Influence of the homotopy stability perturbation on physical variations of non-local opto-electronic semiconductor materials

A. El-Dali , Mohamed I. A. Othman

Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (4) : 38

PDF (3583KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (4) : 38 DOI: 10.1007/s12200-024-00141-3
RESEARCH ARTICLE

Influence of the homotopy stability perturbation on physical variations of non-local opto-electronic semiconductor materials

Author information +
History +
PDF (3583KB)

Abstract

In the current work, we investigate a novel technique specialized in stability perturbation theory to analyze the primary variations such as thermal, carrier, elastic, and mechanical waves in photothermal theory. The interface of the non-local semiconductor material is utilized to study the stability analysis. The problem is established using a 1D opto-electronic-thermoelastic deformation in the context of the photo-thermoelasticity (PTE) framework. The Laplace transform method is used to convert the system from the time domain into the frequency domain, and the boundary conditions for the thermal, elastic, and plasma waves are applied to the interface of the medium. The homotopy perturbation method was used as an innovative approach to analyze the stability of the non-local silicon’s primary physical fields. The numerical inversion method is applied, yielding many graphs focusing on important numerical factors such as non-local effects, thermo-energy, and thermo-electric coupling parameters. Investigating dual solutions between stable and unstable regions for critical parameters like thermo-electric and thermo-energy coupling factors demonstrates that the homotopy perturbation technique can effectively analyze the stability analysis. The comparison between silicon and germanium is illustrated graphically. Utilizing the homotopy perturbation technique, we can effectively examine the stability of the primary physical variations with the effect of some values for eigenvalues approaches.

Graphical abstract

Keywords

Homotopy perturbation method / Opto-electronic deformation / Laplace transform / Non-local excitation / Bifurcation solutions / Stability perturbation

Cite this article

Download citation ▾
A. El-Dali, Mohamed I. A. Othman. Influence of the homotopy stability perturbation on physical variations of non-local opto-electronic semiconductor materials. Front. Optoelectron., 2024, 17(4): 38 DOI:10.1007/s12200-024-00141-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liao, S. : Comparison between the homotopy analysis method and homotopy perturbation method. Appl. Math. Comput. 169 (2), 1186- 1194 (2005)

[2]

He, J.H. : Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135 (1), 73- 79 (2003)

[3]

Liao, S. : On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147 (2), 499- 513 (2004)

[4]

Watson, L.T. , Haftka, R.T. : Modern homotopy methods in optimization. Comput. Methods in Appl. Mech. Eng. 74 (3), 289- 305 (1989)

[5]

Zenkour, A.M. : On generalized three-phase-lag models in photo-thermoelasticity. Int. J. Appl. Mech. 14 (2), 2250005 (2022)

[6]

Gupta, V. , Barak, M.S. , Das, S. : Vibrational analysis of size-dependent thermo-piezo-photo-electric semiconductor medium under memory-dependent Moore-Gibson-Thompson photo-thermoelasticity theory. Mech. Adv. Mater. Struct. 1- 17 (2023).

[7]

Othman, M.I.A. , Tantawi, R.S. , Eraki, E.E.M. : Effect of initial stress on a semi-conductor material with temperature dependent properties under DPL model. Microsyst. Technol. 23 (12), 5587- 5598 (2017).

[8]

Askar, S. , Abouelregal, A.E. , Marin, M. , Foul, A. : Photo-thermoelasticity heat transfer modeling with fractional differential actuators for stimulated nano-semi-conductor media. Symmetry (Basel) 15 (3), 656 (2023)

[9]

Adel, M. , El-Dali, A. , Seddeek, M.A. , Yahya, A.S. , El-Bary, A.A. , Lotfy, K. : The fractional derivative and moisture diffusivity for Moore-Gibson-Thompson model of rotating magneto-semiconducting material. J. Vib. Eng. Technol.

[10]

El-Sapa, S. , Gepreel, K.A. , Lotfy, K. , El-Bary, A. , Mahdy, A.M.S. : Impact of variable thermal conductivity of thermal-plasma-mechanical waves on rotational microelongated excited semiconductor. J. Low Temp. Phys. 209 (1-2), 144- 165 (2022)

[11]

Abouelregal, A.E. , Zakaria, K. , Sirwah, M.A. , Ahmad, H. , Rashid, A.F. : Viscoelastic initially stressed microbeam heated by an intense pulse laser via photo-thermo-elasticity with two-phase lag. Int. J. Mod. Phys. C 33 (6), 2250073 (2022)

[12]

Sur, A. : Photo-thermoelastic inter action in a semiconductor with cylindrical cavity due to memory effect. Mech. Time-Depend. Mater. 28 (3), 1219- 1243 (2024)

[13]

Ezzat, M.A. , Bary, A.A. : State space approach of two-temperature magneto-thermoelasticity with thermal relaxation in a medium of perfect conductivity. Int. J. Eng. Sci. 47 (4), 618- 630 (2009)

[14]

Sherief, H.H. , Ezzat, M.A. : Solution of the generalized problem of thermoelasticity in the form of series of functions. J. Therm. Stress. 17 (1), 75- 95 (1994)

[15]

Ezzat, M.A. : Hyperbolic thermal-plasma wave propagation in semiconductor of organic material. Waves Random Complex Media 32 (1), 334- 358 (2022)

[16]

Hendy, M.H. , Amin, M.M. , Ezzat, M.A. : Memory-dependent derivative theory of ultrafast laser-induced behavior in magneto-thermo-viscoelastic metal films. Ind. J. Phys. Proc. Ind. Assoc. Cultiv. 95 (6), 1121- 1130 (2021)

[17]

Ezzat, M.A. : A novel model of fractional thermal and plasma transfer within a non-metallic plate. Smart Struct. Syst. Int. J. 27 (1), 73- 87 (2021)

[18]

Sur, A. , Mondal, S. , Kanoria, M. : Effect of nonlocality and memory responses in the thermoelastic problem with a Mode I crack. Waves Random Complex Media 32 (2), 771- 796 (2022)

[19]

Abd-Elaziz, E.M. , Jahangir, A. , Othman, M.I.A. : Propagation of plane waves in nonlocal semiconductor nanostructure thermoelastic solid with fractional derivative due to ramp-type heat source. Int. J. Comput. Mater. Sci. Eng. 13 (4), 2350032 (2024)

[20]

Sarkar, N. , Mondal, S. , Othman, M.I.A. : L-S theory for the propagation of the photo-thermal waves in a semi-conducting nonlocal elastic medium. Waves Random Complex Media 32 (6), 2622- 2635 (2022)

[21]

Sur, A. : Non-local memory-dependent heat conduction in a magneto-thermoelastic problem. Waves Random Complex Media 32 (1), 251- 271 (2022)

[22]

Tiwari, R. , Kumar, R. , Abouelregal, A.E. : Analysis of a magneto-thermoelastic problem in a piezoelastic medium using the non-local memory-dependent heat conduction theory involving three phase lags. Mech. Time-Depend. Mater. 26 (2), 271- 287 (2022)

[23]

El-Sapa, S. , El-Bary, A.A. , Lotfy, K. : Effect of an excited nonlocal microelongated semiconductor with variable thermal conductivity on the propagation of photothermoelastic waves. Opt. Quantum Electron. 55 (6), 569 (2023)

[24]

El-Sapa, S. , Alhejaili, W. , Lotfy, K. , El-Bary, A.A. : Response of excited microelongated non-local semiconductor layer thermomechanical waves to photothermal transport processes. Acta Mech. 234 (6), 2373- 2388 (2023)

[25]

Abbas, I.A. , Alzahrani, F. , Abdalla, A.N. , Berto, F. : Fractional order thermoelastic wave assessment in a nanoscale beam using the eigenvalue technique. Strength Mater. 51, 427- 438 (2019)

[26]

Kaur, I. , Singh, K. : Nonlocal memory dependent derivative analysis of a photo-thermoelastic semiconductor resonator. Mech. Solids 58 (2), 529- 553 (2023)

[27]

Hosseini, S.M. , Sladek, J. , Sladek, V. : Nonlocal coupled photo-thermoelasticity analysis in a semiconducting micro/nano beam resonator subjected to plasma shock loading: a green-Naghdi-based analytical solution. Appl. Math. Model. 88, 631- 651 (2020)

[28]

Sardar, S. S. , Das, B. , Ghosh, D. , Lahiri, A. : Photothermal effects of semi-conducting medium with non-local theory. Waves Random Complex Media 1- 22 (2023)

[29]

Ezzat, M.A. , Al-Muhiameed, Z.I. : Thermo-mechanical response of size-dependent piezoelectric materials in thermo-viscoelasticity theory. Steel Compos. Struct. 45 (4), 535 (2022)

[30]

El-Sapa, S. , Lotfy, K. , El-Bary, A.A. , Ahmed, M.H. : Moisture diffusivity and photothermal excitation in nonlocal semi- conductor materials with laser pulses. Silicon. 15 (10), 4489- 4500 (2023)

[31]

Ezzat, M.A. , Ezzat, S.M. , Alkharraz, M.Y. : State-space approach to nonlocal thermo-viscoelastic piezoelectric materials with fractional dual-phase lag heat transfer. Int. J. Numer. Methods Heat Fluid Flow 32 (12): 3726- 3750 (2022)

[32]

Ezzat, M.A. , Ezzat, S.M. , Alduraibi, N.S. : On size-dependent thermo-viscoelasticity theory for piezoelectric materials. Waves in Random and Complex Media (2022)

[33]

Ezzat, M.A. , El Bary, A.A. , ElKaramany. A.S. : Two-temperature theory in generalized magneto-thermo-visco-elasticity. Can. J. Phys. 87 (4), 329- 336 (2009)

[34]

Ezzat, M.A. : Generation of generalized magnetothermoelastic waves by thermal shock in a perfectly conducting half-space. J. Therm. Stress. 20 (6), 617- 633 (1997)

[35]

Saeed, T. , Abbas, I.A. : Effects of the nonlocal thermoelastic model in a thermoelastic nanoscale material. Mathematics 10 (2), 284 (2022)

[36]

Ali, H. , Jahangir, A. , Khan, A. : Reflection of thermo-elastic wave in semiconductor nanostructures nonlocal porous medium. J. Cent. South Univ. 27 (11), 3188- 3201 (2020)

[37]

Seydel, R. : Practical Bifurcation and Stability Analysis (Vol. 5). Springer Science & Business Media (2009).

[38]

Hassanin, W.S. , Lotfy, K. , Seddeek, M.A. , El-Dali, A. , Eid, M.R. , Elsaid, E.M. : A novel approach to analyzing the stability of physical fields in semiconductor materials under photothermal excitation. Chinese J. Phys. 91, 1027- 1038 (2024)

[39]

Bhattacharyya, K. : Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet. Int. Commun. Heat and Mass Transf. 38 (7), 917- 922 (2011)

[40]

Akbar, N.S. , Khan, Z.H. , Haq, R.U. , Nadeem, S. : Dual solutions in MHD stagnation-point flow of Prandtl fluid impinging on shrinking sheet. Appl. Math. Mech. 35, 813- 820 (2014)

[41]

Merkin, J.H. : On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 20 (2), 171- 179 (1986)

[42]

Dennis, S.C.R. , Ng, M. : Dual solutions for steady laminar flow through a curved tube. Q. J. Mech. Appl. Math. 35 (3), 305- 324 (1982)

[43]

Eguchi, T. , Hanson, A.J. : Self-dual solutions to Euclidean gravity. Ann. Phys. 120 (1), 82- 106 (1979)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (3583KB)

366

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/