Mar 2019, Volume 12 Issue 1
    

Cover illustration

  • Optical vortices, also known as orbital angular momentum (OAM) beams, have been studied for decades. In various optical vortices enabled applications such as optical communications, optical sensing and optical measurement, the generation of multiple optical vortices is of great importance. It is highly desirable to develop methods for generating a large number of optical vortices with less optical elements. Here we focus on the methods of multiple optical vortices generation [Detail] ...


  • Select all
  • EDITORIAL
    Jian WANG
  • REVIEW ARTICLE
    Xinwei DU, Pooi-Yuen KAM, Changyuan YU

    In this paper, we review our joint timing and frequency synchronization algorithms in coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. We first present a timing estimation method by designing the pattern of the training symbol, whose timing metric has a sharp and clear peak, to ensure accurate timing offset (TO) estimation performance. Then we provide both data-aided (DA) and blind (BL) approaches to estimate the carrier frequency offset (CFO). For the DA algorithm, we utilize the same training symbol structure as the timing estimation does, while for the BL algorithm, we utilize the zero-subcarrier power (ZSP) to achieve full-range CFO estimation. Note that our joint timing and frequency synchronization approaches require only one OFDM symbol, which ensure not only the data transmission efficiency, but also the TO and CFO estimation performance. A modified BL ZSP algorithm is proposed to further improve the CFO estimation performance by taking the power average over a series of OFDM symbols. The effectiveness of the TO estimation algorithm, and both the DA and BL CFO estimation algorithms are verified and demonstrated in both simulations and experiments.

  • REVIEW ARTICLE
    Jianjun YU

    In this paper, the recent progress on spectrally efficient single carrier (SC) 400G optical signal transmission was summarized. By using quadrature phase shift keying (QPSK), 16 quadrature amplitude modulation (16QAM) and 64QAM, we can realize transmission distance over 10000, 6000 and 3000 km, respectively, with large area fiber and all-Raman amplification. To improve the system performance and generate high-order QAM, advanced digital signal processing algorithms such as probabilistic shaping and look-up table pre-distortion are employed to improve the transmission performance.

  • REVIEW ARTICLE
    Hongxiang WANG, Tiantian LUO, Yuefeng JI

    In this paper, we propose and demonstrate simultaneous phase regeneration of four different channels of QPSK signal based on phase sensitive amplification. The configuration can be divided into two parts. The first one uses four wave mixing in high nonlinear fiber (HNLF) to generate the corresponding three harmonic conjugates precisely at the frequency of the original signals. The other one uses optical combiner to realize coherent addition which is aimed at completely removing the interaction in phase regeneration stage. The simulation results suggest that this scheme can optimize signal constellation to a large extend especially in high noise environment. Besides, optical signal to noise ratio (OSNR) can improve more than 3 dB while the bit-error-rate (BER) reaches 103 with a constant white noise and 15° phase noise.

  • REVIEW ARTICLE
    Juhao LI, Zhongying WU, Dawei GE, Jinglong ZHU, Yu TIAN, Yichi ZHANG, Jinyi YU, Zhengbin LI, Zhangyuan CHEN, Yongqi HE

    Multi-mode fiber (MMF) links are expected to greatly enhance capacity to cope with rapidly increasing data traffic in optical short-reach systems and networks. Recently, mode division multiplexing (MDM) over MMF has been proposed, in which different modes in MMF are utilized as spatial channels for data transmission. Strongly-coupled MDM techniques utilizing coherent detection and multiplex-input-multiplex-output (MIMO) digital signal processing (DSP) are complex and expensive for short-reach transmission. So the weakly-coupled approach by significantly suppressing mode coupling in the fiber and optical components has been proposed. In this way, the signals in each mode can be independently transmitted and received using conventional intensity modulation and direct detection (IM-DD). In this paper, we elaborate the key technologies to realize weakly-coupled MDM transmission over conventional MMF, including mode characteristic in MMF and weakly-coupled mode multiplexer/demultiplexer (MUX/DEMUX). We also present the up-to-date experimental results for weakly-coupled MDM transmission over conventional OM3 MMF. We show that weakly-coupled MDM scheme is promising for high-speed optical interconnections and bandwidth upgrade of already-deployed MMF links.

  • REVIEW ARTICLE
    Jianping LI, Zhaohui LI

    As one solution to implement the large-capacity space division multiplexing (SDM) transmission systems, the mode division multiplexing (MDM) has gained much attention recently. The vector mode (VM), which is the eigenmode of the optical fiber, has also been adopted to realize the optical communications including the transmission over free-space optical (FSO) and optical fiber links. Considering the concerns on the short-reach optical interconnects, the low cost and high integration technologies should be developed. Direct detection (DD) with higher-order modulation formats in combination of MDM technologies could offer an available trade-off in system performance and complexity. We review demonstrations of FSO and fiber high-speed data transmission based on the VM MDM (VMDM) technologies. The special VMs, cylindrical vector beams (CVB), have been generated by the q-plate (QP) and characterized accordingly. And then they were used to implement the VMDM transmission with direct-detection orthogonal frequency division multiplexing (DD-OFDM). These demonstrations show the potential of VMDM-DD-OFDM technology in the large-capacity short-reach transmission links.

  • REVIEW ARTICLE
    Long ZHU, Jian WANG

    Optical vortices carrying orbital angular momentum (OAM) have attracted increasing interest in recent years. Optical vortices have seen a variety of emerging applications in optical manipulation, optical trapping, optical tweezers, optical vortex knots, imaging, microscopy, sensing, metrology, quantum information processing, and optical communications. In various optical vortices enabled applications, the generation of multiple optical vortices is of great importance. In this review article, we focus on the methods of multiple optical vortices generation and its applications. We review the methods for generating multiple optical vortices in three cases, i.e., 1-to-N collinear OAM modes, 1-to-N OAM mode array and N-to-N collinear OAM modes. Diverse applications of multiple OAM modes in optical communications and non-communication areas are presented. Future trends, perspectives and opportunities are also discussed.

  • REVIEW ARTICLE
    Peng LI, Sheng LIU, Yi ZHANG, Lei HAN, Dongjing WU, Huachao CHENG, Shuxia QI, Xuyue GUO, Jianlin ZHAO

    Optical vortices carrying orbital angular momentum (OAM) have attracted extensive attention in recent decades because of their interesting applications in optical trapping, optical machining, optical communication, quantum information, and optical microscopy. Intriguing effects induced by OAMs, such as angular momentum conversion, spin Hall effect of light (SHEL), and spin–orbital interaction, have also gained increasing interest. In this article, we provide an overview of the modulations of OAMs on the propagation dynamics of scalar and vector fields in free space. First, we introduce the evolution of canonical and noncanonical optical vortices and analyze the modulations by means of local spatial frequency. Second, we review the Pancharatnam–Berry (PB) phases arising from spin–orbital interaction and reveal the control of beam evolution referring to novel behavior such as spin-dependent splitting and polarization singularity conversion. Finally, we discuss the propagation and focusing properties of azimuthally broken vector vortex beams.

  • REVIEW ARTICLE
    Chenhao WAN, Guanghao RUI, Jian CHEN, Qiwen ZHAN

    Light with an optical orbital angular momentum (OAM) has attracted an increasing amount of interest and has found its way into many disciplines ranging from optical trapping, edge-enhanced microscopy, high-speed optical communication, and secure quantum teleportation to spin-orbital coupling. In a variety of OAM-involved applications, it is crucial to discern different OAM states with high fidelity. In the current paper, we review the latest research progress on OAM detection with micro- and nano-optical structures that are based on plasmonics, photonic integrated circuits (PICs), and liquid crystal devices. These innovative OAM sorters are promising to ultimately achieve the miniaturization and integration of high-fidelity OAM detectors and inspire numerous applications that harness the intriguing properties of the twisted light.

  • REVIEW ARTICLE
    Hongbao XIN, Baojun LI

    An optical fiber serves as a versatile tool for optical trapping and manipulation owing to its many advantages over conventional optical tweezers, including ease of fabrication, compact configurations, flexible manipulation capabilities, ease of integration, and wide applicability. Here, we review recent progress in fiber-based optical trapping and manipulation, which includes mainly photothermal-based and optical-force-based trapping and manipulation. We focus on five topics in our review of progress in this area: massive photothermal trapping and manipulation, evanescent-field-based trapping and manipulation, dual-fiber tweezers for single-nanoparticle trapping and manipulation, single-fiber tweezers for single-particle trapping and manipulation, and single-fiber tweezers for multiple-particle/cell trapping and assembly.