Numerical study of terahertz radiation from N-polar AlGaN/GaN HEMT under asymmetric boundaries

Runxian Xing, Hongyang Guo, Bohan Guo, Guohao Yu, Ping Zhang, Jia'an Zhou, An Yang, Yu Li, Chunfeng Hao, Huixin Yue, Zhongming Zeng, Xinping Zhang, Baoshun Zhang

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (1) : 4.

PDF(3376 KB)
Front. Optoelectron. All Journals
PDF(3376 KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (1) : 4. DOI: 10.1007/s12200-025-00148-4
RESEARCH ARTICLE

Numerical study of terahertz radiation from N-polar AlGaN/GaN HEMT under asymmetric boundaries

Author information +
History +

Abstract

In this paper, we have studied the electrical excitation of plasma-wave in N-polar AlGaN/GaN high electron mobility transistors (HEMT) under asymmetric boundaries leads to terahertz emission. Numerical calculations are conducted through the simultaneous solution of Maxwell’s equations and the self-consistent hydrodynamic model. By employing this method, we solved the plasma-wave model in the channel of an N-polar AlGaN/GaN HEMT. We estimate that, under ideal boundary conditions and with sufficient channel mobility, these devices could generate milliwatts of power. The effects of different GaN channel layer thickness, carrier concentration, gate length and channel carrier velocity on plasma wave oscillation and terahertz radiation in N-polar AlGaN/GaN HEMT are considered. These simulation results based on Dyakonov-Shur instability provide guidance for the future design of high-radiation-power on-chip terahertz sources based on N-polar AlGaN/ GaN HEMTs.

Graphical abstract

Keywords

N-polar GaN HEMT / Terahertz emission / Dyakonov-Shur instability

Cite this article

Download citation ▾
Runxian Xing, Hongyang Guo, Bohan Guo, Guohao Yu, Ping Zhang, Jia'an Zhou, An Yang, Yu Li, Chunfeng Hao, Huixin Yue, Zhongming Zeng, Xinping Zhang, Baoshun Zhang. Numerical study of terahertz radiation from N-polar AlGaN/GaN HEMT under asymmetric boundaries. Front. Optoelectron., 2025, 18(1): 4 https://doi.org/10.1007/s12200-025-00148-4

References

[1]
Dhillon, S. , Vitiello, M. , Linfield, E. , Davies, A. , Hoffmann, M.C. , Booske, J. , Paoloni, C. , Gensch, M. , Weightman, P. , Williams, G.P. : The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 50 (4), 043001 (2017)
CrossRef Google scholar
[2]
Polese, M. , Jornet, J.M. , Melodia, T. , Zorzi, M. : Toward end-to-end, full-stack 6G terahertz networks. IEEE Commun. Mag. 58 (11), 48- 54 (2020)
CrossRef Google scholar
[3]
Siegel, P.H. : Terahertz technology. IEEE Trans. Microw. Theory Tech. 50 (3), 910- 928 (2002)
CrossRef Google scholar
[4]
Dyakonov, M. , Shur, M. : Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current. Phys. Rev. Lett. 71 (15), 2465 (1993)
CrossRef Google scholar
[5]
Shur, M.S. , Ryzhii, V. : Plasma wave electronics. Int. J. High Speed Electron. Syst. 13 (2), 575- 600 (2003)
CrossRef Google scholar
[6]
Bhardwaj, S. , Nahar, N.K. , Rajan, S. , Volakis, J.L. : Numerical analysis of terahertz emissions from an ungated HEMT using full-wave hydrodynamic model. IEEE Trans. Electron Dev. 63 (3), 990- 996 (2016)
CrossRef Google scholar
[7]
El Fatimy, A. , Dyakonova, N. , Meziani, Y. , Otsuji, T. , Knap, W. , Vandenbrouk, S. , Madjour, K. , Theron, D. , Gaquière, C. , Poisson, M.A.P. : AlGaN/GaN high electron mobility transistors as a voltage-tunable room temperature terahertz sources. J. Appl. Phys. 107 (2), 024504 (2010)
CrossRef Google scholar
[8]
Jakštas, V. , Grigelionis, I. , Janonis, V. , Valušis, G. , Kašalynas, I. , Seniutinas, G. , Juodkazis, S. , Prystawko, P. , Leszczyński, M. : Electrically driven terahertz radiation of 2DEG plasmons in AlGaN/GaN structures at 110 K temperature. Appl. Phys. Lett. 110 (20), 202101 (2017)
CrossRef Google scholar
[9]
Onishi, T. , Tanigawa, T. , Takigawa, S. : High power terahertz emission from a single gate AlGaN/GaN field effect transistor with periodic Ohmic contacts for plasmon coupling. Appl. Phys. Lett. 97 (9), 092117 (2010)
CrossRef Google scholar
[10]
Shalygin, V. , Moldavskaya, M. , Vinnichenko, M.Y. , Maremyanin, K. , Artemyev, A. , Panevin, V.Y. , Vorobjev, L. , Firsov, D. , Korotyeyev, V. , Sakharov, A. : Selective terahertz emission due to electrically excited 2D plasmons in AlGaN/GaN heterostructure. J. Appl. Phys. 126 (18), 183104 (2019)
CrossRef Google scholar
[11]
Dasgupta, S. , Nidhi, N. , Brown, D.F. , Wu, F. , Keller, S. , Speck, J.S. , Mishra, U.K. : Ultralow nonalloyed ohmic contact resistance to self aligned N-polar GaN high electron mobility transistors by In (Ga) N regrowth. Appl. Phys. Lett. 96 (14), 143504 (2010)
CrossRef Google scholar
[12]
Park, P.S. , Rajan, S. : Simulation of short-channel effects in N-and Ga-polar AlGaN/GaN HEMTs. IEEE Trans. Electron Dev. 58 (3), 704- 708 (2011)
CrossRef Google scholar
[13]
Denninghoff, D.J. , Dasgupta, S. , Lu, J. , Keller, S. , Mishra, U.K. : Design of high-aspect-ratio T-gates on N-polar GaN/AlGaN MIS-HEMTs for high fmax. IEEE Electron Device Lett. 33 (6), 785- 787 (2012)
CrossRef Google scholar
[14]
Guo, H. , Zhang, P. , Yang, S. , Wang, S. , Gong, Y.B. : Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array. Chin. Phys. B 32 (4), 040701 (2023)
CrossRef Google scholar
[15]
Nafari, M. , Aizin, G.R. , Jornet, J.M. : Plasmonic HEMT terahertz transmitter based on the Dyakonov-Shur instability: performance analysis and impact of nonideal boundaries. Phys. Rev. Appl. 10 (6), 064025 (2018)
CrossRef Google scholar
[16]
Crabb, J. , Roman, X.C. , Jornet, J. , Aizin, G.R. : Plasma instability in graphene field-effect transistors with a shifted gate. Appl. Phys. Lett. 121 (14), 3502 (2022)
CrossRef Google scholar
[17]
Crabb, J. , Cantos-Roman, X. , Jornet, J.M. , Aizin, G.R. : Hydrodynamic theory of the Dyakonov-Shur instability in graphene transistors. Phys. Rev. B 104 (15), 155440 (2021)
CrossRef Google scholar
[18]
Lu, J. , Denninghoff, D. , Yeluri, R. , Lal, S. , Gupta, G. , Laurent, M. , Keller, S.P. , DenBaars, S.K. , Mishra, U. : Very high channel conductivity in ultra-thin channel N-polar GaN/(AlN, InAlN, AlGaN) high electron mobility heterojunctions grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 102 (23), 232104 (2013)
CrossRef Google scholar
[19]
Huang, Y. , Yu, Y. , Qin, H. , Sun, J. , Zhang, Z. , Li, X. , Huang, J. , Cai, Y. : Plasmonic terahertz modulator based on a gratingcoupled two-dimensional electron system. Appl. Phys. Lett. 109 (20), 201110 (2016)
CrossRef Google scholar
[20]
Guo, H. , Yang, S. , Zhang, P. , Xing, R. , Yu, G. , Wang, S. , Gong, Y.B. : Acoustic and optical plasmons excitation in double-channel AlGaN/GaN HEMT under asymmetric boundaries. AIP Adv. 14 (4), 045224 (2024)
CrossRef Google scholar
[21]
Guo, B. , Yu, G. , Zhang, L. , Zhou, J. , Wang, Z. , Xing, R. , Yang, A. , Li, Y. , Liu, B. , Zeng, X.H. : High-performance N-polar GaN/AlGaN metal-insulator-semiconductor high-electron-mobility transistors with low surface roughness enabled by chemical-mechanical-polishing-incorporated layer transfer technology. Crystals (Basel) 14 (3), 253 (2024)
CrossRef Google scholar
[22]
Dyakonov, M. , Shur, M. : Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Dev. 43 (3), 380- 387 (1996)
CrossRef Google scholar
[23]
Dyakonov, M. , Shur, M.S. : Current instability and plasma waves generation in ungated two-dimensional electron layers. Appl. Phys. Lett. 87 (11), 111501 (2005)
CrossRef Google scholar
[24]
Otsuji, T. , Hanabe, M. , Nishimura, T. : A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure. Opt. Express 14 (11), 4815- 4825 (2006)
CrossRef Google scholar
[25]
Popov, V. , Polischuk, O. , Shur, M.S. : Resonant excitation of plasma oscillations in a partially gated two-dimensional electron layer. J. Appl. Phys. 98 (3), 033510 (2005)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2025 The Author(s)
AI Summary AI Mindmap
PDF(3376 KB)

42

Accesses

0

Citations

22

Altmetric

Detail

Sections
Recommended

/