Fiber-based optical trapping and manipulation
Hongbao XIN, Baojun LI
Fiber-based optical trapping and manipulation
An optical fiber serves as a versatile tool for optical trapping and manipulation owing to its many advantages over conventional optical tweezers, including ease of fabrication, compact configurations, flexible manipulation capabilities, ease of integration, and wide applicability. Here, we review recent progress in fiber-based optical trapping and manipulation, which includes mainly photothermal-based and optical-force-based trapping and manipulation. We focus on five topics in our review of progress in this area: massive photothermal trapping and manipulation, evanescent-field-based trapping and manipulation, dual-fiber tweezers for single-nanoparticle trapping and manipulation, single-fiber tweezers for single-particle trapping and manipulation, and single-fiber tweezers for multiple-particle/cell trapping and assembly.
optical trapping / photothermal effect / optical force / cell trapping and assembly
[1] |
Ashkin A. Acceleration and trapping of particles by radiation pressure. Physical Review Letters, 1970, 24(4): 156–159
CrossRef
Google scholar
|
[2] |
Grier D G. A revolution in optical manipulation. Nature, 2003, 424(6950): 810–816
CrossRef
Pubmed
Google scholar
|
[3] |
Dholakia K, Reece P, Gu M. Optical micromanipulation. Chemical Society Reviews, 2008, 37(1): 42–55
CrossRef
Pubmed
Google scholar
|
[4] |
Dholakia K, Reece P. Optical micromanipulation takes hold. Nano Today, 2006, 1(1): 18–27
CrossRef
Google scholar
|
[5] |
Neuman K C, Block S M. Optical trapping. Review of Scientific Instruments, 2004, 75(9): 2787–2809
CrossRef
Pubmed
Google scholar
|
[6] |
Bustamante C, Bryant Z, Smith S B. Ten years of tension: single-molecule DNA mechanics. Nature, 2003, 421(6921): 423–427
CrossRef
Pubmed
Google scholar
|
[7] |
Asbury C L, Fehr A N, Block S M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science, 2003, 302(5653): 2130–2134
CrossRef
Pubmed
Google scholar
|
[8] |
Ashkin A. Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10): 4853–4860
CrossRef
Pubmed
Google scholar
|
[9] |
Ashkin A, Dziedzic J M, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 1987, 330(6150): 769–771
CrossRef
Pubmed
Google scholar
|
[10] |
Ribeiro R S R, Soppera O, Oliva A G, Guerreiro A, Jorge P A. New trends on optical fiber tweezers. Journal of Lightwave Technology, 2015, 33(16): 3394–3405
CrossRef
Google scholar
|
[11] |
Ismaeel R, Lee T, Ding M, Belal M, Brambilla G. Optical microfiber passive components. Laser & Photonics Reviews, 2013, 7(3): 350–384
CrossRef
Google scholar
|
[12] |
Daly M, Sergides M, Nic Chormaic S. Optical trapping and manipulation of micrometer and submicrometer particles. Laser & Photonics Reviews, 2015, 9(3): 309–329
CrossRef
Google scholar
|
[13] |
Lei H, Zhang Y, Li X, Li B. Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber. Lab on a Chip, 2011, 11(13): 2241–2246
CrossRef
Pubmed
Google scholar
|
[14] |
Xin H, Lei H, Zhang Y, Li X, Li B. Photothermal trapping of dielectric particles by optical fiber-ring. Optics Express, 2011, 19(3): 2711–2719
CrossRef
Pubmed
Google scholar
|
[15] |
Liu Z, Guo C, Yang J, Yuan L. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application. Optics Express, 2006, 14(25): 12510–12516
CrossRef
Pubmed
Google scholar
|
[16] |
Taguchi K, Atsuta K, Nakata T, Ikeda M. Levitation of a microscopic object using plural optical fibers. Optics Communications, 2000, 176(1–3): 43–47
CrossRef
Google scholar
|
[17] |
Mohanty S K, Mohanty K S, Berns M W. Organization of microscale objects using a microfabricated optical fiber. Optics Letters, 2008, 33(18): 2155–2157
CrossRef
Pubmed
Google scholar
|
[18] |
Liberale C, Minzioni P, Bragheri F, De Angelis F, Di Fabrizio E, Cristiani I. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nature Photonics, 2007, 1(12): 723–727
CrossRef
Google scholar
|
[19] |
Xin H, Xu R, Li B. Optical trapping, driving, and arrangement of particles using a tapered fibre probe. Scientific Reports, 2012, 2(1): 818
CrossRef
Pubmed
Google scholar
|
[20] |
Soong C Y, Li W K, Liu C H, Tzeng P Y. Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids. Optics Express, 2010, 18(3): 2168–2182
CrossRef
Pubmed
Google scholar
|
[21] |
Duhr S, Braun D. Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. Physical Review Letters, 2006, 97(3): 038103
CrossRef
Pubmed
Google scholar
|
[22] |
Xin H, Li X, Li B. Massive photothermal trapping and migration of particles by a tapered optical fiber. Optics Express, 2011, 19(18): 17065–17074
CrossRef
Pubmed
Google scholar
|
[23] |
Xin H, Bao D, Zhong F, Li B. Photophoretic separation of particles using two tapered optical fibers. Laser Physics Letters, 2013, 10(3): 036004
CrossRef
Google scholar
|
[24] |
Lei H, Zhang Y, Li B. Particle separation in fluidic flow by optical fiber. Optics Express, 2012, 20(2): 1292–1300
CrossRef
Pubmed
Google scholar
|
[25] |
Zhang Y, Lei H, Li Y, Li B. Microbe removal using a micrometre-sized optical fiber. Lab on a Chip, 2012, 12(7): 1302–1308
CrossRef
Pubmed
Google scholar
|
[26] |
Liao D, Yu H, Zhang Y, Li B. Photothermal delivery of microscopic objects via convection flows induced by laser beam from fiber tip. Applied Optics, 2011, 50(20): 3711–3716
CrossRef
Pubmed
Google scholar
|
[27] |
Xu R, Xin H, Li B. Photothermal formation of vortex flows by 1.55 mm light. AIP Advances, 2013, 3(5): 052120
CrossRef
Google scholar
|
[28] |
Xu R, Xin H, Li B. Massive assembly and migration of nanoparticles by laser-induced vortex flows. Applied Physics Letters, 2013, 103(1): 014102
CrossRef
Google scholar
|
[29] |
Lu J, Yang H, Zhou L, Yang Y, Luo S, Li Q, Qiu M. Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force. Physical Review Letters, 2017, 118(4): 043601
CrossRef
Pubmed
Google scholar
|
[30] |
Kawata S, Sugiura T. Movement of micrometer-sized particles in the evanescent field of a laser beam. Optics Letters, 1992, 17(11): 772–774
CrossRef
Pubmed
Google scholar
|
[31] |
Wang K, Schonbrun E, Crozier K B. Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film. Nano Letters, 2009, 9(7): 2623–2629
CrossRef
Pubmed
Google scholar
|
[32] |
Wang J, Poon A W. Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices. Lab on a Chip, 2014, 14(8): 1426–1436
CrossRef
Pubmed
Google scholar
|
[33] |
Hellesø O G, Løvhaugen P, Subramanian A Z, Wilkinson J S, Ahluwalia B S. Surface transport and stable trapping of particles and cells by an optical waveguide loop. Lab on a Chip, 2012, 12(18): 3436–3440
CrossRef
Pubmed
Google scholar
|
[34] |
Brambilla G, Murugan G S, Wilkinson J S, Richardson D J. Optical manipulation of microspheres along a subwavelength optical wire. Optics Letters, 2007, 32(20): 3041–3043
CrossRef
Pubmed
Google scholar
|
[35] |
Murugan G S, Brambilla G, Wilkinson J S, Richardson D J. Optical propulsion of individual and clustered microspheres along sub-micron optical wires. Japanese Journal of Applied Physics, 2008, 47(8S1): 6716
|
[36] |
Sheu F W, Wu H Y, Chen S H. Using a slightly tapered optical fiber to attract and transport microparticles. Optics Express, 2010, 18(6): 5574–5579
CrossRef
Pubmed
Google scholar
|
[37] |
Daly M, Truong V G, Chormaic S N. Evanescent field trapping of nanoparticles using nanostructured ultrathin optical fibers. Optics Express, 2016, 24(13): 14470–14482
CrossRef
Pubmed
Google scholar
|
[38] |
Sagué G, Vetsch E, Alt W, Meschede D, Rauschenbeutel A. Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions. Physical Review Letters, 2007, 99(16): 163602
CrossRef
Pubmed
Google scholar
|
[39] |
Daly M, Truong V G, Phelan C, Deasy K, Chormaic S N. Nanostructured optical nanofibres for atom trapping. New Journal of Physics, 2014, 16(5): 053052
CrossRef
Google scholar
|
[40] |
Kumar R, Gokhroo V, Chormaic S N. Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface. New Journal of Physics, 2015, 17(12): 123012
CrossRef
Google scholar
|
[41] |
Xu L, Li Y, Li B. Size-dependent trapping and delivery of submicro-spheres using a submicrofibre. New Journal of Physics, 2012, 14(3): 033020
CrossRef
Google scholar
|
[42] |
Li Y, Xu L, Li B. Optical delivery of nanospheres using arbitrary bending nanofibers. Journal of Nanoparticle Research, 2012, 14(4): 799
CrossRef
Google scholar
|
[43] |
Xin H, Cheng C, Li B. Trapping and delivery of Escherichia coli in a microfluidic channel using an optical nanofiber. Nanoscale, 2013, 5(15): 6720–6724
CrossRef
Pubmed
Google scholar
|
[44] |
Xu C, Lei H, Zhang Y, Li B. Backward transport of nanoparticles in fluidic flow. Optics Express, 2012, 20(3): 1930–1938
CrossRef
Pubmed
Google scholar
|
[45] |
Xin H, Li B. Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber. Optics Express, 2011, 19(14): 13285–13290
CrossRef
Pubmed
Google scholar
|
[46] |
Xin H, Li B. Multi-destination release of nanoparticles using an optical nanofiber assisted by a barrier. AIP Advances, 2012, 2(1): 012166
CrossRef
Google scholar
|
[47] |
Li L, Xin H, Lei H, Li B. Optofluidic extraction of particles using a sub-microfiber. Applied Physics Letters, 2012, 101(7): 074103
CrossRef
Google scholar
|
[48] |
Li Y, Xu L, Li B. Gold nanorod-induced localized surface plasmon for microparticle aggregation. Applied Physics Letters, 2012, 101(5): 053118
CrossRef
Google scholar
|
[49] |
Cheng C, Xu X, Lei H, Li B. Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded PMMA nanofiber. Scientific Reports, 2016, 6(1): 20433
CrossRef
Pubmed
Google scholar
|
[50] |
Lei H, Xu C, Zhang Y, Li B. Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber. Nanoscale, 2012, 4(21): 6707–6709
CrossRef
Pubmed
Google scholar
|
[51] |
Zhang Y, Li B. Particle sorting using a subwavelength optical fiber. Laser & Photonics Reviews, 2013, 7(2): 289–296
CrossRef
Google scholar
|
[52] |
Zhang Y, Lei H, Li B. Refractive-index-based sorting of colloidal particles using a subwavelength optical fiber in a static fluid. Applied Physics Express, 2013, 6(7): 072001
CrossRef
Google scholar
|
[53] |
Constable A, Kim J, Mervis J, Zarinetchi F, Prentiss M. Demonstration of a fiber-optical light-force trap. Optics Letters, 1993, 18(21): 1867–1869
CrossRef
Pubmed
Google scholar
|
[54] |
Lyons E, Sonek G. Confinement and bistability in a tapered hemispherically lensed optical fiber trap. Applied Physics Letters, 1995, 66(13): 1584–1586
CrossRef
Google scholar
|
[55] |
Taguchi K, Ueno H, Ikeda M. Rotational manipulation of a yeast cell using optical fibres. Electronics Letters, 1997, 33(14): 1249–1250
CrossRef
Google scholar
|
[56] |
Xu X, Cheng C, Xin H, Lei H, Li B. Controllable orientation of single silver nanowire using two fiber probes. Scientific Reports, 2014, 4(1): 3989
CrossRef
Pubmed
Google scholar
|
[57] |
Xu X, Cheng C, Zhang Y, Lei H, Li B. Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures. Scientific Reports, 2016, 6(1): 29449
CrossRef
Pubmed
Google scholar
|
[58] |
Hu Z, Wang J, Liang J. Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe. Optics Express, 2004, 12(17): 4123–4128
CrossRef
Pubmed
Google scholar
|
[59] |
Gong Y, Zhang C, Liu Q F, Wu Y, Wu H, Rao Y, Peng G D. Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity. Optics Express, 2015, 23(3): 3762–3769
CrossRef
Pubmed
Google scholar
|
[60] |
Mohanty K S, Liberale C, Mohanty S, Degiorgio V. In depth fiber optic trapping of low-index microscopic objects. Applied Physics Letters, 2008, 92(15): 151113
CrossRef
Google scholar
|
[61] |
Berthelot J, Aćimović S S, Juan M L, Kreuzer M P, Renger J, Quidant R. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nature Nanotechnology, 2014, 9(4): 295–299
CrossRef
Pubmed
Google scholar
|
[62] |
Deng H, Zhang Y, Yuan T, Zhang X, Zhang Y, Liu Z, Yuan L. Fiber-based optical gun for particle shooting. ACS Photonics, 2017, 4(3): 642–648
CrossRef
Google scholar
|
[63] |
Xin H, Li Y, Li L, Xu R, Li B. Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber. Applied Physics Letters, 2013, 103(3): 033703
CrossRef
Google scholar
|
[64] |
Liu Z L, Liu Y X, Tang Y, Zhang N, Wu F P, Zhang B. Fabrication and application of a non-contact double-tapered optical fiber tweezers. Optics Express, 2017, 25(19): 22480–22489
CrossRef
Google scholar
|
[65] |
Xin H, Liu Q, Li B. Non-contact fiber-optical trapping of motile bacteria: dynamics observation and energy estimation. Scientific Reports, 2014, 4(1): 6576
CrossRef
Pubmed
Google scholar
|
[66] |
De Volder M F, Tawfick S H, Baughman R H, Hart A J. Carbon nanotubes: present and future commercial applications. Science, 2013, 339(6119): 535–539
|
[67] |
Xin H, Li B. Optical orientation and shifting of a single multiwalled carbon nanotube. Light, Science & Applications, 2014, 3(9): e205
CrossRef
Google scholar
|
[68] |
Li Y C, Xin H B, Lei H X, Liu L L, Li Y Z, Zhang Y, Li B J. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light, Science & Applications, 2016, 5(12): e16176
CrossRef
Google scholar
|
[69] |
Li Y, Xin H, Liu X, Zhang Y, Lei H, Li B. Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array. ACS Nano, 2016, 10(6): 5800–5808
CrossRef
Pubmed
Google scholar
|
[70] |
Xin H, Li Y, Xu D, Zhang Y, Chen C H, Li B. Single upconversion nanoparticle-bacterium cotrapping for single-bacterium labeling and analysis. Small, 2017, 13(14): 1603418
CrossRef
Pubmed
Google scholar
|
[71] |
Xin H, Li Y, Liu X, Li B. Escherichia coli-based biophotonic waveguides. Nano Letters, 2013, 13(7): 3408–3413
CrossRef
Pubmed
Google scholar
|
[72] |
Guo F, Li P, French J B, Mao Z, Zhao H, Li S, Nama N, Fick J R, Benkovic S J, Huang T J. Controlling cell-cell interactions using surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1): 43–48
CrossRef
Pubmed
Google scholar
|
[73] |
Tourovskaia A, Figueroa-Masot X, Folch A. Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab on a Chip, 2005, 5(1): 14–19
CrossRef
Pubmed
Google scholar
|
[74] |
Wheeler D B, Carpenter A E, Sabatini D M. Cell microarrays and RNA interference chip away at gene function. Nature Genetics, 2005, 37(6s Suppl): S25–S30
Pubmed
|
[75] |
Ho C T, Lin R Z, Chang W Y, Chang H Y, Liu C H. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab on a Chip, 2006, 6(6): 724–734
CrossRef
Pubmed
Google scholar
|
[76] |
Xin H, Xu R, Li B. Optical formation and manipulation of particle and cell patterns using a tapered optical fiber. Laser & Photonics Reviews, 2013, 7(5): 801–809
CrossRef
Google scholar
|
[77] |
Li Y, Xin H, Liu X, Li B. Non-contact intracellular binding of chloroplasts in vivo. Scientific Reports, 2015, 5(1): 10925
CrossRef
Pubmed
Google scholar
|
[78] |
Li Y, Xin H, Cheng C, Zhang Y, Li B. Optical separation and controllable delivery of cells from particle and cell mixture. Nanophotonics, 2015, 4(3): 353–360
CrossRef
Google scholar
|
[79] |
Xin H, Zhang Y, Lei H, Li Y, Zhang H, Li B. Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fibre. Scientific Reports, 2013, 3(1): 1993
CrossRef
Pubmed
Google scholar
|
[80] |
Huang J, Liu X, Zhang Y, Li B. Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes. Photonics Research, 2015, 3(6): 308–312
CrossRef
Google scholar
|
[81] |
Liu X, Huang J, Zhang Y, Li B. Optical regulation of cell chain. Scientific Reports, 2015, 5(1): 11578
CrossRef
Pubmed
Google scholar
|
[82] |
Choi M, Humar M, Kim S, Yun S H. Step‐index optical fiber made of biocompatible hydrogels. Advanced Materials, 2015, 27(27): 4081–4086
CrossRef
Pubmed
Google scholar
|
[83] |
Xin H, Li Y, Li B. Controllable patterning of different cells via optical assembly of 1D periodic cell structures. Advanced Functional Materials, 2015, 25(19): 2816–2823
CrossRef
Google scholar
|
[84] |
Xin H, Li Y, Li B. Bacteria‐based branched structures for bionanophotonics. Laser & Photonics Reviews, 2015, 9(5): 554–563
CrossRef
Google scholar
|
/
〈 | 〉 |