61640316. Kailong Liu would like to thank the EPSRC for sponsoring his research.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the appropriate credit is given to the original author(s) and the source, and a link is provided to the Creative Commons license, indicating if changes were made.

RIGHTS & PERMISSIONS

2018 The Author(s) 2018. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(455 KB)

Accesses

Citations

Detail

Sections
Recommended

/