A review of multiple optical vortices generation: methods and applications

Long ZHU, Jian WANG

PDF(6799 KB)
PDF(6799 KB)
Front. Optoelectron. ›› 2019, Vol. 12 ›› Issue (1) : 52-68. DOI: 10.1007/s12200-019-0910-9
REVIEW ARTICLE
REVIEW ARTICLE

A review of multiple optical vortices generation: methods and applications

Author information +
History +

Abstract

Optical vortices carrying orbital angular momentum (OAM) have attracted increasing interest in recent years. Optical vortices have seen a variety of emerging applications in optical manipulation, optical trapping, optical tweezers, optical vortex knots, imaging, microscopy, sensing, metrology, quantum information processing, and optical communications. In various optical vortices enabled applications, the generation of multiple optical vortices is of great importance. In this review article, we focus on the methods of multiple optical vortices generation and its applications. We review the methods for generating multiple optical vortices in three cases, i.e., 1-to-N collinear OAM modes, 1-to-N OAM mode array and N-to-N collinear OAM modes. Diverse applications of multiple OAM modes in optical communications and non-communication areas are presented. Future trends, perspectives and opportunities are also discussed.

Keywords

optical communications / optical vortices / orbital angular momentum (OAM) / mode-division multiplexing (MDM) / mode multicasting

Cite this article

Download citation ▾
Long ZHU, Jian WANG. A review of multiple optical vortices generation: methods and applications. Front. Optoelectron., 2019, 12(1): 52‒68 https://doi.org/10.1007/s12200-019-0910-9

References

[1]
Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45(11): 8185–8189
CrossRef Pubmed Google scholar
[2]
Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 2011, 3(2): 161–204
CrossRef Google scholar
[3]
Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum. Laser & Photonics Reviews, 2008, 2(4): 299–313
CrossRef Google scholar
[4]
Dholakia K, Čižmár T. Shaping the future of manipulation. Nature Photonics, 2011, 5(6): 335–342
CrossRef Google scholar
[5]
Paterson L, MacDonald M P, Arlt J, Sibbett W, Bryant P E, Dholakia K. Controlled rotation of optically trapped microscopic particles. Science, 2001, 292(5518): 912–914
CrossRef Pubmed Google scholar
[6]
Padgett M, Bowman R. Tweezers with a twist. Nature Photonics, 2011, 5(6): 343–348
CrossRef Google scholar
[7]
Dennis M R, King R P, Jack B, O’Holleran K, Padgett M J. Isolated optical vortex knots. Nature Physics, 2010, 6(2): 118–121
CrossRef Google scholar
[8]
Bernet S, Jesacher A, Fürhapter S, Maurer C, Ritsch-Marte M. Quantitative imaging of complex samples by spiral phase contrast microscopy. Optics Express, 2006, 14(9): 3792–3805
CrossRef Pubmed Google scholar
[9]
Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412(6844): 313–316
CrossRef Pubmed Google scholar
[10]
Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456
CrossRef Pubmed Google scholar
[11]
Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496
CrossRef Google scholar
[12]
Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548
CrossRef Pubmed Google scholar
[13]
Willner A E, Wang J, Huang H. A different angle on light communications. Science, 2012, 337(6095): 655–656
CrossRef Pubmed Google scholar
[14]
Krenn M, Handsteiner J, Fink M, Fickler R, Ursin R, Malik M, Zeilinger A. Twisted light transmission over 143 km. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13648–13653
CrossRef Pubmed Google scholar
[15]
Wang A, Zhu L, Chen S, Du C, Mo Q, Wang J. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber. Optics Express, 2016, 24(11): 11716–11726
CrossRef Pubmed Google scholar
[16]
Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N, Ashrafi S. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics, 2015, 7(1): 66–106
CrossRef Google scholar
[17]
Wang J. Advances in communications using optical vortices. Photonics Research, 2016, 4(5): B14–B28
CrossRef Google scholar
[18]
Wang J. Data information transfer using complex optical fields: a review and perspective. Chinese Optics Letters, 2017, 15(3): 030005–030009
CrossRef Google scholar
[19]
Zhu L, Liu J, Mo Q, Du C, Wang J. Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber. Optics Express, 2016, 24(15): 16934–16944
CrossRef Pubmed Google scholar
[20]
Zhu L, Wang A, Chen S, Liu J, Mo Q, Du C, Wang J. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber. Optics Express, 2017, 25(21): 25637–25645
CrossRef Pubmed Google scholar
[21]
Wang A, Zhu L, Wang L, Ai J, Chen S, Wang J. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Optics Express, 2018, 26(8): 10038–10047
CrossRef Pubmed Google scholar
[22]
Wang A, Zhu L, Liu J, Du C, Mo Q, Wang J. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network. Optics Express, 2015, 23(23): 29457–29466
CrossRef Pubmed Google scholar
[23]
Jung Y, Kang Q, Zhou H, Zhang R, Chen S, Wang H, Yang Y, Jin X, Payne F P, Alam S, Richardson D J. Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission. Journal of Lightwave Technology, 2017, 35(8): 1363–1368
CrossRef Google scholar
[24]
Zhu G, Hu Z, Wu X, Du C, Luo W, Chen Y, Cai X, Liu J, Zhu J, Yu S. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes. Optics Express, 2018, 26(2): 594–604
CrossRef Pubmed Google scholar
[25]
Zhu L, Zhu G, Wang A, Wang L, Ai J, Chen S, Du C, Liu J, Yu S, Wang J. 18 km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation. Optics Letters, 2018, 43(8): 1890–1893
CrossRef Pubmed Google scholar
[26]
Padgett M, Courtial J, Allen L. Light’s orbital angular momentum. Physics Today, 2004, 57(5): 35–40
CrossRef Google scholar
[27]
Su T, Scott R P, Djordjevic S S, Fontaine N K, Geisler D J, Cai X, Yoo S J B. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Optics Express, 2012, 20(9): 9396–9402
CrossRef Pubmed Google scholar
[28]
Wang A, Zhu L, Wang L, Ai J, Chen S, Wang J. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Optics Express, 2018, 26(8): 10038–10047
CrossRef Pubmed Google scholar
[29]
Zhu L, Wang A, Chen S, Liu J, Mo Q, Du C, Wang J. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber. Optics Express, 2017, 25(21): 25637–25645
CrossRef Pubmed Google scholar
[30]
Lavery M P, Speirits F C, Barnett S M, Padgett M J. Detection of a spinning object using light’s orbital angular momentum. Science, 2013, 341(6145): 537–540
CrossRef Pubmed Google scholar
[31]
Lavery M, Barnett S, Speirits F, Padgett M. Observation of the rotational doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body. Optica, 2014, 1(1): 1–4
CrossRef Google scholar
[32]
Belmonte A, Rosales-Guzmán C, Torres J P. Measurement of flow vorticity with helical beams of light. Optica, 2015, 2(11): 1002–1005
CrossRef Google scholar
[33]
Fang L, Padgett M J, Wang J. Sharing a common origin between the rotational and linear Doppler effects. Laser & Photonics Reviews, 2017, 11(6): 1700183
CrossRef Google scholar
[34]
Yan Y, Yue Y, Huang H, Ren Y, Ahmed N, Tur M, Dolinar S, Willner A. Multicasting in a spatial division multiplexing system based on optical orbital angular momentum. Optics Letters, 2013, 38(19): 3930–3933
CrossRef Pubmed Google scholar
[35]
Lin J, Yuan X C, Tao S H, Burge R E. Collinear superposition of multiple helical beams generated by a single azimuthally modulated phase-only element. Optics Letters, 2005, 30(24): 3266–3268
CrossRef Pubmed Google scholar
[36]
Zhu L, Wang J. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element. Optics Express, 2015, 23(20): 26221–26233
CrossRef Pubmed Google scholar
[37]
Zhu L, Wang J. Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators. Scientific Reports, 2014, 4(1): 7441
CrossRef Pubmed Google scholar
[38]
Moreno I, Davis J A, Cottrell D M, Zhang N, Yuan X C. Encoding generalized phase functions on Dammann gratings. Optics Letters, 2010, 35(10): 1536–1538
CrossRef Pubmed Google scholar
[39]
Zhang N, Yuan X C, Burge R E. Extending the detection range of optical vortices by Dammann vortex gratings. Optics Letters, 2010, 35(20): 3495–3497
CrossRef Pubmed Google scholar
[40]
Du J, Wang J. Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array. Scientific Reports, 2015, 5(1): 9662
CrossRef Pubmed Google scholar
[41]
Lei T, Zhang M, Li Y, Jia P, Liu G N, Xu X, Li Z, Min C, Lin J, Yu C, Niu H, Yuan X C. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light, Science & Applications, 2015, 4(3): e257
CrossRef Google scholar
[42]
Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W, Padgett M J. Efficient sorting of orbital angular momentum states of light. Physical Review Letters, 2010, 105(15): 153601
CrossRef Pubmed Google scholar
[43]
Mirhosseini M, Malik M, Shi Z, Boyd R W. Efficient separation of the orbital angular momentum eigenstates of light. Nature Communications, 2013, 4(1): 2781
CrossRef Pubmed Google scholar
[44]
Lavery M P J, Berkhout G C G, Courtial J, Padgett M J. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation. Journal of Optics, 2011, 13(6): 064006
CrossRef Google scholar
[45]
Huang H, Milione G, Lavery M P, Xie G, Ren Y, Cao Y, Ahmed N, An Nguyen T, Nolan D A, Li M J, Tur M, Alfano R R, Willner A E. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre. Scientific Reports, 2015, 5: 14931
CrossRef Pubmed Google scholar
[46]
Li S, Wang J, Zhang X, Zhu L, Li C, Yang Q.Demonstration of simultaneous 1-to-34 multicasting of OFDM/OQAM 64-QAM signal from single Gaussian mode to multiple orbital angular momentum (OAM) modes. In: Proceedings of Asia Communications and Photonics Conference 2013 Postdeadline. Optical Society of America, 2013, paper AF2E.5
[47]
Li S, Wang J. Adaptive power-controllable orbital angular momentum (OAM) multicasting. Scientific Reports, 2015, 5(1): 9677
CrossRef Pubmed Google scholar
[48]
Li S, Wang J. Compensation of a distorted N-fold orbital angular momentum multicasting link using adaptive optics. Optics Letters, 2016, 41(7): 1482–1485
CrossRef Pubmed Google scholar
[49]
Zhu L, Wang J. Demonstration of obstruction-free data-carrying N-fold Bessel modes multicasting from a single Gaussian mode. Optics Letters, 2015, 40(23): 5463–5466
CrossRef Pubmed Google scholar
[50]
Durnin J, Miceli J Jr, Eberly J H. Diffraction-free beams. Physical Review Letters, 1987, 58(15): 1499–1501
CrossRef Pubmed Google scholar
[51]
McGloin D, Dholakia K. Bessel beams: diffraction in a new light. Contemporary Physics, 2005, 46(1): 15–28
CrossRef Google scholar
[52]
Durnin J, Miceli J J Jr, Eberly J H. Comparison of Bessel and Gaussian beams. Optics Letters, 1988, 13(2): 79
CrossRef Pubmed Google scholar
[53]
Du J, Wang J. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions. Optics Letters, 2015, 40(21): 4827–4830
CrossRef Pubmed Google scholar
[54]
Zhu L, Wang J. Demonstration of obstruction-free data-carrying N-fold Bessel modes multicasting from a single Gaussian mode. Optics Letters, 2015, 40(23): 5463–5466
CrossRef Pubmed Google scholar
[55]
Chen S, Li S, Zhao Y, Liu J, Zhu L, Wang A, Du J, Shen L, Wang J. Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation. Optics Letters, 2016, 41(20): 4680–4683
CrossRef Pubmed Google scholar
[56]
Li S, Wang J. Adaptive free-space optical communications through turbulence using self-healing Bessel beams. Scientific Reports, 2017, 7(1): 43233
CrossRef Pubmed Google scholar
[57]
Zhan Q. Cylindrical vector beams from mathematical concepts to applications. Advances in Optics and Photonics, 2009, 1(1): 1–57
CrossRef Google scholar
[58]
Milione G, Lavery M P J, Huang H, Ren Y, Xie G, Nguyen T A, Karimi E, Marrucci L, Nolan D A, Alfano R R, Willner A E. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Optics Letters, 2015, 40(9): 1980–1983
CrossRef Pubmed Google scholar
[59]
Zhao Y, Wang J. High-base vector beam encoding/decoding for visible-light communications. Optics Letters, 2015, 40(21): 4843–4846
CrossRef Pubmed Google scholar
[60]
Liu J, Li S, Zhu L, Wang A, Chen S, Klitis C, Du C, Mo Q, Sorel M, Yu S, Cai X, Wang J. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light, Science & Applications, 2018, 7(3): 17148
CrossRef Google scholar
[61]
Shwartz S, Golub M, Ruschin S. Diffractive optical elements for mode-division multiplexing of temporal signals with the aid of Laguerre-Gaussian modes. Applied Optics, 2013, 52(12): 2659–2669
CrossRef Pubmed Google scholar
[62]
Xie G, Ren Y, Yan Y, Huang H, Ahmed N, Li L, Zhao Z, Bao C, Tur M, Ashrafi S, Willner A E. Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices. Optics Letters, 2016, 41(15): 3447–3450
CrossRef Pubmed Google scholar
[63]
O’Neil A T, Courtial J. Mode transformations in terms of the constituent Hermite-Gaussian or Laguerre-Gaussian modes and the variable-phase mode converter. Optics Communications, 2000, 181(1–3): 35–45
CrossRef Google scholar
[64]
Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366
CrossRef Pubmed Google scholar
[65]
Guan B, Scott R P, Qin C, Fontaine N K, Su T, Ferrari C, Cappuzzo M, Klemens F, Keller B, Earnshaw M, Yoo S J B. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. Optics Express, 2014, 22(1): 145–156
CrossRef Pubmed Google scholar
[66]
Du J, Wang J. Dielectric metasurfaces enabling twisted light generation/detection/(de)multiplexing for data information transfer. Optics Express, 2018, 26(10): 13183–13194
CrossRef Pubmed Google scholar
[67]
Zhao Z, Wang J, Li S, Willner A E. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Optics Letters, 2013, 38(6): 932–934
CrossRef Pubmed Google scholar
[68]
Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Letters, 2014, 14(3): 1394–1399
CrossRef Pubmed Google scholar
[69]
Karimi E, Schulz S A, De Leon I, Qassim V, Upham J, Boyd R W. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light, Science & Applications, 2014, 3(5): e167
CrossRef Google scholar
[70]
Wang J. Metasurfaces enabling structured light manipulation: advances and perspectives. Chinese Optics Letters, 2018, 16(5): 050006
CrossRef Google scholar
[71]
Li G, Kang M, Chen S, Zhang S, Pun E Y, Cheah K W, Li J. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Letters, 2013, 13(9): 4148–4151
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11574001, 61761130082, 11774116 and 11274131), the National Basic Research Program of China (973 Program) (No. 2014CB340004), the Royal Society-Newton Advanced Fellowship, the National Program for Support of Top-notch Young Professionals, the Yangtze River Excellent Young Scholars Program, the Natural Science Foundation of Hubei Province of China (No. 2018CFA048), and the Program for HUST Academic Frontier Youth Team (No. 2016QYTD05).

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(6799 KB)

Accesses

Citations

Detail

Sections
Recommended

/