Novel elastomeric spiropyran-doped poly(dimethylsiloxane) optical waveguide for UV sensing

Camila Aparecida Zimmermann, Koffi Novignon Amouzou, Dipankar Sengupta, Aashutosh Kumar, Nicole Raymonde Demarquette, Bora Ung

PDF(3599 KB)
PDF(3599 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (3) : 21. DOI: 10.1007/s12200-024-00124-4
RESEARCH ARTICLE

Novel elastomeric spiropyran-doped poly(dimethylsiloxane) optical waveguide for UV sensing

Author information +
History +

Abstract

Novel poly(dimethylsiloxane) (PDMS) doped with two different spiropyran derivatives (SP) were investigated as potential candidates for the preparation of elastomeric waveguides with UV-dependent optical properties. First, free-standing films were prepared and evaluated with respect to their photochromic response to UV irradiation. Kinetics, reversibility as well as photofatigue and refractive index of the SP-doped PDMS samples were assessed. Second, SP-doped PDMS waveguides were fabricated and tested as UV sensors by monitoring changes in the transmitted optical power of a visible laser (633 nm). UV sensing was successfully demonstrated by doping PDMS using one spiropyran derivative whose propagation loss was measured as 1.04 dB/cm at 633 nm, and sensitivity estimated at 115% change in transmitted optical power per unit change in UV dose. The decay and recovery time constants were measured at 42 and 107 s, respectively, with an average UV saturation dose of 0.4 J/cm2. The prepared waveguides exhibited a reversible and consistent response even under bending. The sensor parameters can be tailored by varying the waveguide length up to 21 cm, and are affected by white light and temperatures up to 70 ℃. This work is relevant to elastomeric optics, smart optical materials, and polymer optical waveguide sensors.

Graphical abstract

Keywords

Spiropyrans / PDMS / Photochromism / Polymer optical waveguides / UV detection

Cite this article

Download citation ▾
Camila Aparecida Zimmermann, Koffi Novignon Amouzou, Dipankar Sengupta, Aashutosh Kumar, Nicole Raymonde Demarquette, Bora Ung. Novel elastomeric spiropyran-doped poly(dimethylsiloxane) optical waveguide for UV sensing. Front. Optoelectron., 2024, 17(3): 21 https://doi.org/10.1007/s12200-024-00124-4

References

[1]
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 100. A Review of Human Carcinogens. Part D: Radiation. International Agency for Research on Cancer, Lyon (2012)
[2]
Cherrie, J.W. , Cherrie, M.P.C. : Workplace exposure to UV radiation and strategies to minimize cancer risk. Br. Med. Bull. 144 (1), 45- 56 (2022)
CrossRef Google scholar
[3]
McKenzie, R.L. , Aucamp, P.J. , Bais, A.F. , Björn, L.O. , Ilyas, M. , Madronich, S. : Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 10 (2), 182- 198 (2011)
CrossRef Google scholar
[4]
Barnes, P.W. , Robson, T.M. , Neale, P.J. , Williamson, C.E. , Zepp, R.G. , Madronich, S. , Wilson, S.R. , Andrady, A.L. , Heikkilä, A.M. , Bernhard, G.H. , Bais, A.F. , Neale, R.E. , Bornman, J.F. , Jansen, M.A.K. , Klekociuk, A.R. , Martinez-Abaigar, J. , Robinson, S.A. , Wang, Q.W. , Banaszak, A.T. , Häder, D.P. , Hylander, S. , Rose, K.C. , Wängberg, S.Å. , Foereid, B. , Hou, W.C. , Ossola, R. , Paul, N.D. , Ukpebor, J.E. , Andersen, M.P.S. , Longstreth, J. , Schikowski, T. , Solomon, K.R. , Sulzberger, B. , Bruckman, L.S. , Pandey, K.K. , White, C.C. , Zhu, L. , Zhu, M. , Aucamp, P.J. , Liley, J.B. , McKenzie, R.L. , Berwick, M. , Byrne, S.N. , Hollestein, L.M. , Lucas, R.M. , Olsen, C.M. , Rhodes, L.E. , Yazar, S. , Young, A.R. : Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochem. Photobiol. Sci. 21 (3), 275- 301 (2022)
CrossRef Google scholar
[5]
Fernández-Marchante, C.M. , Souza, F.L. , Millán, M. , Lobato, J. , Rodrigo, M.A. : Does intensification with UV light and US improve the sustainability of electrolytic waste treatment processes? J. Environ. Manage. 279, 111597 (2021)
CrossRef Google scholar
[6]
EPA 832-F-99-064 Wastewater Technology Fact Sheet Ultraviolet Disinfection . United States Environmental Protection Agency (1999)
[7]
Raeiszadeh, M. , Adeli, B. : A critical review on ultraviolet disinfection systems against COVID-19 outbreak: applicability, validation, and safety considerations. ACS Photonics 7 (11), 2941- 2951 (2020)
CrossRef Google scholar
[8]
Ramos, C.C.R. , Roque, J.L.A. , Sarmiento, D.B. , Suarez, L.E.G. , Sunio, J.T.P. , Tabungar, K.I.B. , Tengco, G.S.C. , Rio, P.C. , Hilario, A.L. : Use of ultraviolet-C in environmental sterilization in hospitals: a systematic review on efficacy and safety. Int. J. Health Sci. (Qassim) 14, 52- 65 (2020)
[9]
Bagheri, A. , Jin, J. : Photopolymerization in 3D printing. ACS Appl. Polym. Mater. 1 (4), 593- 611 (2019)
CrossRef Google scholar
[10]
Weller, R.B. , Macintyre, I.M. , Melville, V. , Farrugia, M. , Feelisch, M. , Webb, D.J. : The effect of daily UVA phototherapy for 2 weeks on clinic and 24-h blood pressure in individuals with mild hypertension. J. Hum. Hypertens. 37 (7), 548- 553 (2022)
CrossRef Google scholar
[11]
Sidbury, R. , Davis, D.M. , Cohen, D.E. , Cordoro, K.M. , Berger, T.G. , Bergman, J.N. , Chamlin, S.L. , Cooper, K.D. , Feldman, S.R. , Hanifin, J.M. , Krol, A. , Margolis, D.J. , Paller, A.S. , Schwarzenberger, K. , Silverman, R.A. , Simpson, E.L. , Tom, W.L. , Williams, H.C. , Elmets, C.A. , Block, J. , Harrod, C.G. , Begolka, W.S. , Eichenfield, L.F. : Guidelines of care for the management of atopic dermatitis. J. Am. Acad. Dermatol. 71 (2), 327- 349 (2014)
CrossRef Google scholar
[12]
Childress, K.K. , Kim, K. , Glugla, D.J. , Musgrave, C.B. , Bowman, C.N. , Stansbury, J.W. : Independent control of singlet oxygen and radical generation via irradiation of a two-color photosensitive molecule. Macromolecules 52 (13), 4968- 4978 (2019)
CrossRef Google scholar
[13]
van der Laan, H.L. , Burns, M.A. , Scott, T.F. : Volumetric photopolymerization confinement through dual-wavelength photoinitiation and photoinhibition. ACS Macro Lett. 8 (8), 899- 904 (2019)
CrossRef Google scholar
[14]
Schlotthauer, T. , Nitsche, J. , Middendorf, P. : Evaluation of UV post-curing depth for homogenous cross-linking of stereolithography parts. Rapid Prototyping J. 27 (10), 1910- 1916 (2021)
CrossRef Google scholar
[15]
Zhang, Y. , Sun, X. , Aphalo, P.J. , Zhang, Y. , Cheng, R. , Li, T. : Ultraviolet-A1 radiation induced a more favorable light-intercepting leaf-area display than blue light and promoted plant growth. Plant Cell Environ. 47 (1), 197- 212 (2024)
CrossRef Google scholar
[16]
Mariz-Ponte, N. , Mendes, R.J. , Sario, S. , Correia, C.V. , Correia, C.M. , Moutinho-Pereira, J. , Melo, P. , Dias, M.C. , Santos, C. : Physiological, biochemical and molecular assessment of UV-A and UV-B supplementation in solanum lycopersicum. Plants 10 (5), 918 (2021)
CrossRef Google scholar
[17]
Rabek, J.F. : Polymer photodegradation. Springer Netherlands, Dordrecht (1995)
CrossRef Google scholar
[18]
Rajan, A. , Kaur, G. , Paliwal, A. , Yadav, H.K. , Gupta, V. , Tomar, M. : Plasmonic assisted enhanced photoresponse of metal nanoparticle loaded ZnO thin film ultraviolet photodetectors. J. Phys. D Appl. Phys. 47 (42), 425102 (2014)
CrossRef Google scholar
[19]
Sang, L. , Liao, M. , Sumiya, M. : A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors (Basel) 13 (8), 10482- 10518 (2013)
CrossRef Google scholar
[20]
Ye, Q. , Zhang, X. , Yao, R. , Luo, D. , Liu, X. , Zou, W. , Guo, C. , Xu, Z. , Ning, H. , Peng, J. : Research and progress of transparent, flexible tin oxide ultraviolet photodetector. Crystals (Basel) 11 (12), 1479 (2021)
CrossRef Google scholar
[21]
Zhou, X. , Lu, Z. , Zhang, L. , Ke, Q. : Wide-bandgap all-inorganic lead-free perovskites for ultraviolet photodetectors. Nano Energy 117, 108908 (2023)
CrossRef Google scholar
[22]
Zou, W. , Sastry, M. , Gooding, J.J. , Ramanathan, R. , Bansal, V. : Recent advances and a roadmap to wearable UV sensor technologies. Adv. Mater. Technol. 5 (4), 1901036 (2020)
CrossRef Google scholar
[23]
Kanellis, V.G. : Ultraviolet radiation sensors: a review. Biophys. Rev. 11 (6), 895- 899 (2019)
CrossRef Google scholar
[24]
Huang, X. , Chalmers, A.N. : Review of wearable and portable sensors for monitoring personal solar UV exposure. Ann. Biomed. Eng. 49 (3), 964- 978 (2021)
CrossRef Google scholar
[25]
Zhang, Z. , Geng, Y. , Cao, S. , Chen, Z. , Gao, H. , Zhu, X. , Zhang, X. , Wu, Y. : Ultraviolet photodetectors based on polymer microwire arrays toward wearable medical devices. ACS Appl. Mater. Interfaces 14 (36), 41257- 41263 (2022)
CrossRef Google scholar
[26]
Henning, A. , Downs, J.N. , Vanos, J.K. : Wearable ultraviolet radiation sensors for research and personal use. Int. J. Biometeorol. 66, 627- 640 (2022)
CrossRef Google scholar
[27]
Zhang, P. , Carrillo Segura, S. , Boldini, A. , Di Trolio, P. , Ohanian, O.J., III. , Porfiri, M. : A photochromic nylon webbing for ultra-violet light sensing. Smart Mater. Struct. 30 (8), 085015 (2021)
CrossRef Google scholar
[28]
Wang, W. , Tian, S. , Lu, J. , Zheng, Y. , Yan, Z. , Wang, D. : Highly sensitive photoresponsive polyamide 6 nanofibrous membrane containing embedded spiropyran. J. Mater. Sci. 56 (33), 18775- 18794 (2021)
CrossRef Google scholar
[29]
Bao, B. , Fan, J. , Wang, W. , Yu, D. : Photochromic cotton fabric prepared by spiropyran-ternimated water polyurethane coating. Fibers Polym. 21 (4), 733- 742 (2020)
CrossRef Google scholar
[30]
Araki, H. , Kim, J. , Zhang, S. , Banks, A. , Crawford, K.E. , Sheng, X. , Gutruf, P. , Shi, Y. , Pielak, R.M. , Rogers, J.A. : Materials and device designs for an epidermal UV colorimetric dosimeter with near field communication capabilities. Adv. Funct. Mater. 27 (2), 1604465 (2017)
CrossRef Google scholar
[31]
Qi, Y. , Zheng, J. : An Azo-PDMS-based wearable UV sensor with the optimized photo response mode for dual sensing and synchronous detection. Sci. China Technol. Sci. 65, 179- 190 (2021)
CrossRef Google scholar
[32]
Chen, Y. , Cao, Z. , Zhang, J. , Liu, Y. , Yu, D. , Guo, X. : Wearable ultraviolet sensor based on convolutional neural network image processing method. Sens. Actuators A Phys. 338, 113402 (2022)
CrossRef Google scholar
[33]
Fan, S. , Lam, Y. , Yang, J. , Bian, X. , Xin, J.H. : Development of photochromic poly(azobenzene)/PVDF fibers by wet spinning for intelligent textile engineering. Surf. Interfaces 34, 102383 (2022)
CrossRef Google scholar
[34]
Fang, W. , Sairanen, E. , Vuori, S. , Rissanen, M. , Norrbo, I. , Lastusaari, M. , Sixta, H. : UV-sensing cellulose fibers manufactured by direct incorporation of photochromic minerals. ACS Sustain. Chem. & Eng. 9 (48), 16338- 16346 (2021)
CrossRef Google scholar
[35]
Finny, A.S. , Jiang, C. , Andreescu, S. : 3D printed hydrogel-based sensors for quantifying UV exposure. ACS Appl. Mater. Interfaces 12 (39), 43911- 43920 (2020)
CrossRef Google scholar
[36]
Lee, M.E. , Armani, A.M. : Flexible UV exposure sensor based on UV responsive polymer. ACS Sens. 1 (10), 1251- 1255 (2016)
CrossRef Google scholar
[37]
Yang, Z. , Zhao, J. , Liang, C. , Jiang, H. : Materials and device design for epidermal UV sensors with real-time, skin-color specific, and naked-eye quasi-quantitative monitoring capabilities. Adv. Mater. Technol. 8 (7), 2201481 (2023)
CrossRef Google scholar
[38]
Yimyai, T. , Crespy, D. , Pena-Francesch, A. : Self-healing photochromic elastomer composites for wearable UV-sensors. Adv. Funct. Mater. 33 (20), 2213717 (2023)
CrossRef Google scholar
[39]
Chen, G.Y. , Wang, Z. : Towards extremely sensitive ultravioletlight sensors employing photochromic optical microfiber. J. Sens. 2015, 1- 7 (2015)
CrossRef Google scholar
[40]
Ock, K. , Jo, N. , Kim, J. , Kim, S. , Koh, K. : Thin film optical waveguide type UV sensor using a photochromic molecular device, spirooxazine. Synth. Met. 117 (1-3), 131- 133 (2001)
CrossRef Google scholar
[41]
Song, I.S. , Kim, C.Y. , Han, A.R. , Yoo, J.S. , Lee, S.Y. , Kim, H.K. , Ahn, T.J. : Azobenzene polymer waveguide for UV sensors. In: 2012 Photonics Global Conference (PGC). IEEE, Singapore. pp. 1- 3 (2012)
CrossRef Google scholar
[42]
Yoon, J.K. , Seo, G.W. , Cho, K.M. , Kim, E.S. , Kim, S.H. , Kang, S.W. : Controllable in-line UV sensor using a side-polished fiber coupler with photofunctional polymer. IEEE Photonics Technol. Lett. 15 (6), 837- 839 (2003)
CrossRef Google scholar
[43]
Kortekaas, L. , Browne, W.R. : The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem. Soc. Rev. 48 (12), 3406- 3424 (2019)
CrossRef Google scholar
[44]
Klajn, R. : Spiropyran-based dynamic materials. Chem. Soc. Rev. 43 (1), 148- 184 (2014)
CrossRef Google scholar
[45]
Crano, J.C. , Guglielmetti, R.J. : eds.: Chapter 2: photodegradation of organic photochromes. In: Organic Photochromic and Thermochromic Compounds Volume 2: Physicochemical Studies, Biological Applications, and Thermochromism, Kluwer Academic Publishers, New York. pp. 65- 166 (2002)
[46]
Virlogeux, F. , Bianchini, D. , Delor-Jestin, F. , Baba, M. , Lacoste, J. : Evaluation of cross-linking after accelerated photo-ageing of silicone rubber. Polym. Int. 53 (2), 163- 168 (2004)
CrossRef Google scholar
[47]
Stevenson, I. , David, L. , Gauthier, C. , Arambourg, L. , Davenas, J. , Vigier, G. : Influence of SiO2 fillers on the irradiation ageing of silicone rubbers. Polymer (Guildf.) 42 (22), 9287- 9292 (2001)
CrossRef Google scholar
[48]
Minkin, V.I. : Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem. Rev. 104 (5), 2751- 2776 (2004)
CrossRef Google scholar
[49]
Berman, E. , Fox, R.E. , Thomson, F.D. : Photochromic spiropyrans. I. The effect of substituents on the rate of ring closure. J. Am. Chem. Soc. 81 (21), 5605- 5608 (1959)
CrossRef Google scholar
[50]
The Dow Chemical Company : Technical Data Sheet: SYLGARDTM 184 Silicone Elastomer (2017)
[51]
Yu, C.U. , Mark, J.E. : Specific solvent effects in swollen polymer networks. Macromolecules 7 (2), 229- 232 (1974)
CrossRef Google scholar
[52]
Kim, D. , Kim, S.H. , Park, J.Y. : Floating-on-water fabrication method for thin polydimethylsiloxane membranes. Polymers (Basel) 11 (8), 1264 (2019)
CrossRef Google scholar
[53]
Nam, Y.S. , Yoo, I. , Yarimaga, O. , Park, I.S. , Park, D.H. , Song, S. , Kim, J.M. , Lee, C.W. : Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing. Chem. Commun. (Camb.) 50 (32), 4251- 4254 (2014)
CrossRef Google scholar
[54]
Tian, W. , Tian, J. : An insight into the solvent effect on photo-, solvato-chromism of spiropyran through the perspective of intermolecular interactions. Dyes Pigments 105, 66- 74 (2014)
CrossRef Google scholar
[55]
Qiao, C. , Zhang, C. , Zhou, Z. , Dong, H. , Du, Y. , Yao, J. , Zhao, Y.S. : A photoisomerization-activated intramolecular chargetransfer process for broadband-tunable single-mode microlasers. Angew. Chem. Int. Ed. 59 (37), 15992- 15996 (2020)
CrossRef Google scholar
[56]
Wallikewitz, B.H. , Nikiforov, G.O. , Sirringhaus, H. , Friend, R.H. : A nanoimprinted, optically tuneable organic laser. Appl. Phys. Lett. 100 (17), 173301 (2012)
CrossRef Google scholar
[57]
Lin, L. , Wang, M. , Wei, X. , Peng, X. , Xie, C. , Zheng, Y. : Photoswitchable Rabi splitting in hybrid plasmon-waveguide modes. Nano Lett. 16 (12), 7655- 7663 (2016)
CrossRef Google scholar
[58]
Zheng, Y.B. , Kiraly, B. , Cheunkar, S. , Huang, T.J. , Weiss, P.S. : Incident-angle-modulated molecular plasmonic switches: a case of weak exciton-plasmon coupling. Nano Lett. 11 (5), 2061- 2065 (2011)
CrossRef Google scholar
[59]
Cai, D. , Heise, H.M. : Spectroscopic aspects of polydimethylsiloxane (PDMS) used for optical waveguides. In: Koleżyński, A., Król, M. (eds.) Molecular Spectroscopy—Experiment and Theory. Challenges and Advances in Computational Chemistry and Physics. Springer, Switzerland. pp. 401- 425 (2019)
CrossRef Google scholar
[60]
Sharma, K. , Morlec, E. , Valet, S. , Camenzind, M. , Weisse, B. , Rossi, R.M. , Sorin, F. , Boesel, L.F. : Polydimethylsiloxane based soft polymer optical fibers: from the processing-property relationship to pressure sensing applications. Mater. Des. 232, 112115 (2023)
CrossRef Google scholar
[61]
Kee, J.S. , Poenar, D.P. , Neuzil, P. , Yobas, L. : Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements. Sens. Actuators B Chem. 134 (2), 532- 538 (2008)
CrossRef Google scholar
[62]
Papakonstantinou, I. , Wang, K. , Selviah, D.R. , Fernández, F.A. : Transition, radiation and propagation loss in polymer multimode waveguide bends. Opt. Express 15 (2), 669 (2007)
CrossRef Google scholar
[63]
Suar, M. , Baran, M. , Günther, A. , Roth, B. : Combined thermomechanical and optical simulations of planar-optical polymer waveguides. J. Opt. 22 (12), 125801 (2020)
CrossRef Google scholar
[64]
Günther, A. , Baran, M. , Garg, R. , Roth, B. , Kowalsky, W. : Analysis of the thermal behavior of self-written waveguides. Opt. Lasers Eng. 151, 106922 (2022)
CrossRef Google scholar
[65]
Zhang, Z. , Zhao, P. , Lin, P. , Sun, F. : Thermo-optic coefficients of polymers for optical waveguide applications. Polymer (Guildf.) 47 (14), 4893- 4896 (2006)
CrossRef Google scholar
[66]
Zhu, Z. , Liu, L. , Liu, Z. , Zhang, Y. , Zhang, Y. : Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit. Opt. Lett. 42 (15), 2948 (2017)
CrossRef Google scholar
[67]
Information about Dow Corning brand Silicone Encapsulants . Dow Corning Corporation, USA (2005)
[68]
Gupta, N.S. , Lee, K.S. , Labouriau, A. : Tuning thermal and mechanical properties of polydimethylsiloxane with carbon fibers. Polymers (Basel) 13 (7), 1141 (2021)
CrossRef Google scholar
[69]
Müller, A. , Wapler, M.C. , Wallrabe, U. : A quick and accurate method to determine the Poisson’s ratio and the coefficient of thermal expansion of PDMS. Soft Matter 15 (4), 779- 784 (2019)
CrossRef Google scholar
[70]
Zhang, G. , Sun, Y. , Qian, B. , Gao, H. , Zuo, D. : Experimental study on mechanical performance of polydimethylsiloxane (PDMS) at various temperatures. Polym. Test. 90, 106670 (2020)
CrossRef Google scholar
[71]
Lin, J.S. : Interaction between dispersed photochromic compound and polymer matrix. Eur. Polym. J. 39 (8), 1693- 1700 (2003)
CrossRef Google scholar
[72]
Sworakowski, J. , Janus, K. , Nešpůrek, S. : Kinetics of photochromic reactions in condensed phases. Adv. Colloid Interface Sci. 116 (1-3), 97- 110 (2005)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s)
AI Summary AI Mindmap
PDF(3599 KB)

Accesses

Citations

Detail

Sections
Recommended

/