Performance optimization of planar photonic crystal bound states in the continuum cavities: mitigating finite-size effects

Ran Hao , Bilin Ye , Jinhong Xu , Yonggang Zou

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (1) : 3

PDF (2999KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (1) : 3 DOI: 10.1007/s12200-025-00147-5
RESEARCH ARTICLE

Performance optimization of planar photonic crystal bound states in the continuum cavities: mitigating finite-size effects

Author information +
History +
PDF (2999KB)

Abstract

Bound states in the continuum (BICs) offer a promising solution to achieving high-quality factor (Q factor) cavities. However, finite-size effects severely deteriorate the BIC mode in practical applications. This paper reports the experimental demonstration of an electrically pumped 940 nm laser based on optimized BIC cavity, achieving a high Q factor of up to 1.18 × 104 even with finite photonic crystal footprint, which is two orders of magnitude larger than un-optimized BIC design. Two strategies have been systematically investigated to mitigate finite-size effects: reflective photonic crystal cavity design and graded photonic crystal cavity design. Both methods significantly improve the Q factor, demonstrating the effectiveness of preserving BIC characteristics in finite-sized photonic crystal cavities. In addition, the reflective boundary photonic crystal design is fabricated and experimentally characterized to demonstrate its lasing characteristics. The fabricated laser exhibits single-mode operation with a signal-to-noise ratio of 38.6 dB. These results pave the way for future designs of BICs with finite size in real applications, promoting the performance of BIC-based integrated lasers.

Graphical abstract

Keywords

Bound states in the continuum / High-quality factor / Graded photonic crystals / Electrical pumped laser

Cite this article

Download citation ▾
Ran Hao, Bilin Ye, Jinhong Xu, Yonggang Zou. Performance optimization of planar photonic crystal bound states in the continuum cavities: mitigating finite-size effects. Front. Optoelectron., 2025, 18(1): 3 DOI:10.1007/s12200-025-00147-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Altug,H., Englund,D., VučkovićJ.: Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2 (7), 484- 488 (2006)

[2]

Lončar,M., Yoshie,T., Scherer,A., Gogna,P., Qiu,Y.: Lowthreshold photonic crystal laser. Appl. Phys. Lett. 81 (15), 2680- 2682 (2002)

[3]

Park,H.G., Kim,S.H., Kwon,S.H., Ju,Y.G., Yang,J.K., Baek,J.H., Kim,S.B., Lee,Y.H.: Electrically driven single-cell photonic crystal laser. Science 305 (5689), 1444- 1447 (2004)

[4]

Ishizaki,K., De Zoysa,M., Noda,S.: Progress in photonic-crystal surface-emitting lasers. In: Photonics, p. 96. MDPI, Basel (2019)

[5]

Kalapala,A., Song,A.Y., Pan,M., Gautam,C., Overman,L., Reilly,K., Rotter,T.J., Balakrishnan,G., Gibson,R., Bedford,R., Coleman,J., Fan,S., Zhou,W.: Scaling challenges in high power photonic crystal surface-emitting lasers. IEEE J. Quantum Electron. 58 (4), 1- 9 (2022)

[6]

Han,S., Cui,J., Chua,Y., Zeng,Y., Hu,L., Dai,M., Wang,F., Sun,F., Zhu,S., Li,L., Davies,A., Linfield,E., Tan,C., KivsharY., Wang,Q.: Electrically-pumped compact topological bulk lasers driven by band-inverted bound states in the continuum. Light Sci. Appl. 12 (1), 145 (2023)

[7]

Ma,J., Zhou,T., Tang,M., Li,H., Xi,X., Martin,M., Baron,T., Liu,H., Zhang,Z., Chen,S., Sun,X.: Room-temperature continuous-wave topological dirac-vortex microcavity lasers on silicon. Light Sci. Appl. 12 (1), 255 (2023)

[8]

Yoshida,M., De Zoysa,M., Ishizaki,K., Tanaka,Y., Kawasaki,M., Hatsuda,R., Song,B., Gelleta,J., Noda,S.: Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 18 (2), 121- 128 (2019)

[9]

Kodigala,A., Lepetit,T., Gu,Q., Bahari,B., Fainman,Y., KantéB.: Lasing action from photonic bound states in continuum. Nature 541 (7636), 196- 199 (2017)

[10]

Hsu,C.W., Zhen,B., Stone,A.D., Joannopoulos,J.D., SoljačićM.: Bound states in the continuum. Nat. Rev. Mater. 1 (9), 1- 13 (2016)

[11]

Hwang,M.S., Lee,H.C., Kim,K.H., Jeong,K.Y., Kwon,S.H., Koshelev,K., Kivshar,Y., Park,H.G.: Ultralow-threshold laser using super-bound states in the continuum. Nat. Commun. 12 (1), 4135 (2021)

[12]

Zhao,H., Cao,X., Dong,Q., Song,C., Wang,L., Gao,L.: Large-area silicon photonic crystal supporting bound states in the continuum and optical sensing formed by nanoimprint lithography. Nanoscale Adv. 5 (5), 1291- 1298 (2023)

[13]

Taghizadeh,A., Chung,I.S.: Quasi bound states in the continuum with few unit cells of photonic crystal slab. Appl. Phys. Lett. (2017)

[14]

Kornovan,D.F., Savelev,R.S., Kivshar,Y., Petrov,M.I.: High-Q localized states in finite arrays of subwavelength resonators. ACS Photonics 8 (12), 3627- 3632 (2021)

[15]

Zhong,H., Yu,Y., Zheng,Z., Ding,Z., Zhao,X., Yang,J., Wei,Y., Chen,Y., Yu,S.: Ultra-low threshold continuous-wave quantum dot mini-bic lasers. Light Sci. Appl. 12 (1), 100 (2023)

[16]

Han,C., Kang,M., Jeon,H.: Lasing at multidimensional topological states in a two-dimensional photonic crystal structure. ACS Photonics 7 (8), 2027- 2036 (2020)

[17]

Cui,J., Chua,Y., Han,S., Wang,C., Jin,Y., Li,J., Zeng,Y., Wang,Q., Ye,M., Chen,W., Zhu,S., Sun,F., Li,L., Davies,A., Linfield,E., Tan,C., Wang,Q.: Single-mode electrically pumped terahertz laser in an ultracompact cavity via merging bound states in the continuum. Laser Photonics Rev. 17 (11), 2300350 (2023)

[18]

Ren,Y., Li,P., Liu,Z., Chen,Z., Chen,Y.-L., Peng,K., Liu,J.: Low-threshold nanolasers based on miniaturized bound states in the continuum. Adv. 8 (51), 8817 (2022)

[19]

Pan,Z., Li,W., Lv,J., Nie,Y, Zhong,L., Liu,S., Ma,X.: Design and fabrication of 940 nm vcsel single-emitter device. Acta Physica Sinica. (2023)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (2999KB)

682

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/