Laser speckle contrast imaging with principal component and entropy analysis: a novel approach for depth-independent blood flow assessment

Yu. Surkov, P. Timoshina, I. Serebryakova, D. Stavtcev, I. Kozlov, G. Piavchenko, I. Meglinski, A. Konovalov, D. Telyshev, S. Kuznetcov, E. Genina, V. Tuchin

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (1) : 1.

PDF(7951 KB)
Front. Optoelectron. All Journals
PDF(7951 KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (1) : 1. DOI: 10.1007/s12200-024-00143-1
RESEARCH ARTICLE

Laser speckle contrast imaging with principal component and entropy analysis: a novel approach for depth-independent blood flow assessment

Author information +
History +

Abstract

Current study presents an advanced method for improving the visualization of subsurface blood vessels using laser speckle contrast imaging (LSCI), enhanced through principal component analysis (PCA) filtering. By combining LSCI and laser speckle entropy imaging with PCA filtering, the method effectively separates static and dynamic components of the speckle signal, significantly improving the accuracy of blood flow assessments, even in the presence of static scattering layers located above and below the vessel. Experiments conducted on optical phantoms, with the vessel depths ranging from 0.6 to 2 mm, and in vivo studies on a laboratory mouse ear demonstrate substantial improvements in image contrast and resolution. The method’s sensitivity to blood flow velocity within the physiologic range (0.98-19.66 mm/s) is significantly enhanced, while its sensitivity to vessel depth is minimized. These results highlight the method’s ability to assess blood flow velocity independently of vessel depth, overcoming a major limitation of conventional LSCI techniques. The proposed approach holds great potential for non-invasive biomedical imaging, offering improved diagnostic accuracy and contrast in vascular imaging. These findings may be particularly valuable for advancing the use of LSCI in clinical diagnostics and biomedical research, where high precision in blood flow monitoring is essential.

Graphical abstract

Keywords

Laser speckle imaging / Speckle contrast / Entropy / Principal component analysis / Blood flow velocity / Vascular imaging

Cite this article

Download citation ▾
Yu. Surkov, P. Timoshina, I. Serebryakova, D. Stavtcev, I. Kozlov, G. Piavchenko, I. Meglinski, A. Konovalov, D. Telyshev, S. Kuznetcov, E. Genina, V. Tuchin. Laser speckle contrast imaging with principal component and entropy analysis: a novel approach for depth-independent blood flow assessment. Front. Optoelectron., 2025, 18(1): 1 https://doi.org/10.1007/s12200-024-00143-1

References

[1]
Konovalov, A. , Gadzhiagaev, V. , Grebenev, F. , Stavtsev, D. , Piavchenko, G. , Gerasimenko, A. , Telyshev, D. , Meglinski, I. , Eliava, S. : Laser speckle contrast imaging in neurosurgery: a systematic review. World Neurosurg. 171, 35- 40 (2023)
CrossRef Google scholar
[2]
Kuri, P.M. , Pion, E. , Mahl, L. , Kainz, P. , Schwarz, S. , Brochhausen, C. , Aung, T. , Haerteis, S. : Deep learning-based image analysis for the quantification of tumor-induced angiogenesis in the 3d in vivo tumor model—establishment and addition to laser speckle contrast imaging (LSCI). Cells 11 (15), 2321 (2022)
CrossRef Google scholar
[3]
Yu, C.Y. , Chammas, M. , Gurden, H. , Lin, H.H. , Pain, F. : Design and validation of a convolutional neural network for fast, modelfree blood flow imaging with multiple exposure speckle imaging. Biomed. Opt. Express 14 (9), 4439- 4454 (2023)
CrossRef Google scholar
[4]
Meglinski, I. , Dunn, A. , Durduran, T. , Postnov, D. , Zhu, D. : Dynamic light scattering in biomedical applications: feature issue introduction. Biomed. Opt. Express 15 (5), 2890- 2897 (2024)
CrossRef Google scholar
[5]
Abdurashitov, A.S. , Lychagov, V.V. , Sindeeva, O.A. , Semyachkina-Glushkovskaya, O.V. , Tuchin, V.V. : Histogram analysis of laser speckle contrast image for cerebral blood flow monitoring. Front. Optoelectron. 8 (2), 187- 194 (2015)
CrossRef Google scholar
[6]
Sdobnov, A. , Zherebtsov, E. , Bykov, A. , Meglinski, I. : Dynamic light scattering imaging: foundations of non-invasive blood flow imaging. CRC Press(2024)
CrossRef Google scholar
[7]
Shteinberg, O. , Agdarov, S. , Beiderman, Y. , Bonneh, Y.S. , Ziv, I. , Kalyuzhner, Z. , Zalevsky, Z. : Microsaccades tracking by secondary speckle pattern analysis. J. Biophotonics e202400184 (2024)
CrossRef Google scholar
[8]
TzabariKelman, Y. , Asraf, S. , Ozana, N. , Shabairou, N. , Zalevsky, Z. : Optical tissue probing: human skin hydration detection by speckle patterns analysis. Biomed. Opt. Express 10 (9), 4874- 4883 (2019)
CrossRef Google scholar
[9]
Patel, D.D. , Lipinski, D.M. : Validating a low-cost laser speckle contrast imaging system as a quantitative tool for assessing retinal vascular function. Sci. Rep. 10 (1), 7177 (2020)
CrossRef Google scholar
[10]
Sdobnov, A. , Piavchenko, G. , Bykov, A. , Meglinski, I. : Advances in dynamic light scattering imaging of blood flow. Laser Photonics Rev. 18 (2), 2300494 (2024)
CrossRef Google scholar
[11]
Heeman, W. , Steenbergen, W. , van Dam, G. , Boerma, E.C. : Clinical applications of laser speckle contrast imaging: a review. J. Biomed. Opt. 24 (8), 080901 (2019)
CrossRef Google scholar
[12]
Mennes, O.A. , van Netten, J.J. , van Baal, J.G. , Steenbergen, W. : Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging. Physiol. Meas. 40 (6), 065002 (2019)
CrossRef Google scholar
[13]
Feng, W. , Liu, S. , Zhang, C. , Xia, Q. , Yu, T. , Zhu, D. : Comparison of cerebral and cutaneous microvascular dysfunction with the development of type 1 diabetes. Theranostics 9 (20), 5854- 5868 (2019)
CrossRef Google scholar
[14]
Gnyawali, S.C. , Wheeler, D.G. , Huttinger, A.L. , Anderson, C. , Mandybur, I. , Lee, C. , Hatten, C. , Boue, J. , Joseph, M. , Nimjee, S.M. : Quantification of cerebral perfusion using laser speckle imaging and infarct volume using MRI in a pre-clinical model of posterior circulation stroke. J. Vis. Exp. 165 (165), e61673 (2020)
CrossRef Google scholar
[15]
Tenland, K. , Berggren, J. , Engelsberg, K. , Bohman, E. , Dahlstrand, U. , Castelo, N. , Lindstedt, S. , Sheikh, R. , Malmsjö, M. : Successful free bilamellar eyelid grafts for the repair of upper and lower eyelid defects in patients and laser speckle contrast imaging of revascularization. Ophthal. Plast. Reconstr. Surg.. Plast. Reconstr. Surg. 37 (2), 168- 172 (2021)
CrossRef Google scholar
[16]
Sdobnov, A. , Tsytsarev, V. , Piavchenko, G. , Bykov, A. , Meglinski, I. : Beyond life: Exploring hemodynamic patterns in postmortem mice brains. J. BiophotonicsBiophotonics 17 (7), e202400017 (2024)
CrossRef Google scholar
[17]
Konovalov, A. , Grebenev, F. , Stavtsev, D. , Kozlov, I. , Gadjiagaev, V. , Piavchenko, G. , Telyshev, D. , Gerasimenko, A.Y. , Meglinski, I. , Zalogin, S. , Artemyev, A. , Golodnev, G. , Shumeiko, T. , Eliava, S. : Real-time laser speckle contrast imaging for intraoperative neurovascular blood flow assessment: animal experimental study. Sci. Rep. 14 (1), 1735 (2024)
CrossRef Google scholar
[18]
González Olmos, A. , Zilpelwar, S. , Sunil, S. , Boas, D.A. , Postnov, D.D. : Optimizing the precision of laser speckle contrast imaging. Sci. Rep. 13 (1), 17970 (2023)
CrossRef Google scholar
[19]
Li, D.Y. , Xia, Q. , Yu, T.T. , Zhu, J.T. , Zhu, D. : Transmissivedetected laser speckle contrast imaging for blood flow monitoring in thick tissue: from Monte Carlo simulation to experimental demonstration. Light Sci. Appl. 10 (1), 241 (2021)
CrossRef Google scholar
[20]
Pinho, A. , Brinca, A. , Xará, J. , Batista, M. , Vieira, R. : Postoperative time and anatomic location influence skin graft reperfusion assessed with laser speckle contrast imaging. Lasers Surg. Med. 56 (6), 564- 573 (2024)
CrossRef Google scholar
[21]
Wang, J. , Zhu, D.A.N. , Chen, M.I.N. , Liu, X. : Assessment of optical clearing induced improvement of laser speckle contrast imaging. J. Innov. Opt. Health Sci. 3 (3), 159- 167 (2010)
CrossRef Google scholar
[22]
Feng, W. , Shi, R. , Zhang, C. , Liu, S. , Yu, T. , Zhu, D. : Visualization of skin microvascular dysfunction of type 1 diabetic mice using in vivo skin optical clearing method. J. Biomed. Opt. 24 (3), 1- 9 (2018)
CrossRef Google scholar
[23]
Arias-Cruz, J.A. , Chiu, R. , Peregrina-Barreto, H. , Ramos-Garcia, R. , Spezzia-Mazzocco, T. , Ramirez-San-Juan, J.C. : Visualization of in vitro deep blood vessels using principal component analysis based laser speckle imaging. Biomed. Opt. Express 10 (4), 2020- 2031 (2019)
CrossRef Google scholar
[24]
Dyachenko, P.A. , Abdurashitov, A.S. , Semyachkina-Glushkovskaya, O.V. , Tuchin, V.V. : Blood and lymph flow imaging at optical clearing. In: Handbook of Tissue Optical Clearing. CRC Press, 393- 408 (2022)
CrossRef Google scholar
[25]
Tuchina, D.K. , Timoshina, P.A. , Tuchin, V.V. , Bashkatov, A.N. , Genina, E.A. : Kinetics of rat skin optical clearing at topical application of 40% glucose: ex vivo and in vivo studies. IEEE J. Sel. Top. Quantum Electron. 25 (1), 1- 8 (2019)
CrossRef Google scholar
[26]
Dunn, A.K. , Bolay, H. , Moskowitz, M.A. , Boas, D.A. : Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab.Cereb. Blood Flow Metab. 21 (3), 195- 201 (2001)
CrossRef Google scholar
[27]
Boulaftali, Y. , Lamrani, L. , Rouzaud, M.C. , Loyau, S. , Jandrot-Perrus, M. , Bouton, M.C. , Ho-Tin-Noé, B. : The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy. Thromb. Haemost.. Haemost. 107 (5), 962- 971 (2012)
CrossRef Google scholar
[28]
Morales-Vargas, E. , Peregrina-Barreto, H. , Fuentes-Aguilar, R.Q. , Padilla-Martinez, J.P. , Garcia-Suastegui, W.A. , Ramirez-San-Juan, J.C. : Improving blood vessel segmentation and depth estimation in laser speckle images using deep learning. Information (Basel) 15 (4), 185 (2024)
CrossRef Google scholar
[29]
Dunn, J.F. , Forrester, K.R. , Martin, L. , Tulip, J. , Bray, R.C. : A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints. Lasers Surg. Med. 43 (1), 21- 28 (2011)
CrossRef Google scholar
[30]
Meisner, J.K. , Niu, J. , Sumer, S. , Price, R.J. : Trans-illuminated laser speckle imaging of collateral artery blood flow in ischemic mouse hindlimb. J. Biomed. Opt. 18 (9), 096011 (2013)
CrossRef Google scholar
[31]
Phan, T. , Crouzet, C. , Kennedy, G.T. , Durkin, A.J. , Choi, B. : Quantitative hemodynamic imaging: a method to correct the effects of optical properties on laser speckle imaging. Neurophotonics 10 (4), 045001 (2023)
CrossRef Google scholar
[32]
Julin, A. , Xia, J. : Polarization enhanced laser speckle contrast imaging for vascular dynamic study. In: Dynamics and Fluctuations in Biomedical Photonics XIV 10063, 118- 125 (2017)
CrossRef Google scholar
[33]
Liu, X. , Yang, H. , Li, R. : Improving contrast accuracy and resolution of laser speckle contrast imaging using two-dimensional entropy algorithm. IEEE Access 9, 148925- 148932 (2021)
CrossRef Google scholar
[34]
Feng, X. , Geng, M. , Meng, X. , Zou, D. , Jin, Z. , Liu, G. , Zhou, C. , Ren, Q. , Lu, Y. : SGLSA: Sphygmus gated laser speckle angiography for microcirculation hemodynamics imaging. Comput. Med. Imaging Graph.. Med. Imaging Graph. 103, 102164 (2023)
CrossRef Google scholar
[35]
Zheng, S. , Mertz, J. : Direct characterization of tissue dynamics with laser speckle contrast imaging. Biomed. Opt. Express 13 (8), 4118- 4133 (2022)
CrossRef Google scholar
[36]
Miao, P. , Chao, Z. , Zhang, Y. , Li, N. , Thakor, N.V. : Entropy analysis reveals a simple linear relation between laser speckle and blood flow. Opt. Lett. 39 (13), 3907- 3910 (2014)
CrossRef Google scholar
[37]
Li, C. , Wang, R. : Dynamic laser speckle angiography achieved by eigen-decomposition filtering. J. BiophotonicsBiophotonics 10 (6-7), 805- 810 (2017)
CrossRef Google scholar
[38]
Wang, M. , Guan, C. , Mao, W. , Xiong, H. , Tan, H. , Hang, D. , Zeng, Y. : Real-time full-field optical angiography utilizing principal component analysis. Opt. Lett. 43 (11), 2559- 2562 (2018)
CrossRef Google scholar
[39]
Chen, R. , Miao, P. , Tong, S. : Transmissive multifocal laser speckle contrast imaging through thick tissue. J. Innov. Opt. Health Sci. 16 (5), 2350005 (2023)
CrossRef Google scholar
[40]
Jain, P. , Sarma, S.E. : Measuring light transport properties using speckle patterns as structured illumination. Sci. Rep. 9 (1), 11157 (2019)
CrossRef Google scholar
[41]
Al-Temeemy, A.A. : ALI: The adaptive levels of interval method for processing laser speckle images with superior activity extraction and discrimination capabilities. Opt. Lasers Eng. 178, 108173 (2024)
CrossRef Google scholar
[42]
Han, G. , Li, D. , Wang, J. , Guo, Q. , Yuan, J. , Chen, R. , Wang, J. , Wang, H. , Zhang, J. : Adaptive window space direction laser speckle contrast imaging to improve vascular visualization. Biomed. Opt. Express 14 (6), 3086- 3099 (2023)
CrossRef Google scholar
[43]
Liu, C. , Kılıç, K. , Erdener, S.E. , Boas, D.A. , Postnov, D.D. : Choosing a model for laser speckle contrast imaging. Biomed. Opt. Express 12 (6), 3571- 3583 (2021)
CrossRef Google scholar
[44]
Zherebtsov, E. , Sdobnov, A. , Sieryi, O. , Kaakinen, M. , Eklund, L. , Myllylä, T. , Bykov, A. , Meglinski, I. : Enhancing transcranial blood flow visualization with dynamic light scattering technologies: advances in quantitative analysis. Laser Photonics Rev. 2401016 (2024)
CrossRef Google scholar
[45]
Bonachela, J.A. , Hinrichsen, H. , Muñoz, M.A. : Entropy estimates of small data sets. J. Phys. A Math. Theor. 41 (20), 202001 (2008)
CrossRef Google scholar
[46]
López-Alonso, J.M. , Grumel, E. , Cap, N.L. , Trivi, M. , Rabal, H. , Alda, J. : Characterization of spatial-temporal patterns in dynamic speckle sequences using principal component analysis. Opt. Eng. 55 (12), 121705 (2016)
CrossRef Google scholar
[47]
Davis, R.W. : A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior. J. Comp. Physiol. B 184 (1), 23- 53 (2014)
CrossRef Google scholar
[48]
Agutter, P.S. , Wheatley, D.N. : Metabolic scaling: consensus or controversy? Theor. Biol. Med. Model.. Biol. Med. Model. 1 (1), 13 (2004)
CrossRef Google scholar
[49]
Kaiser, H.F. : A note on Guttman’s lower bound for the number of common factors. Br. J. Stat. Psychol. 14 (1), 1- 2 (1961)
CrossRef Google scholar
[50]
Kalchenko, V. , Kuznetsov, Y. , Meglinski, I. , Harmelin, A. : Label free in vivo laser speckle imaging of blood and lymph vessels. J. Biomed. Opt. 17 (5), 050502 (2012)
CrossRef Google scholar
[51]
Kalchenko, V.V. , Kuznetsov, Y.L. , Meglinski, I.V. : Visualisation of blood and lymphatic vessels with increasing exposure time of the detector. Quantum Electron. 43 (7), 679- 682 (2013)
CrossRef Google scholar
[52]
Kalchenko, V. , Kuznetsov, Y. , Preise, D. , Meglinski, I. , Harmelin, A. : Ear swelling test by using laser speckle imaging with a long exposure time. J. Biomed. Opt. 19 (6), 060502 (2014)
CrossRef Google scholar
[53]
Kalambur, V.S. , Mahaseth, H. , Bischof, J.C. , Kielbik, M.C. , Welch, T.E. , Vilbäck, A. , Swanlund, D.J. , Hebbel, R.P. , Belcher, J.D. , Vercellotti, G.M. : Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy. Am. J. Hematol.Hematol. 77 (2), 117- 125 (2004)
CrossRef Google scholar
[54]
Palochak, C.M.A. , Lee, H.E. , Song, J. , Geng, A. , Linsenmeier, R.A. , Burns, S.A. , Fawzi, A.A. : Retinal blood velocity and flow in early diabetes and diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy. J. Clin. Med.Clin. Med. 8 (8), 1165 (2019)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2025 The Author(s)
AI Summary AI Mindmap
PDF(7951 KB)

36

Accesses

1

Citations

15

Altmetric

Detail

Sections
Recommended

/