Information processing at the speed of light

Muhammad AbuGhanem

PDF(5650 KB)
PDF(5650 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (4) : 33. DOI: 10.1007/s12200-024-00133-3
REVIEW ARTICLE

Information processing at the speed of light

Author information +
History +

Abstract

In recent years, quantum computing has made significant strides, particularly in light-based technology. The introduction of quantum photonic chips has ushered in an era marked by scalability, stability, and cost-effectiveness, paving the way for innovative possibilities within compact footprints. This article provides a comprehensive exploration of photonic quantum computing, covering key aspects such as encoding information in photons, the merits of photonic qubits, and essential photonic device components including light squeezers, quantum light sources, interferometers, photodetectors, and wave-guides. The article also examines photonic quantum communication and internet, and its implications for secure systems, detailing implementations such as quantum key distribution and long-distance communication. Emerging trends in quantum communication and essential reconfigurable elements for advancing photonic quantum internet are discussed. The review further navigates the path towards establishing scalable and fault-tolerant photonic quantum computers, highlighting quantum computational advantages achieved using photons. Additionally, the discussion extends to programmable photonic circuits, integrated photonics and transformative applications. Lastly, the review addresses prospects, implications, and challenges in photonic quantum computing, offering valuable insights into current advancements and promising future directions in this technology.

Graphical abstract

Keywords

Photonics quantum computing / Nobel Prize-winning technology / Integrated photonics / Photonic device components / Encoding information in photons / Programmable photonic circuits / Photonic quantum computers / Quantum communication and internet / Quantum key distribution / Free-space communication / Quantum computational advantage with photons

Cite this article

Download citation ▾
Muhammad AbuGhanem. Information processing at the speed of light. Front. Optoelectron., 2024, 17(4): 33 https://doi.org/10.1007/s12200-024-00133-3

References

[1]
AbuGhanem, M., Eleuch, H.: NISQ Computers: a path to quantum supremacy. IEEE Access 12, 102941–102961 (2024)
CrossRef Google scholar
[2]
DiVincenzo, D.: The physical implementation of quantum computation. Fortschr. Phys. 48, 9–11 (2000)
CrossRef Google scholar
[3]
DiVincenzo, D., Bacon, D., Kempe, J., Burkard, G., Whaley, K.B.: Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000)
CrossRef Google scholar
[4]
DeMille, D.: Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901(2002)
CrossRef Google scholar
[5]
Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312(2003)
CrossRef Google scholar
[6]
Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902(2003)
CrossRef Google scholar
[7]
Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320(2004)
CrossRef Google scholar
[8]
Walther, P., Resch, K., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434, 169–176 (2005)
CrossRef Google scholar
[9]
Sørensen, A., Mølmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971(1999)
CrossRef Google scholar
[10]
Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054(1999)
CrossRef Google scholar
[11]
Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 2–3 (1999)
CrossRef Google scholar
[12]
Vrijen, R., Yablonovitch, E., Wang, K., Jiang, H.W., Balandin, A., Roychowdhury, V., Mor, T., DiVincenzo, D.: Electron-spinresonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62, 012306(2000)
CrossRef Google scholar
[13]
Ioffe, L., Geshkenbein, V., Feigel’man, M., Fauchère, A.L., Blatter, G.: Environmentally decoupled s-wave Josephson junctions for quantum computing. Nature 398, 679–681 (1999)
CrossRef Google scholar
[14]
Kielpinski, D., Monroe, C., Wineland, D.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)
CrossRef Google scholar
[15]
Jones, J., Vedral, V., Ekert, A., Castagnoli, G.: Geometric quantum computation using nuclear magnetic resonance. Nature 403, 869–871 (2000)
CrossRef Google scholar
[16]
Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188(2001)
CrossRef Google scholar
[17]
Leuenberger, M., Loss, D.: Quantum computing in molecular magnets. Nature 410, 789–793 (2001)
CrossRef Google scholar
[18]
Knill, E., Laflamme, R., Milburn, G.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)
CrossRef Google scholar
[19]
Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 203, 2–3 (2003)
[20]
Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457(1995)
CrossRef Google scholar
[21]
AbuGhanem, M., Eleuch, H.: Experimental characterization of Google’s Sycamore quantum AI on an IBM’s quantum computer, Elsevier, SSRN 4299338(2023)
CrossRef Google scholar
[22]
AbuGhanem, M., Eleuch, H.: Full quantum tomography study of Google’s Sycamore gate on IBM’s quantum computers. EPJ Quantum Technol. 11(1), 36(2024)
CrossRef Google scholar
[23]
DiVincenzo, D.P.: Quantum computation. Science 270, 5234(1995)
CrossRef Google scholar
[24]
Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45(2010)
CrossRef Google scholar
[25]
Nielsen, M. A., Chuang, I. L.: Quantum Computation and Quantum Information. 10th anniversary ed., Cambridge University Press (2011)
[26]
Scholten, T. L., Williams, C. J., Moody, D., Mosca, M., Hurley, W., Zeng, W. J., Troyer, M., Gambetta, J.M.: Assessing the benefits and risks of quantum computers. arXive preprints arXiv: 2401. 16317 [quant-ph] (2024)
[27]
Feynman, R.P.: Feynman and Computation. Simulating Physics with Computers. pp. 133–153. Routledge, New York (2018)
[28]
Benioff, P.: The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22(5), 563–591 (1980)
CrossRef Google scholar
[29]
Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A Math. Phys. Sci. 439(1907), 553–558 (1992)
CrossRef Google scholar
[30]
Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)
CrossRef Google scholar
[31]
Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)
CrossRef Google scholar
[32]
Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)
CrossRef Google scholar
[33]
Harrow, A.W., Montanaro, A.: Quantum computational supremacy. Nature 549(7671), 203–209 (2017)
CrossRef Google scholar
[34]
Ralph, T., Pryde, G.: Optical quantum computation. Prog. Opt. 54, 209–269 (2010)
CrossRef Google scholar
[35]
Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)
CrossRef Google scholar
[36]
Obrien, J.L., Furusawa, A., Vuckovic, J.: Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009)
CrossRef Google scholar
[37]
Takeda, S., Furusawa, A.: Toward large-scale fault-tolerant universal photonic quantum computing. APL Photonics 4, 060902(2019)
CrossRef Google scholar
[38]
Obrien, J.L.: Optical quantum computing. Science 318(5856), 1567–1570 (2007)
CrossRef Google scholar
[39]
Flamini, F., Spagnolo, N., Sciarrino, F.: Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001(2018)
CrossRef Google scholar
[40]
Slussarenko, S., Pryde, G.J.: Photonic quantum information processing: a concise review. Appl. Phys. Rev. 6(4), 041303(2019)
CrossRef Google scholar
[41]
Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., Yin, J., Shen, Q., Cao, Y., Li, Z.P., Li, F.Z., Chen, X.W., Sun, L.H., Jia, J.J., Wu, J.C., Jiang, X.J., Wang, J.F., Huang, Y.M., Wang, Q., Zhou, Y.L., Deng, L., Xi, T., Ma, L., Hu, T., Zhang, Q., Chen, Y.A., Liu, N.L., Wang, X.B., Zhu, Z.C., Lu, C.Y., Shu, R., Peng, C.Z., Wang, J.Y., Pan, J.W.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)
CrossRef Google scholar
[42]
Ren, J.G., Xu, P., Yong, H.L., Zhang, L., Liao, S.K., Yin, J., Liu, W.Y., Cai, W.Q., Yang, M., Li, L., Yang, K.X., Han, X., Yao, Y.Q., Li, J., Wu, H.Y., Wan, S., Liu, L., Liu, D.Q., Kuang, Y.W., He, Z.P., Shang, P., Guo, C., Zheng, R.H., Tian, K., Zhu, Z.C., Liu, N.L., Lu, C.Y., Shu, R., Chen, Y.A., Peng, C.Z., Wang, J.Y., Pan, J.W.: Ground-to-satellite quantum teleportation. Nature 549(7670), 70–73 (2017)
CrossRef Google scholar
[43]
Zhong, H.,Wang, H., Deng, Y., Chen, M., Peng, L., Luo, Y., Qin, J., Wu, D., Ding, X., Hu, Y., Hu, P., Yang, X., Zhang, W., Li, H., Li, Y., Jiang, X., Gan, L., Yang, G., You, L., Wang, Z., Li, L., Liu, N., Lu, C., Pan, J.: Quantum computational advantage using photons. arXiv: 2012. 01625 v1 [quant-ph] (2020)
[44]
Zhong, H.S., Deng, Y.H., Qin, J., Wang, H., Chen, M.C., Peng, L.C., Luo, Y.H., Wu, D., Gong, S.Q., Su, H., Hu, Y., Hu, P., Yang, X.Y., Zhang, W.J., Li, H., Li, Y., Jiang, X., Gan, L., Yang, G., You, L., Wang, Z., Li, L., Liu, N.L., Renema, J.J., Lu, C.Y., Pan, J.W.: Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502(2021)
CrossRef Google scholar
[45]
Madsen, L.S., Laudenbach, F., Askarani, M.F., Rortais, F., Vincent, T., Bulmer, J.F.F., Miatto, F.M., Neuhaus, L., Helt, L.G., Collins, M.J., Lita, A.E., Gerrits, T., Nam, S.W., Vaidya, V.D., Menotti, M., Dhand, I., Vernon, Z., Quesada, N., Lavoie, J.: Quantum computational advantage with a programmable photonic processor. Nature 606(7912), 75–81 (2022)
CrossRef Google scholar
[46]
Carolan, J., Harrold, C., Sparrow, C., Martín-López, E., Russell, N.J., Silverstone, J.W., Shadbolt, P.J., Matsuda, N., Oguma, M., Itoh, M., Marshall, G.D., Thompson, M.G., Matthews, J.C.F., Hashimoto, T., O’Brien, J.L., Laing, A.: Universal linear optics. Science 349, 711(2015)
CrossRef Google scholar
[47]
Qiang, X., Zhou, X., Wang, J., Wilkes, C.M., Loke, T., O’Gara, S., Kling, L., Marshall, G.D., Santagati, R., Ralph, T.C., Wang, J.B., O’Brien, J.L., Thompson, M.G., Matthews, J.C.F.: Largescale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics 12, 534–539 (2018)
CrossRef Google scholar
[48]
Santagati, R., Silverstone, J.W., Strain, M.J., Sorel, M., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., Terai, H., Tanner, M.G., Natarajan, C.M., Hadfield, R.H., O’Brien, J.L., Thompson, M.G.: Silicon photonic processor of two-qubit entangling quantum logic. J. Opt. 19, 114006(2017)
CrossRef Google scholar
[49]
Taballione, C., Wolterink, T.A.W., Lugani, J., Eckstein, A., Bell, B.A., Grootjans, R., Visscher, I., Geskus, D., Roeloffzen, C.G.H., Renema, J.J., Walmsley, I.A., Pinkse, P.W.H., Boller, K.J.: 8 × 8 reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt. Express 27, 26842–26857 (2019)
CrossRef Google scholar
[50]
Ribeiro, A., Ruocco, A., Vanacker, L., Bogaerts, W.: Demonstration of a 4 × 4-port universal linear circuit. Optica 3, 1348–1357 (2016)
CrossRef Google scholar
[51]
Koteva, K.I., Gentile, A.A., Flynn, B., Paesani, S., Laing, A.: Silicon quantum photonic device for multidimensional controlled unitaries. In: Frontiers in Optics/ Laser Science. FTu8D.1. Optical Society of America (2020)
CrossRef Google scholar
[52]
Harris, N.C., Steinbrecher, G.R., Prabhu, M., Lahini, Y., Mower, J., Bunandar, D., Chen, C., Wong, F.N.C., Baehr-Jones, T., Hochberg, M., Lloyd, S., Englund, D.: Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics 11, 447–452 (2017)
CrossRef Google scholar
[53]
Sparrow, C., Martin-Lopez, E., Maraviglia, N., Neville, A., Harrold, C., Carolan, J., Joglekar, Y.N., Hashimoto, T., Matsuda, N., O’Brien, J.L., Tew, D.P., Laing, A.: Simulating the vibrational quantum dynamics of molecules using photonics. Nature 557(7707), 660(2018)
CrossRef Google scholar
[54]
Carolan, J., Mohseni, M., Olson, J.P., Prabhu, M., Chen, C., Bunandar, D., Niu, M.Y., Harris, N.C., Wong, F.N.C., Hochberg, M., Lloyd, S., Englund, D.: Variational quantum unsampling on a quantum photonic processor. Nat. Phys. 16, 322–327 (2020)
CrossRef Google scholar
[55]
Spring, J.B., Metcalf, B.J., Humphreys, P.C., Kolthammer, W.S., Jin, X., Barbieri, M., Datta, A., Thomaspeter, N., Langford, N.K., Kundys, D., Gates, J.C., Smith, B.J., Smith, P.G.R., Walmsley, I.A.: Boson sampling on a photonic chip. Science 339(6121), 798(2013)
CrossRef Google scholar
[56]
Tillmann, M., Dakić, B., Heilmann, R., Nolte, S., Szameit, A., Walther, P.: Experimental boson sampling. Nat. Photonics 7, 540–544 (2013)
CrossRef Google scholar
[57]
Shadbolt, P.J., Verde, M.R., Peruzzo, A., Politi, A., Laing, A., Lobino, M., Matthews, J.C.F., Thompson, M.G., O’Brien, J.L.: Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photonics 6, 45–49 (2012)
CrossRef Google scholar
[58]
Paesani, S., Ding, Y., Santagati, R., Chakhmakhchyan, L., Vigliar, C., Rottwitt, K., Oxenløwe, L.K., Wang, J., Thompson, M.G., Laing, A.: Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15, 925–929 (2019)
CrossRef Google scholar
[59]
Steinbrecher, G.R., Olson, J.P., Englund, D., Carolan, J.: Quantum optical neural networks. Npj Quantum Inf. 5, 60(2019)
CrossRef Google scholar
[60]
Shen, Y., Harris, N.C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., Sun, X., Zhao, S., Larochelle, H., Englund, D., Soljačić, M.: Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017)
CrossRef Google scholar
[61]
Gentile, A. A., Flynn, B., Knauer, S., Wiebe, N., Paesani, S., Granade, C., Rarity, J., Santagati, R., Laing, A.: Learning models of quantum systems from experiments. arXiv: 2002.06169(2020)
[62]
Saggio, V., Asenbeck, B.E., Hamann, A., Strömberg, T., Schiansky, P., Dunjko, V., Friis, N., Harris, N.C., Hochberg, M., Englund, D., Wölk, S., Briegel, H.J., Walther, P.: Experimental quantum speed-up in reinforcement learning agents. Nature 591, 229–233 (2021)
CrossRef Google scholar
[63]
Feldmann, J., Youngblood, N., Karpov, M., Gehring, H., Li, X., Stappers, M., Le Gallo, M., Fu, X., Lukashchuk, A., Raja, A.S., Liu, J., Wright, C.D., Sebastian, A., Kippenberg, T.J., Pernice, W.H.P., Bhaskaran, H.: Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021)
CrossRef Google scholar
[64]
Zhuang, L., Roeloffzen, C.G., Hoekman, M., Boller, K.J., Lowery, A.J.: Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015)
CrossRef Google scholar
[65]
Pérez, D., Gasulla, I., Crudgington, L., Thomson, D.J., Khokhar, A.Z., Li, K., Cao, W., Mashanovich, G.Z., Capmany, J.: Multi-purpose silicon photonics signal processor core. Nat. Commun. 8, 1925(2017)
CrossRef Google scholar
[66]
Lee, Y., Bersin, E., Dahlberg, A., Wehner, S., Englund, D.: A quantum router architecture for high-fidelity entanglement flows in quantum networks, arXiv: 2005.01852(2020)
[67]
Chen, K. C., Bersin, E., Englund, D.: A polarization encoded photon-to-spin interface. arXiv: 2004.02381(2020)
[68]
Wan, N.H., Lu, T.J., Chen, K.C., Walsh, M.P., Trusheim, M.E., De Santis, L., Bersin, E.A., Harris, I.B., Mouradian, S.L., Christen, I.R., Bielejec, E.S., Englund, D.: Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020)
CrossRef Google scholar
[69]
Choi, H., Pant, M., Guha, S., Englund, D.: Percolation based architecture for cluster state creation using photonmediated entanglement between atomic memories. arXiv: 1704.07292(2019)
[70]
Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58(1994)
CrossRef Google scholar
[71]
Clements, W.R., Humphreys, P.C., Metcalf, B.J., Kolthammer, W.S., Walmsley, I.A.: Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016)
CrossRef Google scholar
[72]
Chuang, I.L., Yamamoto, Y.: Simple quantum computer. Phys. Rev. A 52(5), 3489(1995)
CrossRef Google scholar
[73]
Wang, J., Sciarrino, F., Laing, A., Thompson, M.G.: Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020)
CrossRef Google scholar
[74]
Piergentili, P., Amanti, F., Andrini, G., Armani, F., Bellani, V., Bonaiuto, V., Cammarata, S., Campostrini, M., Cornia, S., Dao, T.H., De Matteis, F., Demontis, V., Di Giuseppe, G., Ditalia Tchernij, S., Donati, S., Fontana, A., Forneris, J., Francini, R., Frontini, L., Gunnella, R., Iadanza, S., Kaplan, A.E., Lacava, C., Liberali, V., Marzioni, F., Nieto Hernández, E., Pedreschi, E., Prete, D., Prosposito, P., Rigato, V., Roncolato, C., Rossella, F., Salamon, A., Salvato, M., Sargeni, F., Shojaii, J., Spinella, F., Stabile, A., Toncelli, A., Trucco, G., Vitali, V.: Quantum information with integrated photonics. Appl. Sci. 14(1), 387(2024)
CrossRef Google scholar
[75]
Politi, A., Matthews, J.C.F., O’Brien, J.L.: Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221(2009)
CrossRef Google scholar
[76]
Smith, B.J., Kundys, D., Thomas-Peter, N., Smith, P.G.R., Walmsley, I.A.: Phase-controlled integrated photonic quantum circuits. Opt. Express 17, 13516–13525 (2009)
CrossRef Google scholar
[77]
Peruzzo, A., Lobino, M., Matthews, J.C.F., Matsuda, N., Politi, A., Poulios, K., Zhou, X.Q., Lahini, Y., Ismail, N., Wörhoff, K., Bromberg, Y., Silberberg, Y., Thompson, M.G., OBrien, J.L.: Quantum walks of correlated photons. Science 329, 1500–1503 (2010)
CrossRef Google scholar
[78]
Laing, A., Peruzzo, A., Politi, A., Verde, M.R., Halder, M., Ralph, T.C., Thompson, M.G., O’Brien, J.L.: High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211109(2010)
CrossRef Google scholar
[79]
Gerrits, T., Thomas-Peter, N., Gates, J.C., Lita, A.E., Metcalf, B.J., Calkins, B., Tomlin, N.A., Fox, A.E., Linares, A.L., Spring, J.B., Langford, N.K., Mirin, R.P., Smith, P.G.R., Walmsley, I.A., Nam, S.W.: On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing. Phys. Rev. A 84, 060301(R) (2011)
CrossRef Google scholar
[80]
Pernice, W., Schuck, C., Minaeva, O., Li, M., Goltsman, G.N., Sergienko, A.V., Tang, H.X.: High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325(2012)
CrossRef Google scholar
[81]
Bonneau, D., Engin, E., Ohira, K., Suzuki, N., Yoshida, H., Iizuka, N., Ezaki, M., Natarajan, C.M., Tanner, M.G., Hadfield, R.H., Dorenbos, S.N., Zwiller, V., O’Brien, J.L., Thompson, M.G.: Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New J. Phys. 14, 045003(2012)
CrossRef Google scholar
[82]
Crespi, A., Osellame, R., Ramponi, R., Brod, D.J., Galvao, E.F., Spagnolo, N., Vitelli, C., Maiorino, E., Mataloni, P., Sciarrino, F.: Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7(7), 545(2013)
CrossRef Google scholar
[83]
Broome, M.A., Fedrizzi, A., Rahimikeshari, S., Dove, J., Aaronson, S., Ralph, T.C., White, A.: Photonic boson sampling in a tunable circuit. Science 339(6121), 794(2013)
CrossRef Google scholar
[84]
Carolan, J., Meinecke, J.D.A., Shadbolt, P.J., Russell, N.J., Ismail, N., Wörhoff, K., Rudolph, T., Thompson, M.G., O’Brien, J.L., Matthews, J.C.F., Laing, A.: On the experimental verification of quantum complexity in linear optics. Nat. Photon. 8, 621–626 (2014)
CrossRef Google scholar
[85]
Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502(2012)
CrossRef Google scholar
[86]
He, Y.M., He, Y., Wei, Y.J., Wu, D., Atatüre, M., Schneider, C., Höfling, S., Kamp, M., Lu, C.Y., Pan, J.W.: On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013)
CrossRef Google scholar
[87]
Silverstone, J., Bonneau, D., Ohira, K., Suzuki, N., Yoshida, H., Iizuka, N., Ezaki, M., Natarajan, C.M., Tanner, M.G., Hadfield, R.H., Zwiller, V., Marshall, G.D., Rarity, J.G., O’Brien, J.L., Thompson, M.G.: On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2014)
CrossRef Google scholar
[88]
Arcari, M., Söllner, I., Javadi, A., Lindskov Hansen, S., Mahmoodian, S., Liu, J., Thyrrestrup, H., Lee, E.H., Song, J.D., Stobbe, S., Lodahl, P.: Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603(2014)
CrossRef Google scholar
[89]
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.H., Zhou, X.Q., Love, P.J., Aspuru-Guzik, A., O’Brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213(2014)
CrossRef Google scholar
[90]
Wang, J., Bonneau, D., Villa, M., Silverstone, J.W., Santagati, R., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., Terai, H., Tanner, M.G., Natarajan, C.M., Hadfield, R.H., O’Brien, J.L., Thompson, M.G.: Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3, 407–413 (2016)
CrossRef Google scholar
[91]
Sibson, P., Erven, C., Godfrey, M., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., Terai, H., Tanner, M.G., Natarajan, C.M., Hadfield, R.H., O’Brien, J.L., Thompson, M.G.: Chip-based quantum key distribution. Nat. Commun. 8, 13984(2017)
CrossRef Google scholar
[92]
Spring, J.B., Mennea, P.L., Metcalf, B.J., Humphreys, P.C., Gates, J.C., Rogers, H.L., Söller, C., Smith, B.J., Kolthammer, W.S., Smith, P.G.R., Walmsley, I.A.: Chip-based array of nearidentical, pure, heralded single-photon sources. Optica 4, 90–96 (2017)
CrossRef Google scholar
[93]
Bentivegna, M., Spagnolo, N., Vitelli, C., Flamini, F., Viggianiello, N., Latmiral, L., Mataloni, P., Brod, D.J., Galvao, E.F., Crespi, A., Ramponi, R., Osellame, R., Sciarrino, F.: Experimental scattershot boson sampling. Sci. Adv. 1(3), e1400255(2015)
CrossRef Google scholar
[94]
Ciampini, M., Orieux, A., Paesani, S., Sciarrino, F., Corrielli, G., Crespi, A., Ramponi, R., Osellame, R., Mataloni, P.: Path-polarization hyperentangled and cluster states of photons on a chip. Light Sci. Appl. 5, e16064(2016)
CrossRef Google scholar
[95]
Wang, H., He, Y., Li, Y.H., Su, Z.E., Li, B., Huang, H.L., Ding, X., Chen, M.C., Liu, C., Qin, J., Li, J.P., He, Y.M., Schneider, C., Kamp, M., Peng, C.Z., Höfling, S., Lu, C.Y., Pan, J.W.: High-efficiency multiphoton boson sampling. Nat. Photon. 11(6), 361(2017)
CrossRef Google scholar
[96]
Wang, J., Paesani, S., Santagati, R., Knauer, S., Gentile, A.A., Wiebe, N., Petruzzella, M., O’Brien, J.L., Rarity, J.G., Laing, A., Thompson, M.G.: Experimental quantum Hamiltonian learning. Nat. Phys. 13, 551–555 (2017)
CrossRef Google scholar
[97]
Wang, J.W., Paesani, S., Ding, Y., Santagati, R., Skrzypczyk, P., Salavrakos, A., Tura, J., Augusiak, R., Mančinska, L., Bacco, D., Bonneau, D., Silverstone, J.W., Gong, Q., Acín, A., Rottwitt, K., Oxenløwe, L.K., O’Brien, J.L., Laing, A., Thompson, M.G.: Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018)
CrossRef Google scholar
[98]
Adcock, J.C., Vigliar, C., Santagati, R., Silverstone, J.W., Thompson, M.G.: Programmable four-photon graph states on a silicon chip. Nat. Commun. 10, 3528(2019)
CrossRef Google scholar
[99]
Wang, H., Qin, J., Ding, X., Chen, M.C., Chen, S., You, X., He, Y.M., Jiang, X., You, L., Wang, Z., Schneider, C., Renema, J.J., Höfling, S., Lu, C.Y., Pan, J.W.: Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503(2019)
[100]
Arrazola, J.M., Bergholm, V., Brádler, K., Bromley, T.R., Collins, M.J., Dhand, I., Fumagalli, A., Gerrits, T., Goussev, A., Helt, L.G., Hundal, J., Isacsson, T., Israel, R.B., Izaac, J., Jahangiri, S., Janik, R., Killoran, N., Kumar, S.P., Lavoie, J., Lita, A.E., Mahler, D.H., Menotti, M., Morrison, B., Nam, S.W., Neuhaus, L., Qi, H.Y., Quesada, N., Repingon, A., Sabapathy, K.K., Schuld, M., Su, D., Swinarton, J., Száva, A., Tan, K., Tan, P., Vaidya, V.D., Vernon, Z., Zabaneh, Z., Zhang, Y.: Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021)
CrossRef Google scholar
[101]
Zhang, M., Feng, L., Li, M., Chen, Y., Zhang, L., He, D., Guo, G., Guo, G., Ren, X., Dai, D.: Supercompact photonic quantum logic gate on a silicon chip. Phys. Rev. Lett. 126, 130501(2021)
CrossRef Google scholar
[102]
Gyger, S., Zichi, J., Schweickert, L., Elshaari, A.W., Steinhauer, S., Covre Da Silva, S.F., Rastelli, A., Zwiller, V., Jöns, K.D., Errando-Herranz, C.: Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun. 12, 1408(2021)
CrossRef Google scholar
[103]
Chen, Y.A., Zhang, Q., Chen, T.Y., Cai, W.Q., Liao, S.K., Zhang, J., Chen, K., Yin, J., Ren, J.G., Chen, Z., Han, S.L., Yu, Q., Liang, K., Zhou, F., Yuan, X., Zhao, M.S., Wang, T.Y., Jiang, X., Zhang, L., Liu, W.Y., Li, Y., Shen, Q., Cao, Y., Lu, C.Y., Shu, R., Wang, J.Y., Li, L., Liu, N.L., Xu, F., Wang, X.B., Peng, C.Z., Pan, J.W.: An integrated space-to-ground quantum communication network over 4,600 kilometers. Nature 589, 214–219 (2021)
CrossRef Google scholar
[104]
Chi, Y., Huang, J., Zhang, Z., Mao, J., Zhou, Z., Chen, X., Zhai, C., Bao, J., Dai, T., Yuan, H., Zhang, M., Dai, D., Tang, B., Yang, Y., Li, Z., Ding, Y., Oxenløwe, L.K., Thompson, M.G., O’Brien, J.L., Li, Y., Gong, Q., Wang, J.: A programmable Qudit-based quantum processor. Nat. Commun. 13, 1166(2022)
CrossRef Google scholar
[105]
Zheng, Y., Zhai, C., Liu, D., Mao, J., Chen, X., Dai, T., Huang, J., Bao, J., Fu, Z., Tong, Y., Zhou, X., Yang, Y., Tang, B., Li, Z., Li, Y., Gong, Q., Tsang, H.K., Dai, D., Wang, J.: Multichip multidimensional quantum networks with entanglement retrievability. Science 381, 221–226 (2023)
CrossRef Google scholar
[106]
Ono, T., Roga, W., Wakui, K., Fujiwara, M., Miki, S., Terai, H., Takeoka, M.: Demonstration of a Bosonic quantum classifier with data reuploading. Phys. Rev. Lett. 131, 013601(2023)
CrossRef Google scholar
[107]
Bao, J., Fu, Z., Pramanik, T., Mao, J., Chi, Y., Cao, Y., Zhai, C., Mao, Y., Dai, T., Chen, X., Jia, X., Zhao, L., Zheng, Y., Tang, B., Li, Z., Luo, J., Wang, W., Yang, Y., Peng, Y., Liu, D., Dai, D., He, Q., Muthali, A.L., Oxenløwe, L.K., Vigliar, C., Paesani, S., Hou, H., Santagati, R., Silverstone, J.W., Laing, A., Thompson, M.G., O’Brien, J.L., Ding, Y., Gong, Q., Wang, J.: Verylarge- scale integrated quantum graph photonics. Nat. Photon. 17, 573–581 (2023)
CrossRef Google scholar
[108]
Deng, Y.H., Gu, Y.C., Liu, H.L., Gong, S.Q., Su, H., Zhang, Z.J., Tang, H.Y., Jia, M.H., Xu, J.M., Chen, M.C., Qin, J., Peng, L.C., Yan, J., Hu, Y., Huang, J., Li, H., Li, Y., Chen, Y., Jiang, X., Gan, L., Yang, G., You, L., Li, L., Zhong, H.S., Wang, H., Liu, N.L., Renema, J.J., Lu, C.Y., Pan, J.W.: Gaussian boson sampling with pseudo-photon-number-resolving detectors and quantum computational advantage. Phys. Rev. Lett. 131(15), 131(2023)
CrossRef Google scholar
[109]
The Nobel Prize in Physics 2022. NobelPrize.org. Nobel Prize Outreach AB 2023. Available at the website of nobel prize.org/prizes/physics/2022/summary/ (2023)
[110]
Clauser, J.F., Shimony, A.: Bell’s theorem: experimental tests and implications. Rep. Prog. Phys. 41, 1881–1927 (1978)
CrossRef Google scholar
[111]
Barreiro, J.T., Langford, N.K., Peters, N.A., Kwiat, P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501(2005)
CrossRef Google scholar
[112]
Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T., Zeilinger, A.: A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007)
CrossRef Google scholar
[113]
Cohen, O., Lundeen, J.S., Smith, B.J., Puentes, G., Mosley, P.J., Walmsley, I.A.: Tailored photon-pair generation in optical fibers. Phys. Rev. Lett. 102, 123603(2009)
CrossRef Google scholar
[114]
Langford, N., Ramelow, S., Prevedel, R., Munro, W.J., Milburn, G.J., Zeilinger, A.: Efficient quantum computing using coherent photon conversion. Nature 478, 360–363 (2011)
CrossRef Google scholar
[115]
AbuGhanem, M., Eleuch, H.: Two-qubit entangling gates for superconducting quantum computers. Results Phys. 56, 107236(2024)
CrossRef Google scholar
[116]
AbuGhanem, M.: Comprehensive characterization of three-qubit Grover search algorithm on IBM’s 127-qubit superconducting quantum computers. arXiv: 2406.16018(2024)
[117]
AbuGhanem, M., Homid, A., Abdel-Aty, M.: Cavity control as a new quantum algorithms implementation treatment. Front. Phys. 13(1), 130303(2018)
CrossRef Google scholar
[118]
Politi, A., Cryan, M.J., Rarity, J.G., Yu, S., O’Brien, J.L.: Silicaon-silicon waveguide quantum circuits. Science 320, 646–649 (2008)
CrossRef Google scholar
[119]
Bromley, T.R., Arrazola, J.M., Jahangiri, S., Izaac, J., Quesada, N., Gran, A.D., Schuld, M., Swinarton, J., Zabaneh, Z., Killoran, N.: Applications of near-term photonic quantum computers: software and algorithms. Quantum Sci. Technol. 5, 034010(2020)
CrossRef Google scholar
[120]
Kues, M., Reimer, C., Roztocki, P., Cortés, L.R., Sciara, S., Wetzel, B., Zhang, Y., Cino, A., Chu, S.T., Little, B.E., Moss, D.J., Caspani, L., Azaña, J., Morandotti, R.: On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017)
CrossRef Google scholar
[121]
Kobayashi, T., Ikuta, R., Yasui, S., Miki, S., Yamashita, T., Terai, H., Yamamoto, T., Koashi, M., Imoto, N.: Frequency-domain Hong-Ou-Mandel interference. Nat. Photon. 10, 441–444 (2016)
CrossRef Google scholar
[122]
Lukens, J.M., Lougovski, P.: Frequency-encoded photonic qubits for scalable quantum information processing. Optica 4, 8–16 (2017)
CrossRef Google scholar
[123]
Lu, H.H., Lukens, J.M., Peters, N.A., Odele, O.D., Leaird, D.E., Weiner, A.M., Lougovski, P.: Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Phys. Rev. Lett. 120, 30502(2018)
CrossRef Google scholar
[124]
Joshi, C., Farsi, A., Dutt, A., Kim, B.Y., Ji, X., Zhao, Y., Bishop, A.M., Lipson, M., Gaeta, A.L.: Frequency-domain quantum interference with correlated photons from an integrated micro-resonator. Phys. Rev. Lett. 124, 143601(2020)
CrossRef Google scholar
[125]
Kues, M., Reimer, C., Lukens, J.M., Munro, W.J., Weiner, A.M., Moss, D.J., Morandotti, R.: Quantum optical microcombs. Nat. Photon. 13, 170–179 (2019)
CrossRef Google scholar
[126]
Hu, Y., Yu, M., Zhu, D., Sinclair, N., Shams-Ansari, A., Shao, L., Holzgrafe, J., Puma, E., Zhang, M., Lončar, M.: On-chip electrooptic frequency shifters and beam splitters. Nature 599, 587–593 (2021)
CrossRef Google scholar
[127]
Miller, D.A.B.: Perfect optics with imperfect components. Optica 2, 747–750 (2015)
CrossRef Google scholar
[128]
Taballione, C., van der Meer, R., Snijders, H.J., Hooijschuur, P., Epping, J.P., de Goede, M., Kassenberg, B., Venderbosch, P., Toebes, C., van den Vlekkert, H., Pinkse, P.W.H., Renema, J.J.: A universal fully reconfigurable 12-mode quantum photonic processor. Mater. Quantum Technol. 1, 035002(2021)
CrossRef Google scholar
[129]
Cerf, N.J., Adami, C., Kwiat, P.G.: Optical simulation of quantum logic. Phys. Rev. A 57(3), 1477(1998)
CrossRef Google scholar
[130]
Milburn, G.J.: Quantum optical fredkin gate. Phys. Rev. Lett. 62(18), 2124(1989)
CrossRef Google scholar
[131]
Kok, P., Lee, H., Dowling, J.P.: Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66(6), 063814(2002)
CrossRef Google scholar
[132]
Ralph, T.C., Langford, N.K., Bell, T.B., White, A.G.: Linear optical controlled-NOT gate in the coincidence basis. Phys. Rev. A 65, 062324(2001)
CrossRef Google scholar
[133]
Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621(2012)
CrossRef Google scholar
[134]
Braunstein, S.L., Van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77(2), 513(2005)
CrossRef Google scholar
[135]
Adesso, G., Ragy, S., Lee, A.R.: Continuous variable quantum information: Gaussian states and beyond. Open. Syst. Inf. Dyn. 21(01n02), 1440001(2014)
CrossRef Google scholar
[136]
Serafini, A.: Quantum continuous variables: a primer of theoretical methods. Routledge, New York (2017)
[137]
Balthazar, W.F., Caetano, D.P., Souza, C.E.R., Huguenin, J.A.O.: Using polarization to control the phase of spatial modes for application in quantum information. Braz. J. Phys. 44(6), 658(2014)
CrossRef Google scholar
[138]
Milione, G., Nguyen, T.A., Leach, J., Nolan, D.A., Alfano, R.R.: Using the nonseparability of vector beams to encode information for optical communication. Opt. Lett. 40(21), 4887(2015)
CrossRef Google scholar
[139]
Souza, C.E.R., Borges, C.V.S., Khoury, A.Z., Huguenin, J.A.O., Aolita, L., Walborn, S.P.: Quantum key distribution without a shared reference frame. Phys. Rev. A 77, 032345(2008)
CrossRef Google scholar
[140]
Obando, P.C., Passos, M.H.M., Paula, F.M., Huguenin, J.A.O.: Simulating Markovian quantum decoherence processes through an all-optical setup. Quant. Inf. Process. 19(7), 1573(2020)
CrossRef Google scholar
[141]
Khoury, A.Z., Milman, P.: Quantum teleportation in the spinorbit variables of photon pairs. Phys. Rev. A 83, 060301(2011)
CrossRef Google scholar
[142]
Passos, M.H.M., Obando, P.C., Balthazar, W.F., Paula, F.M., Huguenin, J.A.O., Sarandy, M.S.: Non-Markovianity through quantum coherence in an all-optical setup. Opt. Lett. 44(10), 2478(2019)
CrossRef Google scholar
[143]
Passos, M.H.M., Santos, A.C., Sarandy, M.S., Huguenin, J.A.O.: Optical simulation of a quantum thermal machine. Phys. Rev. A 100, 022113(2019)
CrossRef Google scholar
[144]
Passos, M.H.M., Balthazar, W.F., Khoury, A.Z., Hor-Meyll, M., Davidovich, L., Huguenin, J.A.O.: Experimental investigation of environment-induced entanglement using an all-optical setup. Phys. Rev. A 97, 022321(2018)
CrossRef Google scholar
[145]
Pallister, S., Linden, N., Montanaro, A.: Optimal verification of entangled states with local measurements. Phys. Rev. Lett. 120, 170502(2018)
CrossRef Google scholar
[146]
Zhu, H., Hayashi, M.: Efficient verification of pure quantum states in the adversarial scenario. Phys. Rev. Lett. 123, 260504(2019)
CrossRef Google scholar
[147]
Li, Z., Han, Y.H., Zhu, H.: Efficient verification of bipartite pure states. Phys. Rev. A 100, 032316(2019)
CrossRef Google scholar
[148]
Wang, K., Hayashi, M.: Optimal verification of two-qubit pure states. Phys. Rev. A 100, 032315(2019)
CrossRef Google scholar
[149]
Sugiyama, T., Turner, P.S., Murao, M.: Precision-guaranteed quantum tomography. Phys. Rev. Lett. 111, 160406(2013)
CrossRef Google scholar
[150]
Gonzales, J.P., Sánchez, P., Auccapuclla, F., Miller, B., Andrés, M.V., De Zela, F.: Unrestricted generation of pure two-qubit states and entanglement diagnosis by single-qubit tomography. Opt. Lett. 44(13), 3310–3313 (2019)
CrossRef Google scholar
[151]
Starek, R., Miková, M., Straka, I., Dušek, M., Ježek, M., Fiurášek, J., Mičuda, M.: Experimental realization of SWAP operation on hyper-encoded qubits. Opt. Express 26(7), 8443–8452(2018)
CrossRef Google scholar
[152]
Ruelas, D.R.A., Paredes, C.M., Marrou, J.P., Yugra, Y., Uria, M., Massoni, E., De Zela, F.: Synthesis and characterization of pure, two-qubit states encoded in path and polarization. J. Opt. 23, 085201(2021)
CrossRef Google scholar
[153]
Kwek, L.C., Cao, L., Luo, W., Wang, Y., Sun, S., Wang, X., Liu, A.Q.: Chip-based quantum key distribution. AAPPS Bull. 31(1), 1–8 (2021)
CrossRef Google scholar
[154]
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301(2009)
CrossRef Google scholar
[155]
Xu, F., Ma, X., Zhang, Q., Lo, H.K., Pan, J.W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002(2020)
CrossRef Google scholar
[156]
Myers, C., Laflamme, R.: Linear optics quantum computation: an overview. arXiv preprint quant-ph/0512104(2005)
[157]
Bourassa, J.E., Alexander, R.N., Vasmer, M., Patil, A., Tzitrin, I., Matsuura, T., Su, D., Baragiola, B.Q., Guha, S., Dauphinais, G., Sabapathy, K.K., Menicucci, N.C., Dhand, I.: Blueprint for a scalable photonic fault-tolerant quantum computer. Quantum 5, 392(2021)
CrossRef Google scholar
[158]
Barzanjeh, S., Xuereb, A., Gröblacher, S., Paternostro, M., Regal, C.A., Weig, E.M.: Optomechanics for quantum technologies. Nat. Phys. 18, 15–24 (2022)
CrossRef Google scholar
[159]
Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391(2014)
CrossRef Google scholar
[160]
Wang, S., Yin, Z.Q., He, D.Y., Chen, W., Wang, R.Q., Ye, P., Zhou, Y., Fan-Yuan, G.J., Wang, F.X., Chen, W., Zhu, Y.G., Morozov, P.V., Divochiy, A.V., Zhou, Z., Guo, G.C., Han, Z.F.: Twin-field quantum key distribution over 830-km fibre. Nat. Photon. 16, 154–161 (2022)
CrossRef Google scholar
[161]
Li, W., Zhang, L., Tan, H., Lu, Y., Liao, S.K., Huang, J., Li, H., Wang, Z., Mao, H.K., Yan, B., Li, Q., Liu, Y., Zhang, Q., Peng, C.Z., You, L., Xu, F., Pan, J.W.: High-rate quantum key distribution exceeding 110 Mb s−1. Nat. Photon. 17, 416–421 (2023)
CrossRef Google scholar
[162]
Clementi, M., Sabattoli, F.A., Borghi, M., Gianini, L., Tagliavacche, N., El Dirani, H., Youssef, L., Bergamasco, N., Petit- Etienne, C., Pargon, E., Sipe, J.E., Liscidini, M., Sciancalepore, C., Galli, M., Bajoni, D.: Programmable frequency-bin quantum states in a nano-engineered silicon device. Nat. Commun. 14, 176(2023)
CrossRef Google scholar
[163]
Brendel, J., Gisin, N., Tittel, W., Zbinden, H.: Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594(1999)
CrossRef Google scholar
[164]
Marcikic, I., de Riedmatten, H., Tittel, W., Scarani, V., Zbinden, H., Gisin, N.: Time-bin entangled qubits for quantum communication created by femtosecond pulses. Phys. Rev. A 66, 062308(2002)
CrossRef Google scholar
[165]
Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H., Legré, M., Gisin, N.: Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502(2004)
CrossRef Google scholar
[166]
Inagaki, T., Matsuda, N., Tadanaga, O., Asobe, M., Takesue, H.: Entanglement distribution over 300 km of fiber. Opt. Express 21, 23241–23249 (2013)
CrossRef Google scholar
[167]
Silverstone, J.W., Santagati, R., Bonneau, D., Strain, M.J., Sorel, M., O’Brien, J.L., Thompson, M.G.: Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat. Commun. 6, 7948(2015)
CrossRef Google scholar
[168]
Kwiat, P.G., Waks, E., White, A.G., Appelbaum, I., Eberhard, P.H.: Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773–R776(1999)
CrossRef Google scholar
[169]
Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503(2010)
CrossRef Google scholar
[170]
Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Ömer, B., Fürst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)
CrossRef Google scholar
[171]
Zeuner, J., Sharma, A.N., Tillmann, M., Heilmann, R., Gräfe, M., Moqanaki, A., Szameit, A., Walther, P.: Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits. npj Quantum Inf. (2018)
[172]
Crespi, A., Ramponi, R., Osellame, R., Sansoni, L., Bongioanni, I., Sciarrino, F., Vallone, G., Mataloni, P.: Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566(2011)
CrossRef Google scholar
[173]
Marshall, G.D., Politi, A., Matthews, J.C.F., Dekker, P., Ams, M., Withford, M.J., O’Brien, J.L.: Laser written waveguide photonic quantum circuits. Opt. Express 17, 12546–12554 (2009)
CrossRef Google scholar
[174]
Davis, K.M., Miura, K., Sugimoto, N., Hirao, K.: Writing wave-guides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731(1996)
CrossRef Google scholar
[175]
Zewail, A.H.: Femtochemistry. Laser Sci. 242, 4886(1988)
CrossRef Google scholar
[176]
Zewail, A.H.: Femtochemistry: recent progress in studies of dynamics and control of reactions and their transition states. J. Phys. Chem. 100, 31(1996)
CrossRef Google scholar
[177]
Zewail, A.H.: Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture). Angewandte Chemie International Edition, 2000—Wiley Online Library (2000)
[178]
Kok, P., Lovett, B.W.: Introduction to Optical Quantum Information Processing. Cambridge University Press (2010)
[179]
Hou, Z., Xiang, G., Dong, D., Li, C.F., Guo, G.C.: Realization of mutually unbiased bases for a qubit with only one wave plate: theory and experiment. Opt. Express 23, 10018–10031 (2015)
CrossRef Google scholar
[180]
Prevedel, R., Walther, P., Tiefenbacher, F., Böhi, P., Kaltenbaek, R., Jennewein, T., Zeilinger, A.: High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007)
CrossRef Google scholar
[181]
Heilmann, R., Gräfe, M., Nolte, S., Szameit, A.: Arbitrary photonic wave plate operations on chip: realizing Hadamard, Pauli- X and rotation gates for polarisation qubits. Sci. Rep. 4, 4118(2014)
CrossRef Google scholar
[182]
Barz, S., Kassal, I., Ringbauer, M., Lipp, Y.O., Dakić, B., Aspuru-Guzik, A., Walther, P.: A two-qubit photonic quantum processor and its application to solving systems of linear equations. Sci. Rep. 4, 6115(2014)
CrossRef Google scholar
[183]
Matthews, J., Poulios, K., Meinecke, J., Politi, A., Peruzzo, A., Ismail, N., Wörhoff, K., Thompson, M.G., O’Brien, J.L.: Observing fermionic statistics with photons in arbitrary processes. Sci. Rep. 3, 1539(2013)
CrossRef Google scholar
[184]
Ma, C., Sacher, W.D., Tang, Z., Mikkelsen, J.C., Yang, Y., Feihu, X., Thiessen, T., Lo, H.K., Poon, J.K.S.: Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica 3, 1274–1278 (2016)
CrossRef Google scholar
[185]
Kim, Y.-H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370(2001)
CrossRef Google scholar
[186]
Vallés, A., Hendrych, M., Svozilík, J., Machulka, R., Abolghasem, P., Kang, D., Bijlani, B.J., Helmy, A.S., Torres, J.P.: Generation of polarization-entangled photon pairs in a Bragg reflection waveguide. Opt. Express 21, 10841–10849 (2013)
CrossRef Google scholar
[187]
Olislager, L., Safioui, J., Clemmen, S., Huy, K.P., Bogaerts, W., Baets, R., Emplit, P., Massar, S.: Silicon-on-insulator integrated source of polarization-entangled photons. Opt. Lett. 38, 1960–1962(2013)
CrossRef Google scholar
[188]
Matsuda, N., Le Jeannic, H., Fukuda, H., Tsuchizawa, T., Munro, W.J., Shimizu, K., Yamada, K., Tokura, Y., Takesue, H.: A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2, 817(2012)
CrossRef Google scholar
[189]
Kaiser, F., Ngah, L.A., Issautier, A., Delord, T., Aktas, D., D’Auria, V., De Micheli, M.P., Kastberg, A., Labonté, L., Alibart, O., Martin, A., Tanzilli, S.: Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry. Opt. Commun. 327, 7–16 (2014)
CrossRef Google scholar
[190]
Hamel, D., Shalm, L., Hübel, H., Miller, A.J., Marsili, F., Verma, V.B., Mirin, R.P., Nam, S.W., Resch, K.J., Jennewein, T.: Direct generation of three-photon polarization entanglement. Nat. Photon. 8, 801–807 (2014)
CrossRef Google scholar
[191]
Barreiro, J.T., Wei, T.-C., Kwiat, P.G.: Remote preparation of single-photon “hybrid” entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407(2010)
CrossRef Google scholar
[192]
Crespi, A., Longhi, S., Osellame, R.: Photonic realization of the quantum rabi model. Phys. Rev. Lett. 108, 163601(2012)
CrossRef Google scholar
[193]
Rojas-Rojas, S., Morales-Inostroza, L., Naether, U., Xavier, G.B., Nolte, S., Szameit, A., Vicencio, R.A., Lima, G., Delgado, A.: Analytical model for polarization-dependent light propagation in waveguide arrays and applications. Phys. Rev. A 90, 063823(2014)
CrossRef Google scholar
[194]
Bonneau, D., Lobino, M., Jiang, P., Natarajan, C.M., Tanner, M.G., Hadfield, R.H., Dorenbos, S.N., Zwiller, V., Thompson, M.G., O’Brien, J.L.: Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices. Phys. Rev. Lett. 108, 053601(2012)
CrossRef Google scholar
[195]
Müller, M., Bounouar, S., Jöns, K., Glässl, M., Michler, P.: Ondemand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014)
CrossRef Google scholar
[196]
Bhatti, D., von Zanthier, J., Agarwal, G.S.: Entanglement of polarization and orbital angular momentum. Phys. Rev. A 91, 062303(2015)
CrossRef Google scholar
[197]
Vallone, G., Ceccarelli, R., De Martini, F., Mataloni, P.: Hyper-entanglement of two photons in three degrees of freedom. Phys. Rev. A 79, 030301(R) (2009)
CrossRef Google scholar
[198]
Orieux, A., Ciampini, M.A., Mataloni, P., Bruß, D., Rossi, M., Macchiavello, C.: Experimental generation of robust entanglement from classical correlations via local dissipation. Phys. Rev. Lett. 115, 160503(2015)
CrossRef Google scholar
[199]
Fickler, R., Lapkiewicz, R., Plick, W.N., Krenn, M., Schaeff, C., Ramelow, S., Zeilinger, A.: Quantum entanglement of high angular momenta. Science 338, 640–643 (2012)
CrossRef Google scholar
[200]
Nagali, E., Sciarrino, F., De Martini, F., Marrucci, L., Piccirillo, B., Karimi, E., Santamato, E.: Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103, 013601(2009)
CrossRef Google scholar
[201]
Chen, T.Y., Zhang, J., Boileau, J.C., Jin, X.M., Yang, B., Zhang, Q., Yang, F.T., Laflamme, R., Pan, J.W.: Experimental quantum communication without a shared reference frame. Phys. Rev. Lett. 96, 150504(2006)
CrossRef Google scholar
[202]
Steinlechner, F., Ecker, S., Fink, M., Liu, B., Bavaresco, J., Huber, M., Scheidl, T., Ursin, R.: Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 8, 15971(2017)
CrossRef Google scholar
[203]
Kwiat, P.G.: Hyper-entangled states. J. Mod. Opt. 44(11–12), 2173–2184 (1997)
CrossRef Google scholar
[204]
Souza, R.C., Balthazar, W.F., Huguenin, J.A.O.: Universal quantum gates for path photonic qubit. Quantum Inf. Process. 21, 68(2022)
CrossRef Google scholar
[205]
Solntsev, A.S., Sukhorukov, A.A.: Path-entangled photon sources on nonlinear chips. Rev. Phys. 2, 19–31 (2017)
CrossRef Google scholar
[206]
Balthazar, W.F., Souza, C.E.R., Caetano, D.P., Galvão, E.F., Huguenin, J.A.O., Khoury, A.Z.: Tripartite nonseparability in classical optics. Opt. Lett. 41, 5797–5800 (2016)
CrossRef Google scholar
[207]
Li, M., Li, C., Chen, Y., Feng, L.T., Yan, L., Zhang, Q., Bao, J., Liu, B.H., Ren, X.F., Wang, J., Wang, S.: On-chip path encoded photonic quantum Toffoli gate. Photon. Res. 10, 1533–1542 (2022)
CrossRef Google scholar
[208]
Babazadeh, A., Erhard, M., Wang, F., Malik, M., Nouroozi, R., Krenn, M., Zeilinger, A.: High-dimensional single-photon quantum gates: concepts and experiments. Phys. Rev. Lett. 119(18), 180510(2017)
CrossRef Google scholar
[209]
De Oliveira, A., Walborn, S., Monken, C.: Implementing the Deutsch algorithm with polarization and transverse spatial modes. J. Opt. B Quant. Semiclass. Opt. 7(9), 288(2005)
CrossRef Google scholar
[210]
Da Lio, B., Cozzolino, D., Biagi, N., Ding, Y., Rottwitt, K., Zavatta, A., Bacco, D., Oxenløwe, L.: Path-encoded high-dimensional quantum communication over a 2-km multicore fiber. npj Quantum Inf. 7, 63(2021)
CrossRef Google scholar
[211]
D’ambrosio, V., Nagali, E., Walborn, S.P., Aolita, L., Slussarenko, S., Marrucci, L., Sciarrino, F.: Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 3(1), 1(2012)
CrossRef Google scholar
[212]
Matthews, J., Politi, A., Stefanov, A., O’Brien, J.L.: Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photon. 3, 346–350 (2009)
CrossRef Google scholar
[213]
Jin, H., Liu, F.M., Xu, P., Xia, J.L., Zhong, M.L., Yuan, Y., Zhou, J.W., Gong, Y.X., Wang, W., Zhu, S.N.: On-chip generation and manipulation of entangled photons based on reconfigurable lithium- niobate waveguide circuits. Phys. Rev. Lett. 113, 103601(2014)
CrossRef Google scholar
[214]
Harris, N.C., Grassani, D., Simbula, A., Pant, M., Galli, M., Baehr-Jones, T., Hochberg, M., Englund, D., Bajoni, D., Galland, C.: Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys. Rev. X 4, 041047(2014)
CrossRef Google scholar
[215]
Titchener, J.G., Solntsev, A.S., Sukhorukov, A.A.: Generation of photons with all-optically-reconfigurable entanglement in integrated nonlinear waveguides. Phys. Rev. A 92, 033819(2015)
CrossRef Google scholar
[216]
Solntsev, A.S., Setzpfandt, F., Clark, A.S., Wu, C.W., Collins, M.J., Xiong, C., Schreiber, A., Katzschmann, F., Eilenberger, F., Schiek, R., Sohler, W.: Generation of nonclassical biphoton states through cascaded quantum walks on a nonlinear chip. Phys. Rev. X 4, 031007(2014)
CrossRef Google scholar
[217]
Schaeff, C., Polster, R., Lapkiewicz, R., Fickler, R., Ramelow, S., Zeilinger, A.: Scalable fiber integrated source for higher-dimensional path-entangled photonic quNits. Opt. Express 20, 16145–16153 (2012)
CrossRef Google scholar
[218]
Antonosyan, D.A., Solntsev, A.S., Sukhorukov, A.A.: Effect of loss on photon-pair generation in nonlinear waveguide arrays. Phys. Rev. A 90, 043845(2014)
CrossRef Google scholar
[219]
Franson, J.D.: Bell inequality for position and time. Phys. Rev. Lett. 62, 2205(1989)
CrossRef Google scholar
[220]
Humphreys, P.C., Metcalf, B.J., Spring, J.B., Moore, M., Jin, X.M., Barbieri, M., Kolthammer, W.S., Walmsley, I.A.: Linear optical quantum computing in a single spatial mode. Phys. Rev. Lett. 111, 150501(2013)
CrossRef Google scholar
[221]
Donohue, J.M., Agnew, M., Lavoie, J., Resch, K.J.: Coherent ultrafast measurement of time-bin encoded photons. Phys. Rev. Lett. 111, 153602(2013)
CrossRef Google scholar
[222]
Ortu, A., Holzäpfel, A., Etesse, J., Afzelius, M.: Storage of photonic time-bin qubits for up to 20 ms in a rare-earth doped crystal. npj Quantum Inf. 8, 29(2022)
CrossRef Google scholar
[223]
Kochi, Y., Kurimura, S., Ishi-Hayase, J.: Evaluation of femtosecond time-bin qubits using frequency up-conversion technique. arXive preprint arXiv: 2205.06957 [quant-ph] (2022)
[224]
Bouchard, F., England, D., Bustard, P.J., Heshami, K., Sussman, B.: Quantum communication with ultrafast time-bin qubits. arXive preprint arXiv: 2106. 09833 [quant-ph] (2021)
[225]
Yu, L., Natarajan, C., Horikiri, T., Langrock, C., Pelc, J.S., Tanner, M.G., Abe, E., Maier, S., Schneider, C., Höfling, S., Kamp, M., Hadfield, R.H., Fejer, M.M., Yamamoto, Y.: Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits. Nat. Commun. 6, 8955(2015)
CrossRef Google scholar
[226]
Tang, G.Z., Sun, S.H., Chen, H., Li, C.Y., Liang, L.M.: Time-bin phase-encoding measurement-device-independent quantum key distribution with four single-photon detectors. Chin. Phys. Lett. 33, 120301(2016)
CrossRef Google scholar
[227]
Gündoğan, M., Ledingham, P.M., Kutluer, K., Mazzera, M., de Riedmatten, H.: Solid state spin-wave quantum memory for time-bin qubits. Phys. Rev. Lett. 114, 230501(2015)
CrossRef Google scholar
[228]
Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H., Gisin, N.: Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003)
CrossRef Google scholar
[229]
de Riedmatten, H., Marcikic, I., Tittel, W., Zbinden, H., Collins, D., Gisin, N.: Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 047904(2004)
CrossRef Google scholar
[230]
Landry, O., van Houwelingen, J.A., Beveratos, A., Zbinden, H., Gisin, N.: Quantum teleportation over the Swisscom telecommunication network. J. Opt. Soc. Am. B 24, 398–403 (2007)
CrossRef Google scholar
[231]
Guo, X., Mei, Y., Shengwang, D.: Testing the Bell inequality on frequency-bin entangled photon pairs using time-resolved detection. Optica 4, 388–392 (2017)
CrossRef Google scholar
[232]
Nisbet-Jones, P.B.R.: Photonic qubits, qutrits and ququads accurately prepared and delivered on demand. New J. Phys. 15, 053007(2013)
CrossRef Google scholar
[233]
Martin, A., Kaiser, F., Vernier, A., Beveratos, A., Scarani, V., Tanzilli, S.: Cross time-bin photonic entanglement for quantum key distribution. Phys. Rev. A 87, 020301(R) (2013)
CrossRef Google scholar
[234]
Harada, K.I., Takesue, H., Fukuda, H., Tsuchizawa, T., Watanabe, T., Yamada, K., Tokura, Y., Itabashi, S.I.: Generation of high-purity entangled photon pairs using silicon wire wave-guide. Opt. Express 16, 20368–20373 (2008)
CrossRef Google scholar
[235]
Wakabayashi, R., Fujiwara, M., Yoshino, K.I., Nambu, Y., Sasaki, M., Aoki, T.: Time-bin entangled photon pair generation from Si micro-ring resonator. Opt. Express 23, 1103–1113 (2015)
CrossRef Google scholar
[236]
Xiong, C., Zhang, X., Mahendra, A., He, J., Choi, D.-Y., Chae, C.J., Marpaung, D., Leinse, A., Heideman, R.G., Hoekman, M., Roeloffzen, C.G.H., Oldenbeuving, R.M., van Dijk, P.W.L., Taddei, C., Leong, P.H.W., Eggleton, B.J.: Compact and reconfigurable silicon nitride time-bin entanglement circuit. Optica 2, 724–727 (2015)
CrossRef Google scholar
[237]
He, Y., Ding, X., Su, Z.E., Huang, H.L., Qin, J., Wang, C., Unsleber, S., Chen, C., Wang, H., He, Y.M., Wang, X.L.: Time-bin-encoded boson sampling with a single-photon device. Phys. Rev. Lett. 118, 190501(2017)
CrossRef Google scholar
[238]
Motes, K.R., Gilchrist, A., Dowling, J.P., Rohde, P.P.: Scalable boson sampling with time-bin encoding using a loop-based architecture. Phys. Rev. Lett. 113, 120501(2014)
CrossRef Google scholar
[239]
Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502(2010)
CrossRef Google scholar
[240]
Regensburger, A., Bersch, C., Hinrichs, B., Onishchukov, G., Schreiber, A., Silberhorn, C., Peschel, U.: Photon propagation in a discrete fiber network: an interplay of coherence and losses. Phys. Rev. Lett. 107, 233902(2011)
CrossRef Google scholar
[241]
Schreiber, A.: A 2D quantum walk simulation of two-particle dynamics. Science 336, 55–58 (2012)
CrossRef Google scholar
[242]
Jeong, Y.C., Di Franco, C., Lim, H.T., Kim, M.S., Kim, Y.H.: Experimental realization of a delayed-choice quantum walk. Nat. Commun. 4, 2471(2013)
CrossRef Google scholar
[243]
Boutari, J., Feizpour, A., Barz, S., Franco, C.D., Kim, M.S., Kolthammer, W.S., Walmsley, I.A.: Large scale quantum walks by means of optical fiber cavities. J. Opt. 18, 094007(2016)
CrossRef Google scholar
[244]
Olislager, L., Cussey, J., Nguyen, A.T., Emplit, P., Massar, S., Merolla, J.M., Huy, K.P.: Frequency-bin entangled photons. Phys. Rev. A 82, 013804(2010)
CrossRef Google scholar
[245]
Kaneda, F., Suzuki, H., Shimizu, R., Edamatsu, K.: Direct generation of frequency-bin entangled photons via two-period quasi-phase-matched parametric downconversion. Opt. Express 27, 1416(2019)
CrossRef Google scholar
[246]
Rieländer, D., Lenhard, A., Jime’nez Farìas, O., Máttar, A., Cavalcanti, D., Mazzera, M., Acín, A., Riedmatten, H.: Frequency- bin entanglement of ultra-narrow band non-degenerate photon pairs. Quantum Sci. Technol. 3, 014007(2017)
CrossRef Google scholar
[247]
Lu, H.H., Lukens, J.M., Peters, N.A., Williams, B.P., Weiner, A.M., Lougovski, P.: Quantum interference and correlation control of frequency-bin qubits. Optica 5, 1455–1460 (2018)
CrossRef Google scholar
[248]
Imany, P., Jaramillo-Villegas, J.A., Odele, O.D., Han, K., Leaird, D.E., Lukens, J.M., Lougovski, P., Qi, M., Weiner, A.M.: 50-GHz-spaced comb of high-dimensional frequencybin entangled photons from an on-chip silicon nitride micro-resonator. Opt. Express 26, 1825(2018)
CrossRef Google scholar
[249]
Reimer, C., Kues, M., Roztocki, P., Wetzel, B., Grazioso, F., Little, B.E., Chu, S.T., Johnston, T., Bromberg, Y., Caspani, L., Moss, D.J., Morandotti, R.: Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016)
CrossRef Google scholar
[250]
Zhong, T., Zhou, H., Horansky, R.D., Lee, C., Verma, V.B., Lita, A.E., Restelli, A., Bienfang, J.C., Mirin, R.P., Gerrits, T., Nam, S.W., Marsili, F., Shaw, M.D., Zhang, Z., Wang, L., Englund, D., Wornell, G.W., Shapiro, J.H., Wong, F.N.C.: Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding. New. J. Phys. 17, 022002(2015)
CrossRef Google scholar
[251]
Nunn, J., Wright, L.J., Söller, C., Zhang, L., Walmsley, I.A., Smith, B.J.: Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion. Opt. Express 21, 15959–15973 (2013)
CrossRef Google scholar
[252]
Hayat, A., Xing, X., Feizpour, A., Steinberg, A.M.: Multidimensional quantum information based on single-photon temporal wavepackets. Opt. Express 20, 29174–29184 (2012)
CrossRef Google scholar
[253]
Roslund, J., De Araujo, R.M., Jiang, S., Fabre, C., Treps, N.: Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photon. 8, 109(2014)
CrossRef Google scholar
[254]
Kaiser, F., Aktas, D., Fedrici, B., Lunghi, T., Labonté, L., Tanzilli, S.: Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks. Appl. Phys. Lett. 108, 231108(2016)
CrossRef Google scholar
[255]
Campbell, G.T., Pinel, O., Hosseini, M., Ralph, T.C., Buchler, B.C., Lam, P.K.: Configurable unitary transformations and linear logic gates using quantum memories. Phys. Rev. Lett. 113, 063601(2014)
CrossRef Google scholar
[256]
Menicucci, N.C., Ma, X., Ralph, T.C.: Arbitrarily large continuous- variable cluster states from a single quantum nondemolition gate. Phys. Rev. Lett. 104, 250503(2010)
CrossRef Google scholar
[257]
Menicucci, N.C.: Temporal-mode continuous-variable cluster states using linear optics. Phys. Rev. A 83, 062314(2011)
CrossRef Google scholar
[258]
Yokoyama, S., Ukai, R., Armstrong, S.C., Sornphiphatphong, C., Kaji, T., Suzuki, S., Yoshikawa, J., Yonezawa, H., Menicucci, N.C., Furusawa, A.: Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photon. 7, 982(2013)
CrossRef Google scholar
[259]
Chen, M., Menicucci, N.C., Pfister, O.: Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 112, 120505(2014)
CrossRef Google scholar
[260]
Soudagar, Y., Bussières, F., Berlín, G., Lacroix, S., Fernandez, J.M., Godbout, N.: Cluster-state quantum computing in optical fibers. J. Opt. Soc. Am. B 24, 226–230 (2007)
CrossRef Google scholar
[261]
Shalm, L., Hamel, D., Yan, Z., Simon, C., Resch, K.J., Jennewein, T.: Three-photon energy-time entanglement. Nat. Phys. 9, 19–22 (2013)
CrossRef Google scholar
[262]
Hosseini, M., Sparkes, B., Hétet, G., Longdell, J.J., Lam, P.K., Buchler, B.C.: Coherent optical pulse sequencer for quantum applications. Nature 461, 241–245 (2009)
CrossRef Google scholar
[263]
Autebert, C., Bruno, N., Martin, A., Lemaitre, A., Carbonell, C.G., Favero, I., Leo, G., Zbinden, H., Ducci, S.: Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons. Optica 3, 143–146 (2016)
CrossRef Google scholar
[264]
Reddy, D.V., Raymer, M.G., McKinstrie, C.J.: Efficient sorting of quantum-optical wave packets by temporal-mode interferometry. Opt. Lett. 39, 2924–2927 (2014)
CrossRef Google scholar
[265]
Brecht, B., Eckstein, A., Ricken, R., Quiring, V., Suche, H., Sansoni, L., Silberhorn, C.: Demonstration of coherent time-frequency Schmidt mode selection using dispersion-engineered frequency conversion. Phys. Rev. A 90, 030302(R) (2014)
CrossRef Google scholar
[266]
Saglamyurek, E., Sinclair, N., Slater, J.A., Heshami, K., Oblak, D., Tittel, W.: An integrated processor for photonic quantum states using a broadband light-matter interface. New J. Phys. 16, 065019(2014)
CrossRef Google scholar
[267]
Huntington, E.H., Ralph, T.C.: Components for optical qubits encoded in sideband modes. Phys. Rev. A 69, 042318(2004)
CrossRef Google scholar
[268]
Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 1–15 (2017)
CrossRef Google scholar
[269]
Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)
CrossRef Google scholar
[270]
Wilde, M.M., Tomamichel, M., Berta, M.: Converse bounds for private communication over quantum channels. IEEE Trans. Inf. Theory 63, 1792–1817 (2017)
CrossRef Google scholar
[271]
Pirandola, S.: End-to-end capacities of a quantum communication network. Commun. Phys. 2, 1–10 (2019)
CrossRef Google scholar
[272]
Winnel, M.S., Guanzon, J.J., Hosseinidehaj, N., Ralph, T.C.: Achieving the ultimate end-to-end rates of lossy quantum communication networks. npj Quantum Inf. 8, 129(2022)
CrossRef Google scholar
[273]
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 7–11 (2014)
CrossRef Google scholar
[274]
Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661(1991)
CrossRef Google scholar
[275]
Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61, 010303(1999)
CrossRef Google scholar
[276]
Hillery, M.: Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309(2000)
CrossRef Google scholar
[277]
Wein, S.C., Loredo, J.C., Maffei, M., Hilaire, P., Harouri, A., Somaschi, N., Lemaître, A., Sagnes, I., Lanco, L., Krebs, O., Auffèves, A., Simon, C., Senellart, P., Antón-Solanas, C.: Photon-number entanglement generated by sequential excitation of a two-level atom. Nat. Photon. 16, 374–379 (2022)
CrossRef Google scholar
[278]
Santos, A.C., Schneider, C., Bachelard, R., Predojević, A., Antón-Solanas, C.: Multipartite entanglement encoded in the photon-number basis by sequential excitation of a three-level system. Opt. Lett. 48, 6332–6335 (2023)
CrossRef Google scholar
[279]
Arzani, F., Ferraro, A., Parigi, V.: High-dimensional quantum encoding via photon-subtracted squeezed states Phys. Rev. A 99, 022342(2019)
CrossRef Google scholar
[280]
Ekert, A., Renner, R.: The ultimate physical limits of privacy. Nature 507, 443–447 (2014)
CrossRef Google scholar
[281]
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)
CrossRef Google scholar
[282]
Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J.L., Razavi, M., Shamsul Shaari, J., Tomamichel, M., Usenko, V.C., Vallone, G., Villoresi, P., Wallden, P.: Advances in quantum cryptography. Adv. Opt. Photon. 12, 1012–1236 (2020)
CrossRef Google scholar
[283]
Maring, N., Kutluer, K., Cohen, J., Cristiani, M., Mazzera, M., Ledingham, P.M., Riedmatten, H.: Storage of up-converted telecom photons in a doped crystal. N. J. Phys. 16, 113021(2014)
CrossRef Google scholar
[284]
Munro, W.J., Azuma, K., Tamaki, K., Nemoto, K.: Inside quantum repeaters. IEEE J. Sel. Top. Quantum Electron. 21, 78–90 (2015)
CrossRef Google scholar
[285]
Milburn, G.J.: Photons as qubits. Phys. Scr. T137, 014003(2009)
CrossRef Google scholar
[286]
Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503(2012)
CrossRef Google scholar
[287]
Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nat. Photon. 9, 397–402 (2015)
CrossRef Google scholar
[288]
Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018)
CrossRef Google scholar
[289]
Zhong, X., Hu, J., Curty, M., Qian, L., Lo, H.K.: Proof-of-principle experimental demonstration of twin-field type quantum key distribution. Phys. Rev. Lett. 123, 100506(2019)
CrossRef Google scholar
[290]
Chen, J.P., Zhang, C., Liu, Y., Jiang, C., Zhang, W., Hu, X.L., Guan, J.Y., Yu, Z.W., Xu, H., Lin, J., Li, M.J., Chen, H., Li, H., You, L., Wang, Z., Wang, X.B., Zhang, Q., Pan, J.W.: Sending-or-not-sending with independent lasers: Secure twin-field quantum key distribution over 509 km. Phys. Rev. Lett. 124, 070501(2020)
CrossRef Google scholar
[291]
Liu, H., Jiang, C., Zhu, H.T., Zou, M., Yu, Z.W., Hu, X.L., Xu, H., Ma, S., Han, Z., Chen, J.P., Dai, Y., Tang, S.B., Zhang, W., Li, H., You, L., Wang, Z., Hua, Y., Hu, H., Zhang, H., Zhou, F., Zhang, Q., Wang, X.B., Chen, T.Y., Pan, J.W.: Field test of twin-field quantum key distribution through sending-or-not-sending over 428 km. Phys. Rev. Lett. 126, 250502(2021)
CrossRef Google scholar
[292]
Chen, J.P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.J., Han, Z.Y., Ma, S.Z., Hu, X.L., Li, Y.H., Liu, H., Zhou, F., Jiang, H.F., Chen, T.Y., Li, H., You, L.X., Wang, Z., Wang, X.B., Zhang, Q., Pan, J.W.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photon. 15, 570–575 (2021)
CrossRef Google scholar
[293]
Chen, J.P., Zhang, C., Liu, Y., Jiang, C., Zhao, D.F., Zhang, W.J., Chen, F.X., Li, H., You, L.X., Wang, Z., Chen, Y., Wang, X.B., Zhang, Q., Pan, J.W.: Quantum key distribution over 658 km fiber with distributed vibration sensing. Phys. Rev. Lett. 128, 180502(2022)
CrossRef Google scholar
[294]
Erkilic, O., Conlon, L., Shajilal, B., Kish, S., Tserkis, S., Kim, Y., Lam, P., Assad, S.: Surpassing the repeaterless bound with a photon-number encoded measurement-device-independent quantum key distribution protocol. npj Quantum Inf. 9, 29(2023)
CrossRef Google scholar
[295]
Sangouard, N., Simon, C., de Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011)
CrossRef Google scholar
[296]
Simon, C., de Riedmatten, H., Afzelius, M., Sangouard, N., Zbinden, H., Gisin, N.: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503(2007)
CrossRef Google scholar
[297]
Dias, J., Winnel, M.S., Hosseinidehaj, N., Ralph, T.C.: Quantum repeater for continuous-variable entanglement distribution. Phys. Rev. A 102, 052425(2020)
CrossRef Google scholar
[298]
Bussières, F., Clausen, C., Tiranov, A., Korzh, B., Verma, V.B., Nam, S.W., Marsili, F., Ferrier, A., Goldner, P., Herrmann, H., Silberhorn, C., Sohler, W., Afzelius, M., Gisin, N.: Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photon. 8, 775–778 (2014)
CrossRef Google scholar
[299]
Stuart, J.S., Hedges, M., Ahlefeldt, R., Sellars, M.: Initialization protocol for efficient quantum memories using resolved hyperfine structure. Phys. Rev. Res. 3, L032054(2021)
CrossRef Google scholar
[300]
Goebel, A.M., Wagenknecht, C., Zhang, Q., Chen, Y.A., Chen, K., Schmiedmayer, J., Pan, J.W.: Multistage entanglement swapping. Phys. Rev. Lett. 101, 080403(2008)
CrossRef Google scholar
[301]
Kaltenbaek, R., Prevedel, R., Aspelmeyer, M., Zeilinger, A.: High-fidelity entanglement swapping with fully independent sources. Phys. Rev. A 79, 040302(2009)
CrossRef Google scholar
[302]
Li, Z.-D., Zhang, R., Yin, X.F., Liu, L.Z., Hu, Y., Fang, Y.Q., Fei, Y.Y., Jiang, X., Zhang, J., Li, L., Liu, N.L., Xu, F., Chen, Y.A., Pan, J.W.: Experimental quantum repeater without quantum memory. Nat. Photon. 13, 644–648 (2019)
CrossRef Google scholar
[303]
Allen, L., Barnett, S.M., Padgett, M.J.: Optical Angular Momentum. CRC Press (2003)
[304]
Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)
CrossRef Google scholar
[305]
Yao, A.M., Padgett, M.J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011)
CrossRef Google scholar
[306]
Torres, J.P., Torner, L.: Twisted Photons: Applications of Light with Orbital Angular Momentum. Wiley-VCH (2011)
[307]
Grier, D.G.: A revolution in optical manipulation. Nature 424, 810–816 (2003)
CrossRef Google scholar
[308]
Uribe-Patarroyo, N., Fraine, A., Simon, D.S., Minaeva, O., Sergienko, A.V.: Object identification using correlated orbital angular momentum states. Phys. Rev. Lett. 110, 043601(2013)
CrossRef Google scholar
[309]
Wang, J., Yang, J.Y., Fazal, I.M., Ahmed, N., Yan, Y., Huang, H., Ren, Y., Yue, Y., Dolinar, S., Tur, M., Willner, A.E.: Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012)
CrossRef Google scholar
[310]
Mair, A., Vaziri, A., Weihs, G., Zeilinger, A.: Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001)
CrossRef Google scholar
[311]
Leach, J., Padgett, M.J., Barnett, S.M., Franke-Arnold, S., Courtial, J.: Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, 257901(2002)
CrossRef Google scholar
[312]
Padgett, M., Bowman, R.: Tweezers with a twist. Nat. Photon. 5, 343–348 (2011)
CrossRef Google scholar
[313]
Dholakia, K., Čižmár, T.: Shaping the future of manipulation. Nat. Photon. 5, 335–342 (2011)
CrossRef Google scholar
[314]
Moretti, D., Felinto, D., Tabosa, J. W. R.: Storage and manipulation of orbital angular momentum of light in a cold atomic ensemble. In: CLEO/Europe—EQEC 2009—European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, Munich, Germany, pp. 1–1 (2009)
CrossRef Google scholar
[315]
Liu, X.J., Liu, X., Kwek, L.C., Oh, C.H.: Manipulating atomic states via optical orbital angular-momentum. Front. Phys. China 3, 113–125 (2008)
CrossRef Google scholar
[316]
Toyoda, K., Miyamoto, K., Aoki, N., Morita, R., Omatsu, T.: Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett. 12, 3645–3649 (2012)
CrossRef Google scholar
[317]
Tamburini, F., Anzolin, G., Umbriaco, G., Bianchini, A., Barbieri, C.: Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett. 97, 163903(2006)
CrossRef Google scholar
[318]
Fürhapter, S., Jesacher, A., Bernet, S., Ritsch-Marte, M.: Spiral interferometry. Opt. Lett. 30, 1953–1955 (2005)
CrossRef Google scholar
[319]
Grillo, V., Harvey, T.R., Venturi, F., Pierce, J.S., Balboni, R., Bouchard, F., Carlo Gazzadi, G., Frabboni, S., Tavabi, A.H., Li, Z.A., Dunin-Borkowski, R.E., Boyd, R.W., McMorran, B.J., Karimi, E.: Observation of nanoscale magnetic fields using twisted electron beams. Nat. Commun. 8, 689(2017)
CrossRef Google scholar
[320]
Noguchi, Y., Nakayama, S., Ishida, T., Saitoh, K., Uchida, M.: Efficient measurement of the orbital-angular-momentum spectrum of an electron beam via a Dammann vortex grating. Phys. Rev. Appl. 12, 064062(2019)
CrossRef Google scholar
[321]
Noor, S.K., Yasin, M.N.M., Ismail, A.M., Osman, M.N., Soh, P.J., Ramli, N., Rambe, A.H.: A review of orbital angular momentum vortex waves for the next generation wireless communications. IEEE Access 10, 89465–89484 (2022)
CrossRef Google scholar
[322]
Lamilla, E., Sacarelo, C., Alvarez-Alvarado, M.S., Pazmino, A., Iza, P.: Optical encoding model based on orbital angular momentum powered by machine learning. Sensors 23, 2755(2023)
CrossRef Google scholar
[323]
Zhu, J., Wang, L., Zhao, S.: Orbital angular momentum multiplexing holography for data storage. IEEE Photon. Technol. Lett. 35, 179–182 (2023)
CrossRef Google scholar
[324]
Ding, D.S., Zhang, W., Zhou, Z.Y., Shi, S., Xiang, G.Y., Wang, X.S., Jiang, Y.K., Shi, B.S., Guo, G.C.: Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys. Rev. Lett. 114, 050502(2015)
CrossRef Google scholar
[325]
Mcmanamon, P., Vedadi, A., Willner, A.E., Choudhary, D., Montifiore, N., Harlev, O.: High capacity and access rate, data storage using laser communications. Opt. Eng. 60, 015105(2021)
CrossRef Google scholar
[326]
Vaziri, A., Pan, J.-W., Jennewein, T., Weihs, G., Zeilinger, A.: Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. Phys. Rev. Lett. 91, 227902(2003)
CrossRef Google scholar
[327]
Molina-Terriza, G., Torres, J.P., Torner, L.: Twisted photons. Nat. Phys. 3, 305–310 (2007)
CrossRef Google scholar
[328]
Nagali, E., Sansoni, L., Sciarrino, F., De Martini, F., Marrucci, L., Piccirillo, B., Karimi, E., Santamato, E.: Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nat. Photon. 3, 720–723(2009)
CrossRef Google scholar
[329]
Pors, B.-J., Miatto, F., Hooft, G.W., Eliel, E.R., Woerdman, J.P.: High-dimensional entanglement with orbital-angular-momentum states of light. J. Opt. 13, 064008(2011)
CrossRef Google scholar
[330]
Lloyd, S.M., Babiker, M., Thirunavukkarasu, G., Yuan, J.: Electron vortices: beams with orbital angular momentum. Rev. Mod. Phys. 89, 035004(2017)
CrossRef Google scholar
[331]
Zahidy, M., Liu, Y., Cozzolino, D., Ding, Y., Morioka, T., Oxenløwe, L.K., Bacco, D.: Photonic integrated chip enabling orbital angular momentum multiplexing for quantum communication. Nanophotonics 11(4), 821–827 (2022)
CrossRef Google scholar
[332]
Olaleye, T.M., Ribeiro, P.A., Raposo, M.: Generation of photon orbital angular momentum and its application in space division multiplexing. Photonics 10, 664(2023)
CrossRef Google scholar
[333]
Wu, C., Kumar, S., Kan, Y., Komisar, D., Wang, Z., Bozhevolnyi, S.I., Ding, F.: Room-temperature on-chip orbital angular momentum single-photon sources. Sci. Adv. 8, eabk3075(2022)
CrossRef Google scholar
[334]
Gröblacher, S., Jennewein, T., Vaziris, A., Weihs, G., Zeilinger, A.: Experimental quantum cryptography with qutrits. New J. Phys. 8, 75(2006)
CrossRef Google scholar
[335]
Langford, N.K., Dalton, R.B., Harvey, M.D., O’Brien, J.L., Pryde, G.J., Gilchrist, A., Bartlett, S.D., White, A.G.: Measuring entangled qutrits and their use for quantum bit commitment. Phys. Rev. Lett. 93, 053601(2004)
CrossRef Google scholar
[336]
Molina-Terriza, G., Vaziri, A., Ursin, R., Zeilinger, A.: Experimental quantum coin tossing. Phys. Rev. Lett. 94, 040501(2005)
CrossRef Google scholar
[337]
Dada, A.C., Leach, J., Buller, G.S., Padgett, M.J., Andersson, E.: Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7, 677–680 (2011)
CrossRef Google scholar
[338]
Bouchard, F., Fickler, R., Boyd, R.W., Karimi, E.: High-dimensional quantum cloning and applications to quantum hacking. Sci. Adv. 3, e1601915(2017)
CrossRef Google scholar
[339]
Nagali, E., Sansoni, L., Sciarrino, F., De Martini, F., Marrucci, L., Piccirillo, B., Karimi, E., Santamato, E.: Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nat. Photon. 3, 720–723 (2009)
CrossRef Google scholar
[340]
Hamadou Ibrahim, A., Roux, F.S., McLaren, M., Konrad, T., Forbes, A.: Orbital-angular-momentum entanglement in turbulence. Phys. Rev. A 88, 012312(2013)
CrossRef Google scholar
[341]
Goyal, S., Boukama-Dzoussi, P., Ghosh, S., Roux, F.S., Konrad, T.: Qudit-Teleportation for photons with linear optics. Sci. Rep. 4, 4543(2014)
CrossRef Google scholar
[342]
Goyal, S.K., Ibrahim, A.H., Roux, F.S., Konrad, T., Forbes, A.: The effect of turbulence on entanglement-based free-space quantum key distribution with photonic orbital angular momentum. J. Opt. 18, 064002(2016)
CrossRef Google scholar
[343]
Krenn, M., Handsteiner, J., Fink, M., Fickler, R., Zeilinger, A.: Twisted photon entanglement through turbulent air across Vienna. PNAS 112(46), 14197–14201 (2015)
CrossRef Google scholar
[344]
Hiesmayr, B.C., de Dood, M.J.A., Löffler, W.: Observation of four-photon orbital angular momentum entanglement. Phys. Rev. Lett. 116, 073601(2016)
CrossRef Google scholar
[345]
Malik, M., Erhard, M., Huber, M., Krenn, M., Fickler, R., Zeilinger, A.: Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248–252 (2016)
CrossRef Google scholar
[346]
Erhard, M., Malik, M., Zeilinger, A.: A quantum router for high-dimensional entanglement. Quantum Sci. Technol. 2, 014001(2017)
CrossRef Google scholar
[347]
Fickler, R., Campbell, G., Buchler, B., Lam, P.K., Zeilinger, A.: Quantum entanglement of angular momentum states with quantum numbers up to 10,010. PNAS 113(48), 13642–13647 (2016)
CrossRef Google scholar
[348]
Erhard, M., Malik, M., Krenn, M., et al.: Experimental Green-berger- Horne-Zeilinger entanglement beyond qubits. Nat. Photon. 12, 759–764 (2018)
CrossRef Google scholar
[349]
Leonhard, N., Sorelli, G., Shatokhin, V.N., Reinlein, C., Buchleitner, A.: Protecting the entanglement of twisted photons by adaptive optics. Phys. Rev. A 97, 012321(2018)
CrossRef Google scholar
[350]
Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)
CrossRef Google scholar
[351]
Hamilton, C.S., Gábris, A., Jex, I., Barnett, S.M.: Quantum walk with a four-dimensional coin. New J. Phys. 13, 013015(2011)
CrossRef Google scholar
[352]
Innocenti, L., Majury, H., Giordani, T., Spagnolo, N., Sciarrino, F., Paternostro, M., Ferraro, A.: Quantum state engineering using one-dimensional discrete-time quantum walks. Phys. Rev. A 96, 062326(2017)
CrossRef Google scholar
[353]
Cardano, F., Massa, F., Qassim, H., Karimi, E., Slussarenko, S., Paparo, D., de Lisio, C., Sciarrino, F., Santamato, E., Boyd, R.W., Marrucci, L.: Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv. 1, e1500087(2015)
CrossRef Google scholar
[354]
Cardano, F., Maffei, M., Massa, F., Piccirillo, B., de Lisio, C., De Filippis, G., Cataudella, V., Santamato, E., Marrucci, L.: Statistical moments of quantum-walk dynamics reveal topological quantum transitions. Nat. Commun. 7, 11439(2016)
CrossRef Google scholar
[355]
Zhang, P., Liu, B.H., Liu, R.F., Li, H.R., Li, F.L., Guo, G.C.: Implementation of one-dimensional quantum walks on spinorbital angular momentum space of photons. Phys. Rev. A 81, 052322(2010)
CrossRef Google scholar
[356]
Cardano, F., D’Errico, A., Dauphin, A., Maffei, M., Piccirillo, B., de Lisio, C., De Filippis, G., Cataudella, V., Santamato, E., Marrucci, L., Lewenstein, M., Massignan, P.: Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 8, 15516(2017)
CrossRef Google scholar
[357]
Erhard, M., Fickler, R., Krenn, M., Zeilinger, A.: Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146(2018)
CrossRef Google scholar
[358]
Vallone, G., D’Ambrosio, V., Sponselli, A., Slussarenko, S., Marrucci, L., Sciarrino, F., Villoresi, P.: Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503(2014)
CrossRef Google scholar
[359]
Mirhosseini, M., Magaña-Loaiza, O.S., O’Sullivan, M.N., Rodenburg, B., Malik, M., Lavery, M.P.J., Padgett, M.J., Gauthier, D.J., Boyd, R.W.: High-dimensional quantum cryptography with twisted light. New J. Phys. 17, 033033(2015)
CrossRef Google scholar
[360]
Lei, T., Zhang, M., Li, Y., Jia, P., Liu, G.N., Xu, X., Li, Z., Min, C., Lin, J., Yu, C., Niu, H., Yuan, X.: Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl. 4, e257(2015)
CrossRef Google scholar
[361]
Wang, F.X., Chen, W., Yin, Z.Q., Wang, S., Guo, G.C., Han, Z.F.: Erratum: scalable orbital-angular-momentum sorting without destroying photon states. Phys. Rev. A 95, 019903(2017)
CrossRef Google scholar
[362]
Pan, Z., Cai, J., Wang, C.: Quantum key distribution with high order Fibonacci-like orbital angular momentum states. Int. J. Theor. Phys. 56, 2622–2634 (2017)
CrossRef Google scholar
[363]
Sit, A., Bouchard, F., Fickler, R., Gagnon-Bischoff, J., Larocque, H., Heshami, K., Elser, D., Peuntinger, C., Günthner, K., Heim, B., Marquardt, C.: High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017)
CrossRef Google scholar
[364]
Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M., Padgett, M.J., Konrad, T., Petruccione, F., Lütkenhaus, N., Forbes, A.: Higher-dimensional orbital-angular-momentumbased quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305(2013)
CrossRef Google scholar
[365]
D’Ambrosio, V., Spagnolo, N., Del Re, L., Slussarenko, S., Li, Y., Kwek, L.C., Marrucci, L., Walborn, S.P., Aolita, L., Sciarrino, F.: Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun. 4, 2432(2013)
CrossRef Google scholar
[366]
Jha, A.K., Agarwal, G.S., Boyd, R.W.: Supersensitive measurement of angular displacements using entangled photons. Phys. Rev. A 83, 053829(2011)
CrossRef Google scholar
[367]
Karimi, E., Piccirillo, B., Nagali, E., Marrucci, L., Santamato, E.: Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl. Phys. Lett. 94, 231124(2009)
CrossRef Google scholar
[368]
Zhang, W., Qi, Q., Zhou, J., Chen, L.: Mimicking faraday rotation to sort the orbital angular momentum of light. Phys. Rev. Lett. 112, 153601(2014)
CrossRef Google scholar
[369]
Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015)
CrossRef Google scholar
[370]
Goyal, S., Konrad, T.: Teleporting photonic qudits using multimode quantum scissors. Sci. Rep. 3, 3548(2013)
CrossRef Google scholar
[371]
Ding, D.S., Zhou, Z.Y., Shi, B.S., Guo, G.C.: Single-photon-level quantum image memory based on cold atomic ensembles. Nat. Commun. 4, 2527(2013)
CrossRef Google scholar
[372]
Cai, X., Wang, J., Strain, M. J., Johnson-Morris, B., Zhu, J., Sorel, M., O’Brien, J., Thompson, M., Yu, S.: Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012)
CrossRef Google scholar
[373]
Alonso, J.R.G., Brun, T.A.: Protecting orbital-angular-momentum photons from decoherence in a turbulent atmosphere. Phys. Rev. A 88, 022326(2013)
CrossRef Google scholar
[374]
Alonso, J.R.G., Brun, T.: Recovering quantum information in orbital angular momentum of photons by adaptive optics. arXive preprints arXiv: 1612. 02552 [quant-ph] (2016)
[375]
Padgett, M.J., Miatto, F.M., Lavery, M.P.J., Zeilinger, A., Boyd, R.W.: Divergence of an orbital-angular-momentum-carrying beam upon propagation. New J. Phys. 17, 023011(2015)
CrossRef Google scholar
[376]
Farías, O., D’Ambrosio, V., Taballione, C., Bisesto, F., Slussarenko, S., Aolita, L., Marrucci, L., Walborn, S.P., Sciarrino, F.: Resilience of hybrid optical angular momentum qubits to turbulence. Sci. Rep. 5, 8424(2015)
CrossRef Google scholar
[377]
Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photon. 3, 706–714 (2009)
CrossRef Google scholar
[378]
Inoue, R., Kanai, N., Yonehara, T., Miyamoto, Y., Koashi, M., Kozuma, M.: Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon. Phys. Rev. A 74, 053809(2006)
CrossRef Google scholar
[379]
Pugatch, R., Shuker, M., Firstenberg, O., Ron, A., Davidson, N.: Topological stability of optical vortices. Phys. Rev. Lett. 98, 203601(2007)
CrossRef Google scholar
[380]
Moretti, D., Felinto, D., Tabosa, J.W.R.: Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble. Phys. Rev. A 79, 023825(2009)
CrossRef Google scholar
[381]
Veissier, L., Nicolas, A., Giner, L., Maxein, D., Sheremet, A.S., Giacobino, E., Laurat, J.: Reversible optical memory for twisted photons. Opt. Lett. 38, 712–714 (2013)
CrossRef Google scholar
[382]
Ding, D.S., Zhou, Z.Y., Shi, B.S., Guo, G.G.: Single-photon level quantum image memory based on cold atomic ensembles. Nat. Commun. 4, 2527(2013)
CrossRef Google scholar
[383]
Nicolas, A., Veissier, L., Giner, L., Giacobino, E., Maxein, D., Laurat, J.: A quantum memory for orbital angular momentum photonic qubits. Nat. Photon. 8, 234–238 (2014)
CrossRef Google scholar
[384]
Zhou, Z.Y., Li, Y., Ding, D.S., Zhang, W., Shi, S., Shi, B.S., Guo, G.C.: Orbital angular momentum photonic quantum interface. Light Sci. Appl. 5, e16019(2016)
CrossRef Google scholar
[385]
Choi, C.Q.: Two of world’s biggest quantum computers made in China: Quantum computers Zuchongzi and Jiuzhang 2.0 may both display “quantum primacy” over classical computers. IEEE Spectrum (2021). Available at the website of spectrum.ieee.org/quantum-computing-china
[386]
Chen, Y.H., Cho, C.H., Yuan, W., Ma, Y., Wen, K., Chang, C.R.: Photonic quantum computers enlighten the world: a review of their development, types, and applications. IEEE Nanatechnol. Mag. 16(4), 4–9 (2022)
CrossRef Google scholar
[387]
Bartlett, B., Dutt, A., Fan, S.: Deterministic photonic quantum computation in a synthetic time dimension. Optica 8, 1515–1523 (2021)
CrossRef Google scholar
[388]
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303(1999)
CrossRef Google scholar
[389]
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325(1997)
CrossRef Google scholar
[390]
Pfister, O.: Continuous-variable quantum computing in the quantum optical frequency comb. J. Phys. B: At. Mol. Opt. Phys. 53, 012001(2019)
CrossRef Google scholar
[391]
Fukui, K., Takeda, S.: Building a large-scale quantum computer with continuous-variable optical technologies. J. Phys. B: At. Mol. Opt. Phys. 55, 012001(2022)
CrossRef Google scholar
[392]
Yoshikawa, J., Yokoyama, S., Kaji, T., Sornphiphatphong, C., Shiozawa, Y., Makino, K., Furusawa, A.: Generation of onemillion- mode continuous-variable cluster state by unlimited time-domain multiplexing. APL Photon. 1(6), 060801(2016)
CrossRef Google scholar
[393]
Asavanant, W., Shiozawa, Y., Yokoyama, S., Charoensombutamon, B., Emura, H., Alexander, R.N., Takeda, S., Yoshikawa, J.I., Menicucci, N.C., Yonezawa, H., Furusawa, A.: Generation of time-domain-multiplexed two-dimensional cluster state. Science 366(6463), 373–376 (2019)
CrossRef Google scholar
[394]
Larsen, M.V., Guo, X., Breum, C.R., Neergaard-Nielsen, J.S., Andersen, U.L.: Deterministic generation of a two-dimensional cluster state. Science 366, 369(2019)
CrossRef Google scholar
[395]
Larsen, M.V., Guo, X., Breum, C.R., Neergaard-Nielsen, J.S., Andersen, U.L.: Deterministic multi-mode gates on a scalable photonic quantum computing platform. Nat. Phys. 17, 1018–1023(2021)
CrossRef Google scholar
[396]
Asavanant, W., Charoensombutamon, B., Yokoyama, S., Ebihara, T., Nakamura, T., Alexander, R.N., Endo, M., Yoshikawa, J.I., Menicucci, N.C., Yonezawa, H., Furusawa, A.: Time-domainmultiplexed measurement-based quantum operations with 25-mHz clock frequency. Phys. Rev. Appl. 16, 034005(2021)
CrossRef Google scholar
[397]
Pysher, M., Miwa, Y., Shahrokhshahi, R., Bloomer, R., Pfister, O.: Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys. Rev. Lett. 107, 030505(2011)
CrossRef Google scholar
[398]
Cai, Y., Roslund, J., Ferrini, G., Arzani, F., Xu, X., Fabre, C., Treps, N.: Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645(2017)
CrossRef Google scholar
[399]
Grimsmo, A.L., Blais, A.: Squeezing and quantum state engineering with Josephson travelling wave amplifiers. npj Quantum Inf. 3, 20(2017)
CrossRef Google scholar
[400]
Schmidt, M., Ludwig, M., Marquardt, F.: Optomechanical circuits for nanomechanical continuous variable quantum state processing. New J. Phys. 14, 125005(2012)
CrossRef Google scholar
[401]
Houhou, O., Aissaoui, H., Ferraro, A.: Generation of cluster states in optomechanical quantum systems. Phys. Rev. A 92, 063843(2015)
CrossRef Google scholar
[402]
Ikeda, Y., Yamamoto, N.: Deterministic generation of gaussian pure states in a quasilocal dissipative system. Phys. Rev. A 87, 033802(2013)
CrossRef Google scholar
[403]
Motes, K.R., Baragiola, B.Q., Gilchrist, A., Menicucci, N.C.: Encoding qubits into oscillators with atomic ensembles and squeezed light. Phys. Rev. A 95, 053819(2017)
CrossRef Google scholar
[404]
Flühmann, C., Negnevitsky, V., Marinelli, M., Home, J.P.: Sequential modular position and momentum measurements of a trapped ion mechanical oscillator. Phys. Rev. X 8, 02100110(2018)
CrossRef Google scholar
[405]
Flühmann, C., Nguyen, T.L., Marinelli, M., Negnevitsky, V., Mehta, K., Home, J.: Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513(2019)
CrossRef Google scholar
[406]
Pegg, D., Barnett, S.: Phase properties of the quantized single-mode electromagnetic field. Phys. Rev. A 39, 1665(1989)
CrossRef Google scholar
[407]
Chuang, I.L., Leung, D.W., Yamamoto, Y.: Bosonic quantum codes for amplitude damping. Phys. Rev. A 56, 1114(1997)
CrossRef Google scholar
[408]
Albert, V.V., Noh, K., Duivenvoorden, K., Young, D.J., Brierley, R., Reinhold, P., Vuillot, C., Li, L., Shen, C., Girvin, S., Terhal, B.M., Jiang, L.: Performance and structure of single-mode bosonic codes. Phys. Rev. A 97, 032346(2018)
CrossRef Google scholar
[409]
Grimsmo, A.L., Combes, J., Baragiola, B.Q.: Quantum computing with rotation-symmetric bosonic codes. Phys. Rev. X 10, 011058(2020)
CrossRef Google scholar
[410]
Cochrane, P.T., Milburn, G.J., Munro, W.J.: Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping. Phys. Rev. A 59, 2631(1999)
CrossRef Google scholar
[411]
Michael, M.H., Silveri, M., Brierley, R., Albert, V.V., Salmilehto, J., Jiang, L., Girvin, S.M.: New class of quantum errorcorrecting codes for a bosonic mode. Phys. Rev. X 6, 031006(2016)
CrossRef Google scholar
[412]
Gottesman, D., Kitaev, A., Preskill, J.: Encoding a qubit in an oscillator. Phys. Rev. A 64(1), 012310(2001)
CrossRef Google scholar
[413]
Menicucci, N.C.: Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. Phys. Rev. Lett. 112, 120504(2014)
CrossRef Google scholar
[414]
Fukui, K., Tomita, A., Okamoto, A.: Analog quantum error correction with encoding a qubit into an oscillator. Phys. Rev. Lett. 119, 180507(2017)
CrossRef Google scholar
[415]
Fukui, K., Tomita, A., Okamoto, A., Fujii, K.: High-threshold fault-tolerant quantum computation with analog quantum error correction. Phys. Rev. X 8, 021054(2018)
CrossRef Google scholar
[416]
Douce, T., Markham, D., Kashefi, E., Van Loock, P., Ferrini, G.: Probabilistic fault-tolerant universal quantum computation and sampling problems in continuous variables. Phys. Rev. A 99, 012344(2019)
CrossRef Google scholar
[417]
Vuillot, C., Asasi, H., Wang, Y., Pryadko, L.P., Terhal, B.M.: Quantum error correction with the toric Gottesman-Kitaev-Preskill code. Phys. Rev. A 99, 032344(2019)
CrossRef Google scholar
[418]
Baragiola, B.Q., Pantaleoni, G., Alexander, R.N., Karanjai, A., Menicucci, N.C.: All-gaussian universality and fault tolerance with the Gottesman-Kitaev-Preskill code. Phys. Rev. Lett. 123, 200502(2019)
CrossRef Google scholar
[419]
Shi, Y., Chamberland, C., Cross, A.: Fault-tolerant preparation of approximate GKP states. New J. Phys. 21, 093007(2019)
CrossRef Google scholar
[420]
Walshe, B.W., Mensen, L.J., Baragiola, B.Q., Menicucci, N.C.: Robust fault tolerance for continuous-variable cluster states with excess antisqueezing. Phys. Rev. A 100, 010301(2019)
CrossRef Google scholar
[421]
Pantaleoni, G., Baragiola, B.Q., Menicucci, N.C.: Modular bosonic subsystem codes. Phys. Rev. Lett. 125, 040501(2020)
CrossRef Google scholar
[422]
Walshe, B.W., Baragiola, B.Q., Alexander, R.N., Menicucci, N.C.: Continuous-variable gate teleportation and bosonic-code error correction. Phys. Rev. A 102, 062411(2020)
CrossRef Google scholar
[423]
Pantaleoni, G., Baragiola, B.Q., Menicucci, N.C.: Subsystem analysis of continuous-variable resource states. Phys. Rev. A 104, 012430(2021)
CrossRef Google scholar
[424]
Grimsmo, A.L., Puri, S.: Quantum error correction with the Gottesman-Kitaev-Preskill code. PRX Quantum 2, 020101(2021)
CrossRef Google scholar
[425]
Fukui, K., Tomita, A., Okamoto, A.: Tracking quantum error correction. Phys. Rev. A 98, 022326(2018)
CrossRef Google scholar
[426]
Noh, K., Chamberland, C.: Fault-tolerant bosonic quantum error correction with the surface-Gottesman-Kitaev-Preskill code. Phys. Rev. A 101, 012316(2020)
CrossRef Google scholar
[427]
Noh, K., Girvin, S., Jiang, L.: Encoding an oscillator into many oscillators. Phys. Rev. Lett. 125, 080503(2020)
CrossRef Google scholar
[428]
Yamasaki, H., Fukui, K., Takeuchi, Y., Tani, S., Koashi, M.: Polylog-overhead highly fault-tolerant measurement-based quantum computation: all-gaussian implementation with gottesmankitaev-preskill code. arXiv preprint arXiv: 2006.05416(2020)
[429]
Noh, K., Chamberland, C., Brandão, F. G.: Low overhead fault-tolerant quantum error correction with the surface-gkp code. arXiv preprint arXiv: 2103.06994(2021)
[430]
Tzitrin, I., Matsuura, T., Alexander, R.N., Dauphinais, G., Bourassa, J.E., Sabapathy, K.K., Menicucci, N.C., Dhand, I.: Fault-tolerant quantum computation with static linear optics. PRX Quantum 2, 040353(2021)
CrossRef Google scholar
[431]
Seshadreesan, K.P., Dhara, P., Patil, A., Jiang, L., Guha, S.: Coherent manipulation of graph states composed of finite-energy Gottesman-Kitaev-Preskill-encoded qubits. Phys. Rev. A 105, 052416(2022)
CrossRef Google scholar
[432]
Stafford, M. P., Menicucci, N. C.: Biased gottesman-kitaevpreskill repetition code. arXiv preprint arXiv: 2212.11397(2022)
[433]
Takeda, S., Furusawa, A.: Universal quantum computing with measurement-induced continuous-variable gate sequence in a loop-based architecture. Phys. Rev. Lett. 119, 120504(2017)
CrossRef Google scholar
[434]
Alexander, R.N., Yokoyama, S., Furusawa, A., Menicucci, N.C.: Universal quantum computation with temporal-mode bilayer square lattices. Phys. Rev. A 97, 032302(2018)
CrossRef Google scholar
[435]
Fukui, K., Alexander, R.N., van Loock, P.: All-optical long-distance quantum communication with Gottesman-Kitaev-Preskill qubits. Phys. Rev. Res. 3, 033118(2021)
CrossRef Google scholar
[436]
Rozpędek, F., Noh, K., Xu, Q., Guha, S., Jiang, L.: Quantum repeaters based on concatenated bosonic and discrete-variable quantum codes. npj Quantum Inf. 7, 102(2021)
CrossRef Google scholar
[437]
Terhal, B., Weigand, D.: Encoding a qubit into a cavity mode in circuit QED using phase estimation. Phys. Rev. A 93, 012315(2016)
CrossRef Google scholar
[438]
Campagne-Ibarcq, P., Eickbusch, A., Touzard, S., Zalys-Geller, E., Frattini, N.E., Sivak, V.V., Reinhold, P., Puri, S., Shankar, S., Schoelkopf, R.J., Frunzio, L., Mirrahimi, M., Devoret, M.H.: Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368(2020)
CrossRef Google scholar
[439]
Pirandola, S., Mancini, S., Vitali, D., Tombesi, P.: Constructing finite-dimensional codes with optical continuous variables. Europhys. Lett. 68, 323(2004)
CrossRef Google scholar
[440]
Pirandola, S., Mancini, S., Vitali, D., Tombesi, P.: Continuous variable encoding by ponderomotive interaction. Eur. Phys. J. D-Atomic Mol. Opt. Plasma. Phys. 37, 283(2006)
CrossRef Google scholar
[441]
Pirandola, S., Mancini, S., Vitali, D., Tombesi, P.: Generating continuous variable quantum codewords in the near-field atomic lithography. J. Phys. B: At. Mol. Opt. Phys. 39, 997(2006)
CrossRef Google scholar
[442]
Eaton, M., Nehra, R., Pfister, O.: Non-Gaussian and Gottesman- Kitaev-Preskill state preparation by photon catalysis. New J. Phys. 21, 113034(2019)
CrossRef Google scholar
[443]
Su, D., Myers, C.R., Sabapathy, K.K.: Conversion of gaussian states to non-gaussian states using photon-number-resolving detectors. Phys. Rev. A 100, 052301(2019)
CrossRef Google scholar
[444]
Arrazola, J.M., Bromley, T.R., Izaac, J., Myers, C.R., Brádler, K., Killoran, N.: Machine learning method for state preparation and gate synthesis on photonic quantum computers. Quantum Sci. Technol. 4, 024004(2019)
CrossRef Google scholar
[445]
Tzitrin, I., Bourassa, J.E., Menicucci, N.C., Sabapathy, K.K.: Progress towards practical qubit computation using approximate Gottesman-Kitaev-Preskill codes. Phys. Rev. A 101, 032315(2020)
CrossRef Google scholar
[446]
Lin, C.Y., Su, W.C., Wu, S.T.: Encoding qubits into harmonicoscillator modes via quantum walks in phase space. Quantum Inf. Process. 19, 1(2020)
CrossRef Google scholar
[447]
Hastrup, J., Andersen, U. L.: Generation of optical Gottesman-Kitaev-Preskil states with cavity QED. arXiv preprint arXiv: 2104.07981(2021)
[448]
Fukui, K., Endo, M., Asavanant, W., Sakaguchi, A., Yoshikawa, J., Furusawa, A.: Generating the gottesman-kitaevpreskill qubit using a cross-kerr interaction between squeezed light and fock states in optics. Phys. Rev. A 105, 022436(2022)
CrossRef Google scholar
[449]
Fukui, K., Menicucci, N. C.: An efficient, concatenated, bosonic code for additive gaussian noise. arXiv preprint arXiv: 2102.01374(2021)
[450]
Takase, K., Fukui, K., Kawasaki, A., Asavanant, W., Endo, M., Yoshikawa, J., van Loock, P., Furusawa, A.: Gaussian breeding for encoding a qubit in propagating light. arXiv preprint arXiv: 2212.05436(2022)
[451]
Fukui, K.: High-threshold fault-tolerant quantum computation with the Gottesman-Kitaev-Preskill qubit under noise in an optical setup. Phys. Rev. A 107, 052414(2023)
CrossRef Google scholar
[452]
Fluhmann, C., Home, J.P.: Direct characteristic-function tomography of quantum states of the trapped-ion motional oscillator. Phys. Rev. Lett. 125, 043602(2020)
CrossRef Google scholar
[453]
de Neeve, B., Nguyen, T. L., Behrle, T., Home, J.: Error correction of a logical grid state qubit by dissipative pumping. arXiv preprint arXiv: 2010.09681 [quant-ph] (2020)
[454]
Larsen, M. V., Chamberland, C., Noh, K., Neergaard-Nielsen, J. S., Andersen, U. L.: A fault-tolerant continuous-variable measurement-based quantum computation architecture. arXiv preprint arXiv: 2101.03014(2021)
[455]
Xue, X., D’Anjou, B., Watson, T.F., Ward, D.R., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A., Coish, W.A., Vandersypen, L.M.K.: Repetitive quantum nondemolition measurement and soft decoding of a silicon spin qubit. Phys. Rev. X 10, 021006(2020)
CrossRef Google scholar
[456]
D’Anjou, B.: Generalized figure of merit for qubit read-out. Phys. Rev. A 103, 042404(2021)
CrossRef Google scholar
[457]
Aharonovich, I., Englund, D., Toth, M.: Solid-state single-photon emitters. Nat. Photon. 10(10), 631–641 (2016)
CrossRef Google scholar
[458]
Meyer-Scott, E., Silberhorn, C., Migdall, A.: Single-photon sources: approaching the ideal through multiplexing. Rev. Sci. Instrum. 91, 041101(2020)
CrossRef Google scholar
[459]
Thomas, S., Senellart, P.: The race for the ideal single-photon source is on. Nat. Nanotechnol. 16, 367–368 (2021)
CrossRef Google scholar
[460]
Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press (1995)
[461]
Grynberg, G., Aspect, A., Fabre, C.: Introduction to Quantum Optics. Cambridge University Press (2010)
[462]
Mansuripur, M., Wright, E.M.: Fundamental properties of beamsplitters in classical and quantum optics. Am. J. Phys. 91, 298–306(2023)
CrossRef Google scholar
[463]
Soref, R., Bennett, B.: Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987)
CrossRef Google scholar
[464]
Nedeljkovic, M., Soref, R., Mashanovich, G.Z.: Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-µm infrared wavelength range. IEEE Photon. J. 3, 1171–1180 (2011)
CrossRef Google scholar
[465]
Liu, S., Feng, J., Tian, Y., Zhao, H., Jin, L., Ouyang, B., Zhu, J., Guo, J.: Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review. Front. Optoelectron. 15, 9(2022)
CrossRef Google scholar
[466]
Wu, K., Guo, C., Wang, H., Zhang, X., Wang, J., Chen, J.: All-optical phase shifter and switch near 1550 nm using tungsten disulfide (WS2) deposited tapered fiber. Opt. Express 25, 17639–17649(2017)
CrossRef Google scholar
[467]
Supradeepa, V.R., Long, C.M., Wu, R., Ferdous, F., Hamidi, E., Leaird, D.E., Weiner, A.M.: Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nat. Photon. 6, 186–194 (2012)
CrossRef Google scholar
[468]
Marpaung, D., Yao, J., Capmany, J.: Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019)
CrossRef Google scholar
[469]
Fandiño, J.S., Muñoz, P., Doménech, D., Capmany, J.: A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2016)
CrossRef Google scholar
[470]
Eggleton, B.J., Poulton, C.G., Rakich, P.T., Steel, M.J., Bahl, G.: Brillouin integrated photonics. Nat. Photon. 13, 664–677 (2019)
CrossRef Google scholar
[471]
Greiner, M., Mandel, O., Esslinger, T., Hänsch, T.W., Bloch, I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)
CrossRef Google scholar
[472]
Hu, J., Urvoy, A., Vendeiro, Z., Crépel, V., Chen, W., Vuletić, V.: Creation of a Bose-condensed gas of 87Rb by laser cooling. Science 358, 1078–1080 (2017)
CrossRef Google scholar
[473]
Yoo, S.J.B.: Wavelength conversion technologies for WDM network applications. J. Light. Technol. 14, 955–966 (1996)
CrossRef Google scholar
[474]
Lukens, J.M., Lu, H.H., Qi, B., Lougovski, P., Weiner, A.M., & Williams, B.P.: All-optical frequency processor for networking applications. J. Light. Technol. 38, 1678–1687 (2020)
CrossRef Google scholar
[475]
Mueller, T., Xia, F., Avouris, P.: Graphene photodetectors for high-speed optical communications. Nat. Photon. 4(5), 297–301 (2010)
CrossRef Google scholar
[476]
Li, G., Wang, Y., Huang, L., Sun, W.: Research progress of high-sensitivity perovskite photodetectors: a review of photodetectors: noise, structure, and materials. ACS Appl. Electron. Mater. 4(4), 1485–1505 (2022)
CrossRef Google scholar
[477]
Konstantatos, G.: Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 9, 5266(2018)
CrossRef Google scholar
[478]
Peumans, P., Bulovic, V., Forrest, S.R.: Efficient, high-bandwidth organic multilayer photodetectors. Appl. Phys. Lett. 76, 3855–3857(2000)
CrossRef Google scholar
[479]
Baeg, K.J., Binda, M., Natali, D., Caironi, M., Noh, Y.Y.: Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25, 4267–95 (2013)
CrossRef Google scholar
[480]
Sarto, A.W., Van Zeghbroeck, B.J.: Photocurrents in a metalsemiconductor- metal photodetector. IEEE J. Quantum Electron. 33(12), 2188–2194 (1997)
CrossRef Google scholar
[481]
Yang, T., Shou, C., Xu, L., Tran, J., He, Y., Li, Y., Wei, P., Liu, J.: Metal-semiconductor-metal photodetectors based on β−MgGaO thin films. ACS Appl. Electron. Mater. 5(4), 2122–2130 (2023)
CrossRef Google scholar
[482]
Averin, S.V., Kotov, V.M.: High spectral selectivity metal-sem-iconductor-metal photodetector. Opt. Quant. Electron. 55, 37(2023)
CrossRef Google scholar
[483]
Yoo, H., Lee, I.S., Jung, S., Rho, S.M., Kang, B.H., Kim, H.J.: A review of phototransistors using metal oxide semiconductors: research progress and future directions. Adv. Mater. 33(47), 2006091(2021)
CrossRef Google scholar
[484]
Glover, A.M.: A review of the development of sensitive phototubes. Proc. IRE 29(8), 413–423 (1941)
CrossRef Google scholar
[485]
Ekert, A.: Quantum interferometers as quantum computers. Phys. Scr. 1998, 218(1998)
CrossRef Google scholar
[486]
Spagnolo, N., Aparo, L., Vitelli, C., Crespi, A., Ramponi, R., Osellame, R., Mataloni, P., Sciarrino, F.: Quantum interferometry with three-dimensional geometry. Sci. Rep. 2, 862(2012)
CrossRef Google scholar
[487]
Tan, S.H., Rohde, P.P.: The resurgence of the linear optics quantum interferometer—recent advances and applications. Rev. Phys. 4, 100030(2019)
CrossRef Google scholar
[488]
Chen, Y., Hong, L., Chen, L.: Quantum interferometric metrology with entangled photons. Front. Phys. 10, 892519(2022)
CrossRef Google scholar
[489]
Priti, R.B., Liboiron-Ladouceur, O.: A broadband rearrangeable nonblocking MZI-based thermo-optic O-band switch in the silicon-on-insulator. In: Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS). Optical Society of America, PM4D-2(2017)
CrossRef Google scholar
[490]
Horst, F., Green, W.M., Assefa, S., Shank, S.M., Vlasov, Y.A., Offrein, B.J.: Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Opt. Express 21(10), 11652–11658 (2013)
CrossRef Google scholar
[491]
Zhuang, L., Zhu, C., Xie, Y., Burla, M., Roeloffzen, C.G.H., Hoekman, M., Corcoran, B., Lowery, A.J.: Nyquist-filtering (de) multiplexer using ring resonator assisted interferometer circuit. J. Lightwave Technol. 34(8), 1732–1738 (2016)
CrossRef Google scholar
[492]
Rivai, M., Sardjono, T.A., Purwanto, D.: Investigation of michelson interferometer for volatile organic compound sensor. J. Phys. Conf. Ser. 853, 012017(2017)
CrossRef Google scholar
[493]
Shiokawa, K., Otsuka, Y., Oyama, S., Nozawa, S., Satoh, M., Katoh, Y., Hamaguchi, Y., Yamamoto, Y., Meriwether, J.: Development of low-cost sky-scanning Fabry-Perot interferometers for airglow and auroral studies. Earth Planet Space 64, 1033–1046 (2012)
CrossRef Google scholar
[494]
Zhang, P., Tang, M., Gao, F., Zhu, B., Zhao, Z., Duan, L., Fu, S., Ouyang, J., Wei, H., Shum, P.P. Liu, D.: Simplified hollow-core fiber-based fabry-perot interferometer with modified vernier effect for highly sensitive high-temperature measurement. IEEE Photon. J. 7, 1–10 (2017)
[495]
Wang, C., Sun, J., Yang, C., Kuang, B., Fang, D., Asundi, A.: Research on a novel Fabry-Perot interferometer model based on the ultra-small gradient-index fiber probe. Sensors 19, 1538(2019)
CrossRef Google scholar
[496]
Kuhn, J., Bobrowski, N., Boudoire, G., Calabrese, S., Giuffrida, G., Liuzzo, M., Karume, K., Tedesco, D., Wagner, T., Platt, U.: High-spectral-resolution Fabry-Pérot interferometers overcome fundamental limitations of present volcanic gas remote sensing techniques. Front. Earth Sci. 11, 1039093(2023)
CrossRef Google scholar
[497]
Karimeddiny, S., Cham, T.M.J., Smedley, O., Ralph, D.C., Luo, Y.K.: Sagnac interferometry for high-sensitivity optical measurements of spin-orbit torque. Sci. Adv. 9, eadi9039(2023)
CrossRef Google scholar
[498]
Schubert, C., Abend, S., Gersemann, M., Gebbe, M., Schlippert, D., Berg, P., Rasel, E.M.: Multi-loop atomic Sagnac interferometry. Sci. Rep. 11, 16121(2021)
CrossRef Google scholar
[499]
Barrett, B., Geiger, R., Dutta, I., Meunier, M., Canuel, B., Gauguet, A., Bouyer, P., Landragin, A.: The Sagnac effect: 20 years of development in matter-wave interferometry. Comptes Rendus Physique 15(10), 875–883 (2014)
CrossRef Google scholar
[500]
Vakhtin, A.B., Kane, D.J., Wood, W.R., Peterson, K.A.: Common-path interferometer for frequency-domain optical coherence tomography. Appl. Opt. 42, 6953–6958 (2003)
CrossRef Google scholar
[501]
Barth, I., Conteduca, D., Reardon, C., Johnson, S., Krauss, T.F.: Common-path interferometric label-free protein sensing with resonant dielectric nanostructures. Light Sci. Appl. 9, 96(2020)
CrossRef Google scholar
[502]
Rao, Y.J., Jackson, D.A.: Principles of fiber-optic interferometry. In: Grattan, K.T.V., Meggitt, B.T. (eds.) Optical fiber sensor technology. Springer, Boston (2000)
[503]
Li, L., Xia, L., Xie, Z., Liu, D.: All-fiber Mach-Zehnder interferometers for sensing applications. Opt. Express 20, 11109–11120 (2012)
CrossRef Google scholar
[504]
Rozema, L.A., Wang, C., Mahler, D.H., Hayat, A., Steinberg, A.M., Sipe, J.E., Liscidini, M.: Characterizing an entangled-photon source with classical detectors and measurements. Optica 2, 430–433 (2015)
CrossRef Google scholar
[505]
Li, Y.: Methods of generating entangled photon pairs. J. Phys. Conf. Ser. 1634, 012172(2020)
CrossRef Google scholar
[506]
Ruihong, Q., Ying, M.: Research progress of quantum repeaters. J. Phys. Conf. Ser. 1237, 052032(2019)
CrossRef Google scholar
[507]
Kamin, L., Shchukin, E., Schmidt, F., van Loock, P.: Exact rate analysis for quantum repeaters with imperfect memories and entanglement swapping as soon as possible. Phys. Rev. Res. 5, 023086(2023)
CrossRef Google scholar
[508]
Palima, D., Bañas, A.R., Vizsnyiczai, G., Kelemen, L., Ormos, P., Glückstad, J.: Wave-guided optical waveguides. Opt. Express 20(3), 2004–2014 (2012)
CrossRef Google scholar
[509]
Wu, L.: Ultrathin waveguides for 2D photonic integrated circuits. Nat. Rev. Phys. 5, 634(2023)
CrossRef Google scholar
[510]
Lee, M., Hong, H., Yu, J., Mujid, F., Ye, A., Liang, C., Park, J.: Wafer-scale δ waveguides for integrated two-dimensional photonics. Science 381, 648–653 (2023)
CrossRef Google scholar
[511]
Lvovsky, A.I.: Squeezed light, photonics: scientific foundations. Technol. Appl. 1, 121(2015)
CrossRef Google scholar
[512]
Tse, M., Yu, H., Kijbunchoo, N., Fernandez-Galiana, A., Dupej, P., Barsotti, L., Blair, C.D., Brown, D.D., Dwyer, S.E., Effler, A., Evans, M., Fritschel, P., Frolov, V.V., Green, A.C., Mansell, G.L., Matichard, F., Mavalvala, N., McClelland, D.E., McCuller, L., McRae, T., Miller, J., Mullavey, A., Oelker, E., Phinney, I.Y., Sigg, D., Slagmolen, B.J.J., Vo, T., Ward, R.L., Whittle, C., Abbott, R., Adams, C., Adhikari, R.X., Ananyeva, A., Appert, S., Arai, K., Areeda, J.S., Asali, Y., Aston, S.M., Austin, C., Baer, A.M., Ball, M., Ballmer, S.W., Banagiri, S., Barker, D., Bartlett, J., Berger, B.K., Betzwieser, J., Bhattacharjee, D., Billingsley, G., Biscans, S., Blair, R.M., Bode, N., Booker, P., Bork, R., Bramley, A., Brooks, A.F., Buikema, A., Cahillane, C., Cannon, K.C., Chen, X., Ciobanu, A.A., Clara, F., Cooper, S.J., Corley, K.R., Countryman, S.T., Covas, P.B., Coyne, D.C., Datrier, L.E.H., Davis, D., Di Fronzo, C., Driggers, J.C., Etzel, T., Evans, T.M., Feicht, J., Fulda, P., Fyffe, M., Giaime, J.A., Giardina, K.D., Godwin, P., Goetz, E., Gras, S., Gray, C., Gray, R., Gupta, A., Gustafson, E.K., Gustafson, R., Hanks, J., Hanson, J., Hardwick, T., Hasskew, R.K., Heintze, M.C., Helmling-Cornell, A.F., Holland, N.A., Jones, J.D., Kandhasamy, S., Karki, S., Kasprzack, M., Kawabe, K., King, P.J., Kissel, J.S., Kumar, R., Landry, M., Lane, B.B., Lantz, B., Laxen, M., Lecoeuche, Y.K., Leviton, J., Liu, J., Lormand, M., Lundgren, A.P., Macas, R., MacInnis, M., Macleod, D.M., Márka, S., Márka, Z., Martynov, D.V., Mason, K., Massinger, T.J., McCarthy, R., McCormick, S., McIver, J., Mendell, G., Merfeld, K., Merilh, E.L., Meylahn, F., Mistry, T., Mittleman, R., Moreno, G., Mow-Lowry, C.M., Mozzon, S., Nelson, T.J.N., Nguyen, P., Nuttall, L.K., Oberling, J., Oram, R.J., O’Reilly, B., Osthelder, C., Ottaway, D.J., Overmier, H., Palamos, J.R., Parker, W., Payne, E., Pele, A., Perez, C.J., Pirello, M., Radkins, H., Ramirez, K.E., Richardson, J.W., Riles, K., Robertson, N.A., Rollins, J.G., Romel, C.L., Romie, J.H., Ross, M.P., Ryan, K., Sadecki, T., Sanchez, E.J., Sanchez, L.E., Saravanan, T.R., Savage, R.L., Schaetzl, D., Schnabel, R., Schofield, R.M.S., Schwartz, E., Sellers, D., Shaffer, T.J., Smith, J.R., Soni, S., Sorazu, B., Spencer, A.P., Strain, K.A., Sun, L., Szczepańczyk, M.J., Thomas, M., Thomas, P., Thorne, K.A., Toland, K., Torrie, C.I., Traylor, G., Urban, A.L., Vajente, G., Valdes, G., Vander-Hyde, D.C., Veitch, P.J., Venkateswara, K., Venugopalan, G., Viets, A.D., Vorvick, C., Wade, M., Warner, J., Weaver, B., Weiss, R., Willke, B., Wipf, C.C., Xiao, L., Yamamoto, H., Yap, M.J., Yu, H., Zhang, L., Zucker, M.E., Zweizig, J.: Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107(2019)
CrossRef Google scholar
[513]
Huh, J., Guerreschi, G.G., Peropadre, B., McClean, J.R., Aspuru-Guzik, A.: Boson sampling for molecular vibronic spectra. Nat. Photon. 9, 615(2015)
CrossRef Google scholar
[514]
Arrazola, J.M., Bromley, T.R.: Using Gaussian boson sampling to find dense subgraphs. Phys. Rev. Lett. 121, 030503(2018)
CrossRef Google scholar
[515]
Otterpohl, A., Sedlmeir, F., Vogl, U., Dirmeier, T., Shafiee, G., Schunk, G., Strekalov, D.V., Schwefel, H.G.L., Gehring, T., Andersen, U.L., Leuchs, G., Marquardt, C.: Squeezed vacuum states from a whispering gallery mode resonator. Optica 6, 1375(2019)
CrossRef Google scholar
[516]
Anderson, M.E., Beck, M., Raymer, M., Bierlein, J.: Quadrature squeezing with ultrashort pulses in nonlinear-optical waveguides. Opt. Lett. 20, 620(1995)
CrossRef Google scholar
[517]
Mondain, F., Lunghi, T., Zavatta, A., Gouzien, E., Doutre, F., De Micheli, M., Tanzilli, S., D’Auria, V.: Chip-based squeezing at a telecom wavelength. Photon. Res. 7, A36(2019)
CrossRef Google scholar
[518]
Dutt, A., Luke, K., Manipatruni, S., Gaeta, A.L., Nussenzveig, P., Lipson, M.: On-chip optical squeezing. Phys. Rev. Appl. 3, 044005(2015)
CrossRef Google scholar
[519]
Dutt, A., Miller, S., Luke, K., Cardenas, J., Gaeta, A.L., Nussenzveig, P., Lipson, M.: Tunable squeezing using coupled ring resonators on a silicon nitride chip. Opt. Lett. 41, 223(2016)
CrossRef Google scholar
[520]
Vaidya, V.D., Morrison, B., Helt, L.G., Shahrokshahi, R., Mahler, D.H., Collins, M.J., Tan, K., Lavoie, J., Repingon, A., Menotti, M., Quesada, N., Pooser, R.C., Lita, A.E., Gerrits, T., Nam, S.W., Vernon, Z.: Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device. Sci. Adv. 6, eaba9186(2020)
CrossRef Google scholar
[521]
Safavi-Naeini, A.H., Gröblacher, S., Hill, J.T., Chan, J., Aspelmeyer, M., Painter, O.: Squeezed light from a silicon micromechanical resonator. Nature 500, 185(2013)
CrossRef Google scholar
[522]
Cernansky, R., Politi, A.: Nanophotonic source of quadrature squeezing via self-phase modulation. APL Photon. 5, 101303(2020)
CrossRef Google scholar
[523]
Huang, G., Lucas, E., Liu, J., Raja, A.S., Lihachev, G., Gorodetsky, M.L., Engelsen, N.J., Kippenberg, T.J.: Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801(2019)
CrossRef Google scholar
[524]
Guo, Y., Zhang, W., Dong, S., Huang, Y., Peng, J.: Telecom-band degenerate-frequency photon pair generation in silicon microring cavities. Opt. Lett. 39, 2526(2014)
CrossRef Google scholar
[525]
Vernon, Z., Quesada, N., Liscidini, M., Morrison, B., Menotti, M., Tan, K., Sipe, J.E.: Scalable squeezed-light source for continuous- variable quantum sampling. Phys. Rev. Appl. 12, 064024(2019)
CrossRef Google scholar
[526]
Ast, S., Mehmet, M., Schnabel, R.: High-bandwidth squeezed light at 1550 nm from a compact monolithic ppktp cavity. Opt. Express 21, 13572(2013)
CrossRef Google scholar
[527]
Helt, L.G., Brańczyk, A.M., Liscidini, M., Steel, M.J.: Parasitic photon-pair suppression via photonic stop-band engineering. Phys. Rev. Lett. 118, 073603(2017)
CrossRef Google scholar
[528]
Azzini, S., Grassani, D., Strain, M.J., Sorel, M., Helt, L.G., Sipe, J.E., Liscidini, M., Galli, M., Bajoni, D.: Ultra-low power generation of twin photons in a compact silicon ring resonator. Opt. Express 20, 23100(2012)
CrossRef Google scholar
[529]
Agha, I., Davanço, M., Thurston, B., Srinivasan, K.: Low-noise chip-based frequency conversion by four-wave-mixing bragg scattering in SiNx waveguides. Opt. Lett. 37, 2997(2012)
CrossRef Google scholar
[530]
Zhao, Y., Okawachi, Y., Jang, J.K., Ji, X., Lipson, M., Gaeta, A.L.: Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip. Phys. Rev. Lett. 124, 193601(2020)
CrossRef Google scholar
[531]
Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981)
CrossRef Google scholar
[532]
Caves, C.M.: Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett. 45, 75–79 (1980)
CrossRef Google scholar
[533]
Gerry, C., Knight, P., Knight, P.L.: Introductory Quantum Optics. Cambridge University Press (2005)
[534]
Kimble, H.J., Levin, Y., Matsko, A.B., Thorne, K.S., Vyatchanin, S.P.: Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002(2001)
CrossRef Google scholar
[535]
Aasi, J., Abadie, J., Abbott, B., Abbott, R., Abbott, T.D., Abernathy, M.R., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Affeldt, C., Aguiar, O.D., Ajith, P., Allen, B., Amador Ceron, E., Amariutei, D., Anderson, S.B., Anderson, W.G., Arai, K., Araya, M.C., Arceneaux, C., Ast, S., Aston, S.M., Atkinson, D., Aufmuth, P., Aulbert, C., Austin, L., Aylott, B.E., Babak, S., Baker, P.T., Ballmer, S., Bao, Y., Barayoga, J.C., Barker, D., Barr, B., Barsotti, L., Barton, M.A., Bartos, I., Bassiri, R., Batch, J., Bauchrowitz, J., Behnke, B., Bell, A.S., Bell, C., Bergmann, G., Berliner, J.M., Bertolini, A., Betzwieser, J., Beveridge, N., Beyersdorf, P.T., Bhadbhade, T., Bilenko, I.A., Billingsley, G., Birch, J., Biscans, S., Black, E., Blackburn, J.K., Blackburn, L., Blair, D., Bland, B., Bock, O., Bodiya, T.P., Bogan, C., Bond, C., Bork, R., Born, M., Bose, S., Bowers, J., Brady, P.R., Braginsky, V.B., Brau, J.E., Breyer, J., Bridges, D.O., Brinkmann, M., Britzger, M., Brooks, A.F., Brown, D.A., Brown, D.D., Buckland, K., Brückner, F., Buchler, B.C., Buonanno, A., Burguet-Castell, J., Byer, R.L., Cadonati, L., Camp, J.B., Campsie, P., Cannon, K., Cao, J., Capano, C.D., Carbone, L., Caride, S., Castiglia, A.D., Caudill, S., Cavaglià, M., Cepeda, C., Chalermsongsak, T., Chao, S., Charlton, P., Chen, X., Chen, Y., Cho, H.S., Chow, J.H., Christensen, N., Chu, Q., Chua, S.S.Y., Chung, C.T.Y., Ciani, G., Clara, F., Clark, D.E., Clark, J.A., Constancio Junior, M., Cook, D., Corbitt, T.R., Cordier, M., Cornish, N., Corsi, A., Costa, C.A., Coughlin, M.W., Countryman, S., Couvares, P., Coward, D.M., Cowart, M., Coyne, D.C., Craig, K., Creighton, J.D.E., Creighton, T.D., Cumming, A., Cunningham, L., Dahl, K., Damjanic, M., Danilishin, S.L., Danzmann, K., Daudert, B., Daveloza, H., Davies, G.S., Daw, E.J., Dayanga, T., Deleeuw, E., Denker, T., Dent, T., Dergachev, V., DeRosa, R., DeSalvo, R., Dhurandhar, S., Di Palma, I., Díaz, M., Dietz, A., Donovan, F., Dooley, K.L., Doravari, S., Drasco, S., Drever, R.W.P., Driggers, J.C., Du, Z., Dumas, J.C., Dwyer, S., Eberle, T., Edwards, M., Effler, A., Ehrens, P., Eikenberry, S.S., Engel, R., Essick, R., Etzel, T., Evans, K., Evans, M., Evans, T., Factourovich, M., Fairhurst, S., Fang, Q., Farr, B.F., Farr, W., Favata, M., Fazi, D., Fehrmann, H., Feldbaum, D., Finn, L.S., Fisher, R.P., Foley, S., Forsi, E., Fotopoulos, N., Frede, M., Frei, M.A., Frei, Z., Freise, A., Frey, R., Fricke, T.T., Friedrich, D., Fritschel, P., Frolov, V.V., Fujimoto, M.K., Fulda, P.J., Fyffe, M., Gair, J., Garcia, J., Gehrels, N., Gelencser, G., Gergely, L.Á., Ghosh, S., Giaime, J.A., Giampanis, S., Giardina, K.D., Gil-Casanova, S., Gill, C., Gleason, J., Goetz, E., González, G., Gordon, N., Gorodetsky, M.L., Gossan, S., Goßler, S., Graef, C., Graff, P.B., Grant, A., Gras, S., Gray, C., Greenhalgh, R.J.S., Gretarsson, A.M., Griffo, C., Grote, H., Grover, K., Grunewald, S., Guido, C., Gustafson, E.K., Gustafson, R., Hammer, D., Hammond, G., Hanks, J., Hanna, C., Hanson, J., Haris, K., Harms, J., Harry, G.M., Harry, I.W., Harstad, E.D., Hartman, M.T., Haughian, K., Hayama, K., Heefner, J., Heintze, M.C., Hendry, M.A., Heng, I.S., Heptonstall, A.W., Heurs, M., Hewitson, M., Hild, S., Hoak, D., Hodge, K.A., Holt, K., Holtrop, M., Hong, T., Hooper, S., Hough, J., Howell, E.J., Huang, V., Huerta, E.A., Hughey, B., Huttner, S.H., Huynh, M., Huynh-Dinh, T., Ingram, D.R., Inta, R., Isogai, T., Ivanov, A., Iyer, B.R., Izumi, K., Jacobson, M., James, E., Jang, H., Jang, Y.J., Jesse, E., Johnson, W.W., Jones, D., Jones, D.I., Jones, R., Ju, L., Kalmus, P., Kalogera, V., Kandhasamy, S., Kang, G., Kanner, J.B., Kasturi, R., Katsavounidis, E., Katzman, W., Kaufer, H., Kawabe, K., Kawamura, S., Kawazoe, F., Keitel, D., Kelley, D.B., Kells, W., Keppel, D.G., Khalaidovski, A., Khalili, F.Y., Khazanov, E.A., Kim, B.K., Kim, C., Kim, K., Kim, N., Kim, Y.M., King, P.J., Kinzel, D.L., Kissel, J.S., Klimenko, S., Kline, J., Kokeyama, K., Kondrashov, V., Koranda, S., Korth, W.Z., Kozak, D., Kozameh, C., Kremin, A., Kringel, V., Krishnan, B., Kucharczyk, C., Kuehn, G., Kumar, P., Kumar, R., Kuper, B.J., Kurdyumov, R., Kwee, P., Lam, P.K., Landry, M., Lantz, B., Lasky, P.D., Lawrie, C., Lazzarini, A., Le Roux, A., Leaci, P., Lee, C.H., Lee, H.K., Lee, H.M., Lee, J., Leong, J.R., Levine, B., Lhuillier, V., Lin, A.C., Litvine, V., Liu, Y., Liu, Z., Lockerbie, N.A., Lodhia, D., Loew, K., Logue, J., Lombardi, A.L., Lormand, M., Lough, J., Lubinski, M., Lück, H., Lundgren, A.P., Macarthur, J., Macdonald, E., Machenschalk, B., MacInnis, M., Macleod, D.M., Magaña-Sandoval, F., Mageswaran, M., Mailand, K., Manca, G., Mandel, I., Mandic, V., Márka, S., Márka, Z., Markosyan, A.S., Maros, E., Martin, I.W., Martin, R.M., Martinov, D., Marx, J.N., Mason, K., Matichard, F., Matone, L., Matzner, R.A., Mavalvala, N., May, G., Mazzolo, G., McAuley, K., McCarthy, R., McClelland, D.E., McGuire, S.C., McIntyre, G., McIver, J., Meadors, G.D., Mehmet, M., Meier, T., Melatos, A., Mendell, G., Mercer, R.A., Meshkov, S., Messenger, C., Meyer, M.S., Miao, H., Miller, J., Mingarelli, C.M.F., Mitra, S., Mitrofanov, V.P., Mitselmakher, G., Mittleman, R., Moe, B., Mokler, F., Mohapatra, S.R.P., Moraru, D., Moreno, G., Mori, T., Morriss, S.R., Mossavi, K., Mow-Lowry, C.M., Mueller, C.L., Mueller, G., Mukherjee, S., Mullavey, A., Munch, J., Murphy, D., Murray, P.G., Mytidis, A., Nanda Kumar, D., Nash, T., Nayak, R., Necula, V., Newton, G., Nguyen, T., Nishida, E., Nishizawa, A., Nitz, A., Nolting, D., Normandin, M.E., Nuttall, L.K., O’Dell, J., O’Reilly, B., O’Shaughnessy, R., Ochsner, E., Oelker, E., Ogin, G.H., Oh, J.J., Oh, S.H., Ohme, F., Oppermann, P., Osthelder, C., Ott, C.D., Ottaway, D.J., Ottens, R.S., Ou, J., Overmier, H., Owen, B.J., Padilla, C., Pai, A., Pan, Y., Pankow, C., Papa, M.A., Paris, H., Parkinson, W., Pedraza, M., Penn, S., Peralta, C., Perreca, A., Phelps, M., Pickenpack, M., Pierro, V., Pinto, I.M., Pitkin, M., Pletsch, H.J., Pöld, J., Postiglione, F., Poux, C., Predoi, V., Prestegard, T., Price, L.R., Prijatelj, M., Privitera, S., Prokhorov, L.G., Puncken, O., Quetschke, V., Quintero, E., Quitzow-James, R., Raab, F.J., Radkins, H., Raffai, P., Raja, S., Rakhmanov, M., Ramet, C., Raymond, V., Reed, C.M., Reed, T., Reid, S., Reitze, D.H., Riesen, R., Riles, K., Roberts, M., Robertson, N.A., Robinson, E.L., Roddy, S., Rodriguez, C., Rodriguez, L., Rodruck, M., Rollins, J.G., Romie, J.H., Röver, C., Rowan, S., Rüdiger, A., Ryan, K., Salemi, F., Sammut, L., Sandberg, V., Sanders, J., Sankar, S., Sannibale, V., Santamaría, L., Santiago-Prieto, I., Santostasi, G., Sathyaprakash, B.S., Saulson, P.R., Savage, R.L., Schilling, R., Schnabel, R., Schofield, R.M.S., Schuette, D., Schulz, B., Schutz, B.F., Schwinberg, P., Scott, J., Scott, S.M., Seifert, F., Sellers, D., Sengupta, A.S., Sergeev, A., Shaddock, D.A., Shahriar, M.S., Shaltev, M., Shao, Z., Shapiro, B., Shawhan, P., Shoemaker, D.H., Sidery, T.L., Siemens, X., Sigg, D., Simakov, D., Singer, A., Singer, L., Sintes, A.M., Skelton, G.R., Slagmolen, B.J.J., Slutsky, J., Smith, J.R., Smith, M.R., Smith, R.J.E., Smith-Lefebvre, N.D., Son, E.J., Sorazu, B., Souradeep, T., Stefszky, M., Steinert, E., Steinlechner, J., Steinlechner, S., Steplewski, S., Stevens, D., Stochino, A., Stone, R., Strain, K.A., Strigin, S.E., Stroeer, A.S., Stuver, A.L., Summerscales, T.Z., Susmithan, S., Sutton, P.J., Szeifert, G., Talukder, D., Tanner, D.B., Tarabrin, S.P., Taylor, R., Thomas, M., Thomas, P., Thorne, K.A., Thorne, K.S., Thrane, E., Tiwari, V., Tokmakov, K.V., Tomlinson, C., Torres, C.V., Torrie, C.I., Traylor, G., Tse, M., Ugolini, D., Unnikrishnan, C.S., Vahlbruch, H., Vallisneri, M., van der Sluys, M.V., van Veggel, A.A., Vass, S., Vaulin, R., Vecchio, A., Veitch, P.J., Veitch, J., Venkateswara, K., Verma, S., Vincent-Finley, R., Vitale, S., Vo, T., Vorvick, C., Vousden, W.D., Vyatchanin, S.P., Wade, A., Wade, L., Wade, M., Waldman, S.J., Wallace, L., Wan, Y., Wang, M., Wang, J., Wang, X., Wanner, A., Ward, R.L., Was, M., Weinert, M., Weinstein, A.J., Weiss, R., Welborn, T., Wen, L., Wessels, P., West, M., Westphal, T., Wette, K., Whelan, J.T., Whitcomb, S.E., Wiseman, A.G., White, D.J., Whiting, B.F., Wiesner, K., Wilkinson, C., Willems, P.A., Williams, L., Williams, R., Williams, T., Willis, J.L., Willke, B., Wimmer, M., Winkelmann, L., Winkler, W., C. Wipf, C., Wittel, H., Woan, G., Wooley, R., Worden, J., Yablon, J., Yakushin, I., Yamamoto, H., Yancey, C.C., Yang, H., Yeaton-Massey, D., Yoshida, S., Yum, H., Zanolin, M., Zhang, F., Zhang, L., Zhao, C., Zhu, H., Zhu, X.J., Zotov, N., Zucker, M.E., Zweizig, J.: Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013)
[536]
Grote, H., Danzmann, K., Dooley, K.L., Schnabel, R., Slutsky, J., Vahlbruch, H.: First long-term application of squeezed states of light in a gravitational-wave observatory. Phys. Rev. Lett. 110, 181101(2013)
CrossRef Google scholar
[537]
The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962(2011)
CrossRef Google scholar
[538]
Backes, K.M., Palken, D.A., Kenany, S.A., Brubaker, B.M., Cahn, S.B., Droster, A., Hilton, G.C., Ghosh, S., Jackson, H., Lamoreaux, S.K., Leder, A.F., Lehnert, K.W., Lewis, S.M., Malnou, M., Maruyama, R.H., Rapidis, N.M., Simanovskaia, M., Singh, S., Speller, D.H., Urdinaran, I., Vale, L.R., van Assendelft, E.C., van Bibber, K., Wang, H.: A quantum enhanced search for dark matter axions. Nature 590, 238–242 (2021)
CrossRef Google scholar
[539]
Aggarwal, N., Cullen, T.J., Cripe, J., Cole, G.D., Lanza, R., Libson, A., Follman, D., Heu, P., Corbitt, T., Mavalvala, N.: Room-temperature optomechanical squeezing. Nat. Phys. 16, 784–788 (2020)
CrossRef Google scholar
[540]
Qiu, J.Y., Grimsmo, A., Peng, K., Kannan, B., Lienhard, B., Sung, Y., Krantz, P., Bolkhovsky, V., Calusine, G., Kim, D., Melville, A., Niedzielski, B., Yoder, J., Schwartz, M., Orlando, T., Siddiqi, I., Gustavsson, S., O’Brien, K., Oliver, W.: Broadband squeezed microwaves and amplification with a Josephson travelling-wave parametric amplifier. Nat. Phys. 19, 706–713 (2023)
[541]
Murch, K., Weber, S., Beck, K., Ginossar, E., Siddiqi, I.: Reduction of the radiative decay of atomic coherence in squeezed vacuum. Nature 499, 62–65 (2013)
CrossRef Google scholar
[542]
Eichler, C., Salathe, Y., Mlynek, J., Schmidt, S., Wallraff, A.: Quantum-limited amplification and entanglement in coupled nonlinear resonators. Phys. Rev. Lett. 113, 110502(2014)
CrossRef Google scholar
[543]
Brooks, D.W.C., Botter, T., Schreppler, S., Purdy, T.P., Brahms, N., Stamper-Kurn, D.M.: Non-classical light generated by quantum- noise-driven cavity optomechanics. Nature 488, 476–480 (2012)
CrossRef Google scholar
[544]
Purdy, T.P., Yu, P.L.L., Peterson, R.W., Kampel, N.S., Regal, C.A.: Strong optomechanical squeezing of light. Phys. Rev. X 3, 031012(2013)
CrossRef Google scholar
[545]
Sudhir, V., Wilson, D.J., Schilling, R., Schütz, H., Fedorov, S.A., Ghadimi, A.H., Nunnenkamp, A., Kippenberg, T.J.: Appearance and disappearance of quantum correlations in measurementbased feedback control of a mechanical oscillator. Phys. Rev. X 7, 011001(2017)
CrossRef Google scholar
[546]
Ockeloen-Korppi, C.F., Damskägg, E., Paraoanu, G.S., Massel, F., Sillanpää, M.A.: Revealing hidden quantum correlations in an electromechanical measurement. Phys. Rev. Lett. 121, 243601(2018)
CrossRef Google scholar
[547]
Barzanjeh, S., Redchenko, E.S., Peruzzo, M., Wulf, M., Lewis, D.P., Arnold, G., Fink, J.M.: Stationary entangled radiation from micromechanical motion. Nature 570, 480–483 (2019)
CrossRef Google scholar
[548]
Andersen, U.L., Gehring, T., Marquardt, C., Leuchs, G.: 30 years of squeezed light generation. Phys. Scr. 91, 053001(2016)
CrossRef Google scholar
[549]
Arnbak, J., Jacobsen, C.S., Andrade, R.B., Guo, X., Neergaard- Nielsen, J.S., Andersen, U.L., Gehring, T.: Compact, low-threshold squeezed light source. Opt. Express 27, 37877–37885 (2019)
CrossRef Google scholar
[550]
McCuller, L., Whittle, C., Ganapathy, D., Komori, K., Tse, M., Fernandez-Galiana, A., Barsotti, L., Fritschel, P., MacInnis, M., Matichard, F., Mason, K., Mavalvala, N., Mittleman, R., Yu, H., Zucker, M.E., Evans, M.: Frequency-dependent squeezing for advanced LIGO. Phys. Rev. Lett. 124, 171102(2020)
CrossRef Google scholar
[551]
Darsow-Fromm, C., Gurs, J., Schnabel, R., Steinlechner, S.: Squeezed light at 2128 nm for future gravitational-wave observatories. Opt. Lett. 46, 5850(2021)
CrossRef Google scholar
[552]
Schnabel, R., Schönbeck, A.: The Squeeze Laser. IEEE Trans. Quantum Eng.: Quantum Sens. Metrol. 3, 3500209(2022)
CrossRef Google scholar
[553]
Abdo, B.: Broadband squeezer of microwave light. Nat. Phys. 19, 616–617 (2023)
[554]
Miller, J.L.: Frequency-dependent squeezing makes LIGO even more sensitive. Phys. Today 77(1), 13–16 (2024)
CrossRef Google scholar
[555]
Young, S.M., Soh, D.: Fundamental limits to the generation of highly displaced bright squeezed light using linear optics and parametric amplifiers. arXive preprints arXiv: 2311. 08641 [quant-ph] (2023)
[556]
Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing. pp. 333–342 (2011)
[557]
Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503(2005)
CrossRef Google scholar
[558]
Raussendorf, R., Harrington, J.: Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504(2007)
CrossRef Google scholar
[559]
Andrini, G., Amanti, F., Armani, F., Bellani, V., Bonaiuto, V., Cammarata, S., Campostrini, M., Dao, T.H., De Matteis, F., Demontis, V., Di Giuseppe, G., Ditalia Tchernij, S., Donati, S., Fontana, A., Forneris, J., Francini, R., Frontini, L., Gunnella, R., Iadanza, S., Kaplan, A.E., Lacava, C., Liberali, V., Marzioni, F., Nieto Hernández, E., Pedreschi, E., Piergentili, P., Prete, D., Prosposito, P., Rigato, V., Roncolato, C., Rossella, F., Salamon, A., Salvato, M., Sargeni, F., Shojaii, J., Spinella, F., Stabile, A., Toncelli, A., Trucco, G., Vitali, V.: Solid-state color centers for single-photon generation. Photonics 11(2), 188(2024)
CrossRef Google scholar
[560]
Wei, Y., Liu, S., Li, X., Yu, Y., Su, X., Li, S., Shang, X., Liu, H., Hao, H., Ni, H., Yu, S., Niu, Z., Iles-Smith, J., Liu, J., Wang, X.: Tailoring solid-state single-photon sources with stimulated emissions. Nat. Nanotechnol. 17, 470–476 (2022)
CrossRef Google scholar
[561]
Zhu, C., Marczak, M., Feld, L., Boehme, S.C., Bernasconi, C., Moskalenko, A., Cherniukh, I., Dirin, D., Bodnarchuk, M.I., Kovalenko, M.V., Rainò, G.: Room-temperature, highly pure single-photon sources from all-inorganic lead halide perovskite quantum dots. Nano Lett. 22(9), 3751–3760 (2022)
CrossRef Google scholar
[562]
Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044(1987)
CrossRef Google scholar
[563]
Tomm, N., Javadi, A., Antoniadis, N.O., Najer, D., Löbl, M.C., Korsch, A.R., Schott, R., Valentin, S.R., Wieck, A.D., Ludwig, A., Warburton, R.J.: A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021)
CrossRef Google scholar
[564]
Ghosh, R., Mandel, L.: Observation of nonclassical effects in the interference of two photons. Phys. Rev. Lett. 59(17), 1903(1987)
CrossRef Google scholar
[565]
Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75(24), 4337(1995)
CrossRef Google scholar
[566]
Kaneda, F., Christensen, B.G., Wong, J.J., Park, H.S., McCusker, K.T., Kwiat, P.G.: Time-multiplexed heralded single-photon source. Optica 2(12), 1010(2015)
CrossRef Google scholar
[567]
Clauser, J.F.: Experimental distinction between the quantum and classical field theoretic predictions for the photoelectric effect. Phys. Rev. D 9(4), 853(1974)
CrossRef Google scholar
[568]
Diedrich, F., Walther, H.: Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58(3), 203(1987)
CrossRef Google scholar
[569]
Kimble, H.J., Dagenais, M., Mandel, L.: Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39(11), 691(1977)
CrossRef Google scholar
[570]
Moerner, W.E., Kador, L.: Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62(21), 2535(1989)
CrossRef Google scholar
[571]
Kurtsiefer, C., Mayer, S., Zarda, P., Weinfurter, H.: Stable solid-state source of single photons. Phys. Rev. Lett. 85(2), 290(2000)
CrossRef Google scholar
[572]
Michler, P., Kiraz, A., Becher, C., Schoenfeld, W.V., Petroff, P., Zhang, L., Hu, E.L., Imamoglu, A.: A quantum dot single-photon turnstile device. Science 290(5500), 2282(2000)
CrossRef Google scholar
[573]
Castelletto, S., Johnson, B.C., Ivády, V., Stavrias, N., Umeda, T., Gali, A., Ohshima, T.: A silicon carbide room-temperature single-photon source. Nat. Mater. 13(2), 151(2014)
CrossRef Google scholar
[574]
Tran, T.T., Bray, K., Ford, M.J., Toth, M., Aharonovich, I.: Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11(1), 37(2016)
CrossRef Google scholar
[575]
Senellart, P., Solomon, G., White, A.: High-performance semi-conductor quantum-dot single-photon sources. Nat. Nanotechnol. 12(11), 1026(2017)
CrossRef Google scholar
[576]
Wang, H., He, Y.M., Chung, T.H., Hu, H., Yu, Y., Chen, S., Ding, X., Chen, M.C., Qin, J., Yang, X., Liu, R.Z., Duan, Z.C., Li, J.P., Gerhardt, S., Winkler, K., Jurkat, J., Wang, L.J., Gregersen, N., Huo, Y.H., Dai, Q., Yu, S., Höfling, S., Lu, C.Y., Pan, J.W.: Towards optimal single-photon sources from polarized micro-cavities. Nat. Photon. 13(11), 770(2019)
CrossRef Google scholar
[577]
Varnava, M., Browne, D.E., Rudolph, T.: How good must single photon sources and detectors be for efficient linear optical quantum computation. Phys. Rev. Lett. 100(6), 060502(2008)
CrossRef Google scholar
[578]
Vahlbruch, H., Mehmet, M., Danzmann, K., Schnabel, R.: Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117(11), 110801(2016)
CrossRef Google scholar
[579]
Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706(1998)
CrossRef Google scholar
[580]
Larsen, M.V., Guo, X., Breum, C.R., Neergaard-Nielsen, J.S., Andersen, U.L.: Deterministic generation of a two-dimensional cluster state. Science 366(6463), 369(2019)
CrossRef Google scholar
[581]
Tian, L., Li, S., Yuan, H., Wang, H.: Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line. J. Phys. Soc. Jpn. 85, 124403(2016)
CrossRef Google scholar
[582]
Jabir, M.V., Samanta, G.K.: Robust, high brightness, degenerate entangled photon source at room temperature. Sci. Rep. 7, 12613(2017)
CrossRef Google scholar
[583]
Weston, M.M., Chrzanowski, H.M., Wollmann, S., Boston, A., Ho, J., Shalm, L.K., Verma, V.B., Allman, M.S., Nam, S.W., Patel, R.B., Slussarenko, S.: Efficient and pure femtosecondpulse- length source of polarization-entangled photons. Geoff. J. Opt. Express 24, 10869–10879 (2016)
CrossRef Google scholar
[584]
Kaneda, F., Garay-Palmett, K., U’Ren, A.B., Kwiat, P.G.: Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion. Opt. Express 24, 10733–10747 (2016)
CrossRef Google scholar
[585]
Vergyris, P., Meany, T., Lunghi, T., Sauder, G., Downes, J., Steel, M., Withford, M., Alibart, O., Tanzilli, S.: On-chip generation of heralded photon-number states. Sci. Rep. 6, 35975(2016)
CrossRef Google scholar
[586]
Krapick, S., Brecht, B., Herrmann, H., Quiring, V., Silberhorn, C.: On-chip generation of photon-triplet states. Opt. Express 24, 2836–2849 (2016)
CrossRef Google scholar
[587]
Montaut, N., Sansoni, L., Meyer-Scott, E., Ricken, R., Quiring, V., Herrmann, H., Silberhorn, C.: High-efficiency plug-and-play source of heralded single photons. Phys. Rev. Appl. 8, 024021(2017)
CrossRef Google scholar
[588]
Vergyris, P., Kaiser, F., Gouzien, E., Sauder, G., Lunghi, T., Tanzilli, S.: Fully guided-wave photon pair source for quantum applications. Quantum Sci. Technol. 2, 024007(2017)
CrossRef Google scholar
[589]
Ding, D.S., Zhang, W., Shi, S., Zhou, Z.Y., Li, Y., Shi, B.S., Guo, G.C.: Hybrid-cascaded generation of tripartite telecom photons using an atomic ensemble and a nonlinear waveguide. Optica 2, 642–645 (2015)
CrossRef Google scholar
[590]
Setzpfandt, F., Solntsev, A.S., Titchener, J., Wu, C.W., Xiong, C., Schiek, R., Pertsch, T., Neshev, D.N., Sukhorukov, A.A.: Tunable generation of entangled photons in a nonlinear directional coupler. Laser Photon. Rev. 10, 131–136 (2015)
CrossRef Google scholar
[591]
Guo, X., Zou, C.L., Schuck, C., Jung, H., Cheng, R., Tang, H.X.: Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6, e16249(2017)
CrossRef Google scholar
[592]
Kultavewuti, P., Zhu, E.Y., Xing, X., Qian, L., Pusino, V., Sorel, M., Aitchison, J.S.: Polarization-entangled photon pair sources based on spontaneous four wave mixing assisted by polarization mode dispersion. Sci. Rep. 7, 5785(2017)
CrossRef Google scholar
[593]
Cruz-Delgado, D., Ramirez-Alarcon, R., Ortiz-Ricardo, E., Monroy-Ruz, J., Dominguez-Serna, F., Cruz-Ramirez, H., Garay- Palmett, K., U’Ren, A.B.: Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions. Sci. Rep. 6, 27377(2016)
CrossRef Google scholar
[594]
Rogers, S., Mulkey, D., Lu, X., Jiang, W.C., Lin, Q.: High visibility time-energy entangled photons from a silicon nanophotonic chip. ACS Photon. 3(10), 1754–1761 (2016)
CrossRef Google scholar
[595]
Cordier, M., Orieux, A., Gabet, R., Harlé, T., Dubreuil, N., Diamanti, E., Delaye, P., Zaquine, I.: Raman-tailored photonic crystal fiber for telecom band photon-pair generation. Opt. Lett. 42, 2583–2586 (2017)
CrossRef Google scholar
[596]
Yan, Z., Duan, Y., Helt, L.G., Ams, M., Withford, M.J., Steel, M.J.: Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide. Appl. Phys. Lett. 107, 231106(2015)
CrossRef Google scholar
[597]
Olbrich, F., Höschele, J., Müller, M., Kettler, J., Luca Portalupi, S., Paul, M., Jetter, M., Michler, P.: Polarization-entangled photons from an InGaAs-based quantum dot emitting in the telecom C-band. Appl. Phys. Lett. 111, 133106(2017)
CrossRef Google scholar
[598]
Portalupi, S.L., Hornecker, G., Giesz, V., Grange, T., Lemaître, A., Demory, J., Sagnes, I., Lanzillotti-Kimura, N.D., Lanco, L., Auffèves, A., Senellart, P.: Bright phonon-tuned single-photon source. Nano Lett. 15(10), 6290–6294 (2015)
CrossRef Google scholar
[599]
Somaschi, N., Giesz, V., De Santis, L., Loredo, J.C., Almeida, M.P., Hornecker, G., Portalupi, S.L., Grange, T., Antón, C., Demory, J., Gómez, C., Sagnes, I., Lanzillotti-Kimura, N.D., Lemaítre, A., Auffeves, A., White, A.G., Lanco, L., Senellart, P.: Near-optimal single-photon sources in the solid state. Nat. Photon 10, 340–345 (2016)
CrossRef Google scholar
[600]
Loredo, J.C., Zakaria, N.A., Somaschi, N., Anton, C., De Santis, L., Giesz, V., Grange, T., Broome, M.A., Gazzano, O., Coppola, G., Sagnes, I.: Scalable performance in solid-state single-photon sources. Optica 3, 433–440 (2016)
CrossRef Google scholar
[601]
Kiršanskė, G., Thyrrestrup, H., Daveau, R.S., Dreeßen, C.L., Pregnolato, T., Midolo, L., Tighineanu, P., Javadi, A., Stobbe, S., Schott, R., Ludwig, A., Wieck, A.D., Park, S.I., Song, J.D., Kuhlmann, A.V., Söllner, I., Löbl, M.C., Warburton, R.J., Lodahl, P.: Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide. Phys. Rev. B 96, 165306(2017)
CrossRef Google scholar
[602]
Schlehahn, A., Fischbach, S., Schmidt, R., Kaganskiy, A., Strittmatter, A., Rodt, S., Heindel, T., Reitzenstein, S.: A stand-alone fiber-coupled single-photon source. Sci. Rep. 8, 1340(2018)
CrossRef Google scholar
[603]
Snijders, H., Frey, J.A., Norman, J., Post, V.P., Gossard, A.C., Bowers, J.E., van Exter, M.P., Löffler, W., Bouwmeester, D.: Fiber-coupled cavity-QED source of identical single photons. Phys. Rev. Appl. 9, 0310022018(2018)
CrossRef Google scholar
[604]
Ding, X., He, Y., Duan, Z.C., Gregersen, N., Chen, M.C., Unsleber, S., Maier, S., Schneider, C., Kamp, M., Höfling, S., Lu, C.Y.: On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401(2016)
CrossRef Google scholar
[605]
Davanco, M., Liu, J., Sapienza, L., Zhang, C.Z., De Miranda Cardoso, J.V., Verma, V., Mirin, R., Nam, S.W., Liu, L., Srinivasan, K.: Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, 889(2017)
CrossRef Google scholar
[606]
Heindel, T., Thoma, A., von Helversen, M., Schmidt, M., Schlehahn, A., Gschrey, M., Schnauber, P., Schulze, J.H., Strittmatter, A., Beyer, J., Rodt, S., Carmele, A., Knorr, A., Reitzenstein, S.: A bright triggered twin-photon source in the solid state. Nat. Commun. 8, 14870(2017)
CrossRef Google scholar
[607]
Huber, D., Reindl, M., Covre da Silva, S.F., Schimpf, C., Martín-Sánchez, J., Huang, H., Piredda, G., Edlinger, J., Rastelli, A., Trotta, R.: Strain-tunable GaAs quantum dot: a nearly dephasingfree source of entangled photon pairs on demand. Phys. Rev. Lett. 121, 033902(2018)
CrossRef Google scholar
[608]
Huber, D., Reindl, M., Huo, Y., Huang, H., Wildmann, J.S., Schmidt, O.G., Rastelli, A., Trotta, R.: Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 8, 15506(2017)
CrossRef Google scholar
[609]
Jöns, K.D., Schweickert, L., Versteegh, M.A.M., Dalacu, D., Poole, P.J., Gulinatti, A., Giudice, A., Zwiller, V., Reimer, M.E.: Bright nanoscale source of deterministic entangled photon pairs violating Bell’s inequality. Sci. Rep. 7, 1700(2017)
CrossRef Google scholar
[610]
Khoshnegar, M., Huber, T., Predojević, A., Dalacu, D., Prilmüller, M., Lapointe, J., Wu, X., Tamarat, P., Lounis, B., Poole, P., Weihs, G., Majedi, H.: A solid state source of photon triplets based on quantum dot molecules. Nat. Commun. 8, 15716(2017)
CrossRef Google scholar
[611]
Benedikter, J., Kaupp, H., Hümmer, T., Liang, Y., Bommer, A., Becher, C., Krueger, A., Smith, J.M., Hänsch, T.W., Hunger, D.: Cavity-enhanced single-photon source based on the siliconvacancy center in diamond. Phys. Rev. Appl. 7, 024031(2017)
CrossRef Google scholar
[612]
Wang, X.L., Chen, L.K., Li, W., Huang, H.L., Liu, C., Chen, C., Luo, Y.H., Su, Z.E., Wu, D., Li, Z.D., Lu, H.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502(2016)
CrossRef Google scholar
[613]
Higginbottom, D.B., Slodička, L., Araneda, G., Lachman, L., Filip, R., Hennrich, M., Blatt, R.: Pure single photons from a trapped atom source. New J. Phys. 18, 093038(2016)
CrossRef Google scholar
[614]
Peng, Z., de Graaf, S., Tsai, J., Astafiev, O.V.: Tuneable ondemand single-photon source in the microwave range. Nat. Commun. 7, 12588(2016)
CrossRef Google scholar
[615]
Geng, W., Manceau, M., Rahbany, N., Sallet, V., De Vittorio, M., Carbone, L., Glorieux, Q., Bramati, A., Couteau, C.: Localised excitation of a single photon source by a nanowaveguide. Sci. Rep. 6, 19721(2016)
CrossRef Google scholar
[616]
Li, Y.H., Zhou, Z.Y., Feng, L.T., Fang, W.T., Liu, S.L., Liu, S.K., Wang, K., Ren, X.F., Ding, D.S., Xu, L.X., Shi, B.S.: On-chip multiplexed multiple entanglement sources in a single silicon nanowire. Phys. Rev. Appl. 7, 064005(2017)
CrossRef Google scholar
[617]
Kruse, R., Sansoni, L., Brauner, S., Ricken, R., Hamilton, C.S., Jex, I., Silberhorn, C.: Dual-path source engineering in integrated quantum optics. Phys. Rev. A 92, 053841(2015)
CrossRef Google scholar
[618]
Sansoni, L., Luo, K.H., Eigner, C., Ricken, R., Quiring, V., Herrmann, H., Silberhorn, C.: A two-channel, spectrally degenerate polarization entangled source on chip. npj Quantum Inf. 3, 5(2017)
CrossRef Google scholar
[619]
Atzeni, S., Rab, A.S., Corrielli, G., Polino, E., Valeri, M., Mataloni, P., Spagnolo, N., Crespi, A., Sciarrino, F., Osellame, R.: Integrated sources of entangled photons at the telecom wave-length in femtosecond-laser-written circuits. Optica 5, 311–314 (2018)
CrossRef Google scholar
[620]
Lounis, B., Orrit, M.: Single-photon sources. Rep. Prog. Phys. 68, 1129(2005)
CrossRef Google scholar
[621]
Mäntynen, H., Anttu, N., Sun, Z., Lipsanen, H.: Single-photon sources with quantum dots in III-V nanowires. Nanophotonics 8(5), 747–769 (2019)
CrossRef Google scholar
[622]
Sinha, U., Sahoo, S.N., Singh, A., Joarder, K., Chatterjee, R., Chakraborti, S.: Single-photon sources. Opt. Photon. News 30(9), 32–39 (2019)
CrossRef Google scholar
[623]
Lee, J., Leong, V., Kalashnikov, D., Dai, J., Gandhi, A., Krivitsky, L.A.: Integrated single photon emitters. AVS Quantum Sci. 2, 031701(2020)
CrossRef Google scholar
[624]
Ollivier, H., Maillette de Buy Wenniger, I., Thomas, S., Wein, S.C., Harouri, A., Coppola, G., Hilaire, P., Millet, C., Lemaître, A., Sagnes, I., Krebs, O., Lanco, L., Loredo, J.C., Antón, C., Somaschi, N., Senellart, P.: Reproducibility of high-performance quantum dot single-photon sources. ACS Photon. 7(4), 1050–1059(2020)
CrossRef Google scholar
[625]
Kück, S.: Single photon sources for absolute radiometry—a review about the current state of the art. Meas. Sens. 18, 100219(2021)
CrossRef Google scholar
[626]
Georgieva, H., López, M., Hofer, H., Kanold, N., Kaganskiy, A., Rodt, S., Reitzenstein, S., Kück, S.: Absolute calibration of a single-photon avalanche detector using a bright triggered singlephoton source based on a quantum dot. Opt. Express 29(15), 23500–23507 (2021)
CrossRef Google scholar
[627]
Couteau, C., Barz, S., Durt, T., Gerrits, T., Huwer, J., Prevedel, R., Rarity, J., Shields, A., Weihs, G.: Applications of single photons to quantum communication and computing. Nat. Rev. Phys. 5, 326(2023)
CrossRef Google scholar
[628]
Couteau, C., Barz, S., Durt, T., Gerrits, T., Huwer, J., Prevedel, R., Rarity, J., Shields, A., Weihs, G.: Applications of single photons in quantum metrology, biology and the foundations of quantum physics. Nat. Rev. Phys. 5, 354(2023)
CrossRef Google scholar
[629]
Khalid, S., Laussy, F.P.: Perfect single-photon sources. Sci. Rep. 14, 2684(2024)
CrossRef Google scholar
[630]
Gaither-Ganim, M.B., Newlon, S.A., Anderson, M.G., Lee, B.: Organic molecule single-photon sources. Oxford Open Mater. Sci. 3, 1(2024)
CrossRef Google scholar
[631]
Guo, S., Germanis, S., Taniguchi, T., Watanabe, K., Withers, F., Luxmoore, I.J.: Source, electrically driven site-controlled single photon. ACS Photon. 10(8), 2549–2555 (2023)
CrossRef Google scholar
[632]
Castelletto, S., Boretti, A.: Perspective on solid-state singlephoton sources in the infrared for quantum technology. Adv. Quantum Technol. 6, 2300145(2023)
CrossRef Google scholar
[633]
Lodahl, P., Ludwig, A., Warburton, R.J.: A deterministic source of single photons. Phys. Today 75(3), 44–50 (2022)
CrossRef Google scholar
[634]
Vannucci, L., Gregersen, N.: Highly efficient and indistinguishable single-photon sources via phonon-decoupled two-color excitation. Phys. Rev. B 107, 195306(2023)
CrossRef Google scholar
[635]
Cao, X., Zopf, M., Ding, F.: Telecom wavelength single photon sources. J. Semicond. 40, 071901(2019)
CrossRef Google scholar
[636]
Senellart, P.: Semiconductor single-photon sources: progresses and applications. Photoniques 107, 40–43 (2021)
CrossRef Google scholar
[637]
You, X., Zheng, M.Y., Chen, S., Liu, R.Z., Qin, J., Xu, M.C., Ge, Z.X., Chung, T.H., Qiao, Y.K., Jiang, Y.F., Zhong, H.S., Chen, M.C., Wang, H., He, Y.M., Xie, X.P., Li, H., You, L.X., Schneider, C., Yin, J., Chen, T.Y., Benyoucef, M., Huo, Y.H., Höfling, S., Zhang, Q., Lu, C.Y., Pan, J.W.: Quantum interference with independent single-photon sources over 300 km fiber. Adv. Photon. 4, 066003(2022)
CrossRef Google scholar
[638]
Ye, Y., Lin, X., Fang, W.: Room-temperature single-photon sources based on colloidal quantum dots: a review. Materials 16(24), 7684(2023)
CrossRef Google scholar
[639]
Uppu, R., Pedersen, F.T., Wang, Y., Olesen, C.T., Papon, C., Zhou, X., Midolo, L., Scholz, S., Wieck, A.D., Ludwig, A., Lodahl, P.: Scalable integrated single-photon source. Sci. Adv. 6, eabc8268(2020)
CrossRef Google scholar
[640]
Manjavacas, A., GarcíadeAbajo, F.J.: Highly directional single-photon source. Nanophotonics 12(16), 3351–3358 (2023)
CrossRef Google scholar
[641]
Martínez, A., Sanchis, P., Martí, J.: Mach-Zehnder interferometers in photonic crystals. Opt. Quant. Electron. 37, 77–93 (2005)
CrossRef Google scholar
[642]
Perez, D., Gasulla, I., Fraile, F.J., Crudgington, L., Thomson, D.J., Khokhar, A.Z., Li, K., Cao, W., Mashanovich, G.Z., Capmany, J.: Silicon photonics rectangular universal interferometer. Laser Photon. Rev. 11, 1700219(2017)
CrossRef Google scholar
[643]
Wang, M., Peng, J., Wang, W., Yang, M.: Photonic crystal fiberbased interferometer sensors. In: Peng, G.D. (ed.) Handbook of optical fibers. Springer, Singapore (2018)
[644]
Zhao, L., Liu, B., Wu, Y., Mao, Y., Sun, T., Zhao, D., Liu, Y., Liu, S.: Photonic crystal all-fiber Mach-Zehnder interferometer sensor based on phase demodulation. Opt. Fiber Technol. 53, 102059(2019)
CrossRef Google scholar
[645]
Badoni, D., Gunnella, R., Salamon, A., Bonaiuto, V., Steglich, P.: Design and test of silicon photonic Mach-Zehnder interferometers for data transmission applications. In: 2020 Italian Conference on Optics and Photonics (ICOP). Parma, Italy, pp. 1–3 (2020)
CrossRef Google scholar
[646]
Song, M., Steinmetz, J., Zhang, Y., Nauriyal, J., Lyons, K., Jordan, A.N., Cardenas, J.: Enhanced on-chip phase measurement by inverse weak value amplification. Nat. Commun. 12, 6247(2021)
CrossRef Google scholar
[647]
Zhu, C., Huang, J.: Microwave-photonic optical fiber interferometers for refractive index sensing with high sensitivity and a tunable dynamic range. Opt. Lett. 46, 2180–2183 (2021)
CrossRef Google scholar
[648]
Cherchi, M.: Autocorrective interferometers for photonic integrated circuits. In: Proceedings 12005, Smart Photonic and Optoelectronic Integrated Circuits 2022. 1200507(2022)
[649]
Shen, J., Donnelly, D., Chakravarty, S.: Integrated photonic slow light Michelson interferometer bio sensor, Proceedings 12424, Integrated Optics: Devices, Materials, and Technologies XXVII; 124241B (2023)
[650]
Chaurasiya, R., Arora, D.: Photonic quantum computing. In: Kumar, A., Gill, S.S., Abraham, A. (eds.) Quantum and block-chain for modern computing systems: vision and advancements. Lecture notes on data engineering and communications technologies. Springer, Cham (2022)
CrossRef Google scholar
[651]
Miller, D.A.B.: Self-configuring universal linear optical component. Photon. Res. 1, 1–15 (2013)
CrossRef Google scholar
[652]
Pérez, D., Gasulla, I., Capmany, J.: Programmable multifunctional integrated nanophotonics. Nanophotonics 7(8), 1351–1371 (2018)
CrossRef Google scholar
[653]
Pérez, D., Gasulla, I., Capmany, J., Soref, R.A.: Reconfigurable lattice mesh designs for programmable photonic processors. Opt. Express 24, 12093–12106 (2016)
CrossRef Google scholar
[654]
Potter, R., Eisenman, W.: Infrared photodetectors: a review of operational detectors. Appl. Opt. 1(5), 567–574 (1962)
CrossRef Google scholar
[655]
Hadfield, R.: Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009)
CrossRef Google scholar
[656]
Marsili, F., Verma, V., Stern, J., Harrington, S., Lita, A.E., Gerrits, T., Vayshenker, I., Baek, B., Shaw, M.D., Mirin, R.P., Nam, S.W.: Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–214 (2013)
CrossRef Google scholar
[657]
Esmaeil Zadeh, I., Los, J.W.N., Gourgues, R.B.M., Chang, J., Elshaari, A.W., Zichi, J.R., van Staaden, Y.J., Swens, J.P.E., Kalhor, N., Guardiani, A., Meng, Y., Zou, K., Dobrovolskiy, S., Fognini, A.W., Schaart, D.R., Dalacu, D., Poole, P.J., Reimer, M.E., Hu, X., Pereira, S.F., Zwiller, V., Dorenbos, S.N.: Efficient single-photon detection with 7.7 ps time resolution for photoncorrelation measurements. ACS Photon. 7, 1780–1787 (2020)
CrossRef Google scholar
[658]
Perrenoud, M., Caloz, M., Amri, E., Autebert, C., Schönenberger, C., Zbinden, H., Bussières, F.: Operation of parallel SNSPDs at high detection rates. Supercond. Sci. Technol. 34, 024002(2021)
CrossRef Google scholar
[659]
Stasi, L., Gras, G., Berrazouane, R., Bussieres, F.: High-efficiency and fast photon-number-resolving SNSPD. In: Quantum Information and Measurement VI 2021, F. Sciarrino, N. Treps, M. Giustina, and C. Silberhorn, eds., Technical Digest Series, Optica Publishing Group (2021)
[660]
Verma, V.B., Korzh, B., Walter, A.B., Lita, A.E., Briggs, R.M., Colangelo, M., Zhai, Y., Wollman, E.E., Beyer, A.D., Allmaras, J.P., Vora, H., Zhu, D., Schmidt, E., Kozorezov, A.G., Berggren, K.K., Mirin, R.P., Nam, S.W., Shaw, M.D.: Single-photon detection in the mid-infrared up to 10 µm wavelength using tungsten silicide superconducting nanowire detectors. APL Photon. 6, 056101(2021)
CrossRef Google scholar
[661]
Walsh, E.D., Jung, W., Lee, G.H., Efetov, D.K., Fong, K.C.: Josephson junction infrared single-photon detector. Science 372, 409–412 (2021)
CrossRef Google scholar
[662]
Grünenfelder, F., Boaron, A., Resta, G.V., Perrenoud, M., Rusca, D., Barreiro, C., Houlmann, R., Sax, R., Stasi, L., El-Khoury, S., Hänggi, E., Bosshard, N., Bussières, F., Zbinden, H.: Fast single-photon detectors and real-time key distillation enable high secret-key-rate quantum key distribution systems. Nat. Photon. 17, 422–426 (2023)
CrossRef Google scholar
[663]
Charaev, I., Bandurin, D.A., Bollinger, A.T., Phinney, I.Y., Drozdov, I., Colangelo, M., Butters, B.A., Taniguchi, T., Watanabe, K., He, X., Medeiros, O., Božović, I., Jarillo-Herrero, P., Berggren, K.K.: Single-photon detection using high-temperature superconductors. Nat. Nanotechnol. 18, 343–349 (2023)
CrossRef Google scholar
[664]
Buckley, S.M., Stephens, M., Lehman, J.H.: Single photon detectors and metrology. ECS Trans. 109, 149(2022)
CrossRef Google scholar
[665]
Esmaeil Zadeh, I., Chang, J., Los, J.W.N., Gyger, S., Elshaari, A.W., Steinhauer, S., Dorenbos, S.N., Zwiller, V.: Superconducting nanowire single-photon detectors: a perspective on evolution, state-of-the-art, future developments, and applications. Appl. Phys. Lett. 118, 190502(2021)
CrossRef Google scholar
[666]
Hadfield, R.H., Leach, J., Fleming, F., Paul, D.J., Tan, C.H., Ng, J.S., Henderson, R.K., Buller, G.S.: Single-photon detection for long-range imaging and sensing. Optica 10, 1124–1141 (2023)
CrossRef Google scholar
[667]
Dai, Y., Jia, K., Zhu, G., Li, H., Fei, Y., Guo, Y., Yuan, H., Wang, H., Jia, X., Zhao, Q., Kang, L., Chen, J., Zhu, S., Wu, P., Xie, Z., Zhang, L.: All-fiber device for single-photon detection. PhotoniX 4, 7(2023)
CrossRef Google scholar
[668]
Sharma, V.: Analysis of single photon detectors in differential phase shift quantum key distribution. Opt. Quant. Electron. 55, 888(2023)
CrossRef Google scholar
[669]
Martinez, N.J.D., Gehl, M., Derose, C.T., Starbuck, A.L., Pomerene, A.T., Lentine, A.L., Trotter, D.C., Davids, P.S.: Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode. Opt. Express 25, 16130–16139 (2017)
CrossRef Google scholar
[670]
Warburton, R.E., Intermite, G., Myronov, M., Allred, P., Leadley, D.R., Gallacher, K., Paul, D.J., Pilgrim, N.J., Lever, L.J.M., Ikonic, Z., Kelsall, R.W., Huante-Ceron, E., Knights, A.P., Buller, G.S.: Ge-on-Si single-photon avalanche diode detectors: design, modeling, fabrication, and characterization at wavelengths 1310 and 1550 nm. IEEE Trans. Electron Devices 60(11), 3807–3813 (2013)
CrossRef Google scholar
[671]
Zhang, J., Itzler, M., Zbinden, H., Pan, J.W.: Advances in InGaAs/InP single-photon detector systems for quantum communication. Light Sci. Appl. 4, e286(2015)
CrossRef Google scholar
[672]
Comandar, L.C., Fröhlich, B., Dynes, J.F., Sharpe, A.W., Lucamarini, M., Yuan, Z.L., Penty, R.V., Shields, A.J.: Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm. J. Appl. Phys. 117, 083109(2015)
CrossRef Google scholar
[673]
Yan, Z., Hamel, D.R., Heinrichs, A.K., Jiang, X., Itzler, M.A., Jennewein, T.: An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode. Rev. Sci. Instrum. 83, 073105(2012)
CrossRef Google scholar
[674]
Korzh, B., Walenta, N., Lunghi, T., Gisin, N., Zbinden, H.: Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency. Appl. Phys. Lett. 104, 081108(2014)
CrossRef Google scholar
[675]
Covi, M., Pressl, B., Günthner, T., Laiho, K., Krapick, S., Silberhorn, C., Weihs, G.: Liquid-nitrogen cooled, free-running singlephoton sensitive detector at telecommunication wavelengths. Appl. Phys. B 118, 489–495 (2015)
CrossRef Google scholar
[676]
Weng, Q., An, Z., Zhang, B., Chen, P., Chen, X., Zhu, Z., Lu, W.: Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection. Sci. Rep. 5, 9389(2015)
CrossRef Google scholar
[677]
Li, H., Zhang, L., You, L., Yang, X., Zhang, W., Liu, X., Chen, S., Wang, Z., Xie, X.: Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency. Opt. Express 23, 17301–17308 (2015)
CrossRef Google scholar
[678]
Zhang, W.J., Li, H., You, L.X., He, Y.H., Zhang, L., Liu, X.Y., Yang, X.Y., Wu, J.J., Guo, Q., Chen, S.J., Wang, Z., Xie, X.M.: Superconducting nanowire single-photon detectors at a wavelength of 940 nm. AIP Adv. 5, 067129(2015)
CrossRef Google scholar
[679]
Yamashita, T., Waki, K., Miki, S., Kirkwood, R.A., Hadfield, R.H., Terai, H.: Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers. Sci. Rep. 6, 35240(2016)
CrossRef Google scholar
[680]
Atikian, H.A., Eftekharian, A., Jafari Salim, A., Burek, M.J., Choy, J.T., Hamed Majedi, A., Lončar, M.: Superconducting nanowire single photon detector on diamond. Appl. Phys. Lett. 104, 122602(2014)
CrossRef Google scholar
[681]
Tyler, N.A., Barreto, J., Villarreal-Garcia, G.E., Bonneau, D., Sahin, D., O’Brien, J.L., Thompson, M.G.: Modelling superconducting nanowire single photon detectors in a waveguide cavity. Opt. Express 24, 8797–8808 (2016)
CrossRef Google scholar
[682]
Arpaia, R., Ejrnaes, M., Parlato, L., Tafuri, F., Cristiano, R., Golubev, D., Sobolewski, R., Bauch, T., Lombardi, F., Pepe, G.P.: High-temperature superconducting nanowires for photon detection. Physica C Superconductivity Appl. 509, 16–21 (2015)
CrossRef Google scholar
[683]
Takesue, H., Dyer, S.D., Stevens, M.J., Verma, V., Mirin, R.P., Nam, S.W.: Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica 2, 832–835 (2015)
CrossRef Google scholar
[684]
Le Jeannic, H., Verma, V.B., Cavaillès, A., Marsili, F., Shaw, M.D., Huang, K., Morin, O., Nam, S.W., Laurat, J.: High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared. Opt. Lett. 41, 5341–5344 (2016)
CrossRef Google scholar
[685]
Zhang, W., You, L., Li, H., Huang, J., Lv, C.L., Zhang, L., Liu, X.Y., Wu, J.J., Wang, Z., Xie, X.M.: NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature. Sci. China Phys. Mech. Astron. 60, 120314(2017)
CrossRef Google scholar
[686]
Zadeh, I.E., Los, J.W.N., Gourgues, R.B.M., Steinmetz, V., Bulgarini, G., Dobrovolskiy, S.M., Zwiller, V., Dorenbos, S.N.: Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution. APL Photon. 2, 111301(2017)
CrossRef Google scholar
[687]
Wang, Q., Renema, J.J., Engel, A., de Dood, M.J.A.: Design of NbN superconducting nanowire single-photon detectors with enhanced infrared detection efficiency. Phys. Rev. Appl. 8, 034004(2017)
CrossRef Google scholar
[688]
Vorobyov, V.V., Kazakov, A.Y., Soshenko, V.V., Korneev, A.A., Shalaginov, M.Y., Bolshedvorskii, S.V., Sorokin, V.N., Divochiy, A.V., Vakhtomin, Y.B., Smirnov, K.V., Voronov, B.M.: Super-conducting detector for visible and near-infrared quantum emitters [Invited]. Opt. Mater. Express 7, 513–526 (2017)
CrossRef Google scholar
[689]
Miki, S., Yabuno, M., Yamashita, T., Terai, H.: Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector. Opt. Express 25, 6796–6804 (2017)
CrossRef Google scholar
[690]
Ma, F., Zheng, M.Y., Yao, Q., Xie, X.P., Zhang, Q., Pan, J.W.: 1.064-µm-band up-conversion single-photon detector. Opt. Express 25, 14558–14564 (2017)
CrossRef Google scholar
[691]
Pelc, J.S., Ma, L., Phillips, C.R., Zhang, Q., Langrock, C., Slattery, O., Tang, X., Fejer, M.M.: Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Opt. Express 19, 21445–21456 (2011)
CrossRef Google scholar
[692]
Hu, Q., Dam, J.S., Pedersen, C., Tidemand-Lichtenberg, P.: High-resolution mid-IR spectrometer based on frequency upconversion. Opt. Lett. 37, 5232–5234 (2012)
CrossRef Google scholar
[693]
Pelc, J.S., Kuo, P.S., Slattery, O., Ma, L., Tang, X., Fejer, M.M.: Dual-channel, single-photon upconversion detector at 1.3 µm. Opt. Express 20, 19075–19087 (2012)
CrossRef Google scholar
[694]
Pomarico, E., Sanguinetti, B., Thew, R., Zbinden, H.: Room temperature photon number resolving detector for infared wave-lengths. Opt. Express 18, 10750–10759 (2010)
CrossRef Google scholar
[695]
Zheng, M.Y., Shentu, G.L., Ma, F., Zhou, F., Zhang, H.T., Dai, Y.Q., Xie, X., Zhang, Q., Pan, J.W.: Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count. Rev. Sci. Instrum. 87, 093115(2016)
CrossRef Google scholar
[696]
Inomata, K., Lin, Z., Koshino, K., Oliver, W.D., Tsai, J.S., Yamamoto, T., Nakamura, Y.: Single microwave-photon detector using an artificial Λ-type three-level system. Nat. Commun. 7, 12303(2016)
CrossRef Google scholar
[697]
Najafi, F., Marsili, F., Dauler, E., Molnar, R.J., Berggren, K.K.: Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors. Appl. Phys. Lett. 100, 152602(2012)
CrossRef Google scholar
[698]
Heat, R.M.: Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector. Appl. Phys. Lett. 104, 063503(2014)
CrossRef Google scholar
[699]
Miller, A.J., Lita, A.E., Calkins, B., Vayshenker, I., Gruber, S.M., Nam, S.W.: Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. Opt. Express 19, 9102–9110 (2011)
CrossRef Google scholar
[700]
Calkins, B., Mennea, P.L., Lita, A.E., Metcalf, B.J., Kolthammer, W.S., Lamas-Linares, A., Spring, J.B., Humphreys, P.C., Mirin, R.P., Gates, J.C., Smith, P.G.: High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing. Opt. Express 21, 22657–22670 (2013)
CrossRef Google scholar
[701]
Höpker, J.F., Bartnick, M., Meyer-Scott, E., Thiele, F., Meier, T., Bartley, T., Krapick, S., Montaut, N.M., Santandrea, M., Herrmann, H., Lengeling, S., Ricken, R., Quiring, V., Lita, A.E., Verma, V.B., Gerrits, T., Nam, S.W., Silberhorn, C.: Towards integrated superconducting detectors on lithium niobate waveguides. Proc. SPIE 10358(2017)
[702]
Lamas-Linares, A., Calkins, B., Tomlin, N.A., Gerrits, T., Lita, A.E., Beyer, J., Mirin, R.P., Woo Nam, S.: Nanosecond-scale timing jitter for single photon detection in transition edge sensors. Appl. Phys. Lett. 102, 231117(2013)
CrossRef Google scholar
[703]
Avenhaus, M., Laiho, K., Chekhova, M.V., Silberhorn, C.: Accessing higher order correlations in quantum optical states by time multiplexing. Phys. Rev. Lett. 104, 063602(2010)
CrossRef Google scholar
[704]
Thomas, O., Yuan, Z., Shields, A.: Practical photon number detection with electric field-modulated silicon avalanche photodiodes. Nat. Commun. 3, 644(2012)
CrossRef Google scholar
[705]
Yuan, Y., Dong, Q., Yang, B., Guo, F., Zhang, Q., Han, M., Huang, J.: Solution-processed nanoparticle super-float-gated organic field-effect transistor as un-cooled ultraviolet and infrared photon counter. Sci. Rep. 3, 2707(2013)
CrossRef Google scholar
[706]
Akhlaghi, M., Schelew, E., Young, J.: Waveguide integrated superconducting single-photon detectors implemented as nearperfect absorbers of coherent radiation. Nat. Commun. 6, 8233(2015)
CrossRef Google scholar
[707]
Sprengers, J.P., Gaggero, A., Sahin, D., Jahanmirinejad, S., Frucci, G., Mattioli, F., Leoni, R., Beetz, J., Lermer, M., Kamp, M., Höfling, S., Sanjines, R., Fiore, A.: Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 181110(2011)
CrossRef Google scholar
[708]
Jahanmirinejad, S., Frucci, G., Mattioli, F., Sahin, D., Gaggero, A., Leoni, R., Fiore, A.: Photon-number resolving detector based on a series array of superconducting nanowires. Appl. Phys. Lett. 101, 072602(2012)
CrossRef Google scholar
[709]
Reithmaier, G., Lichtmannecker, S., Reichert, T., Hasch, P., Müller, K., Bichler, M., Gross, R., Finley, J.J.: On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors. Sci. Rep. 3, 1901(2013)
CrossRef Google scholar
[710]
Sahin, D., Gaggero, A., Weber, J.W., Agafonov, I., Verheijen, M.A., Mattioli, F., Beetz, J., Kamp, M., Hofling, S., van de Sanden, M.C.M., Leoni, R., Fiore, A.: Waveguide nanowire superconducting single-photon detectors fabricated on gaas and the study of their optical properties. IEEE J. Sel. Top. Quantum Electron. 21(3800210), 1–10 (2015)
CrossRef Google scholar
[711]
Zhou, Z., Jahanmirinejad, S., Mattioli, F., Sahin, D., Frucci, G., Gaggero, A., Leoni, R., Fiore, A.: Superconducting series nanowire detector counting up to twelve photons. Opt. Express 22, 3475–3489 (2014)
CrossRef Google scholar
[712]
Kaniber, M., Flassig, F., Reithmaier, G., Gross, R., Finley, J.J.: Integrated superconducting detectors on semiconductors for quantum optics applications. Appl. Phys. B 122, 115(2016)
CrossRef Google scholar
[713]
Drummond, M., Barzik, M., Bird, J., Zhang, D.S., Lechene, C.P., Corey, D.P., Cunningham, L.L., Friedman, T.B.: Live-cell imaging of actin dynamics reveals mechanisms of stereocilia length regulation in the inner ear. Nat. Commun. 6, 6873(2015)
CrossRef Google scholar
[714]
Mattioli, F., Zhou, Z., Gaggero, A., Gaudio, R., Leoni, R., Fiore, A.: Photon-counting and analog operation of a 24-pixel photon number resolving detector based on superconducting nanowires. Opt. Express 24, 9067–9076 (2016)
CrossRef Google scholar
[715]
Li, J., Kirkwood, R.A., Baker, L.J., Bosworth, D., Erotokritou, K., Banerjee, A., Heath, R.M., Natarajan, C.M., Barber, Z.H., Sorel, M., Hadfield, R.H.: Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires. Opt. Express 24, 13931–13938 (2016)
CrossRef Google scholar
[716]
Tanner, M.G., Alvarez, L.S.E., Jiang, W., Warburton, R.J., Barber, Z.H., Hadfield, R.H.: A superconducting nanowire single photon detector on lithium niobate. Nanotechnology 23, 505201(2012)
CrossRef Google scholar
[717]
Cavalier, P., Villégier, J.-C., Feautrier, P., Constancias, C., Morand, A.: Light interference detection on-chip by integrated SNSPD counters. AIP Adv. 1, 042120(2011)
CrossRef Google scholar
[718]
Ferrari, S., Kahl, O., Kovalyuk, V., Goltsman, G.N., Korneev, A., Pernice, W.H.: Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires. Appl. Phys. Lett. 106, 151101(2015)
CrossRef Google scholar
[719]
Kahl, O., Ferrari, S., Kovalyuk, V., Goltsman, G.N., Korneev, A., Pernice, W.H.P.: Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths. Sci. Rep. 5, 10941(2015)
CrossRef Google scholar
[720]
Schuck, C., Pernice, W.H.P., Tang, H.X.: NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits. Appl. Phys. Lett. 102, 051101(2013)
CrossRef Google scholar
[721]
Schuck, C., Guo, X., Fan, L., Ma, X., Poot, M., Tang, H.X.: Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip. Nat. Commun. 7, 10352(2016)
CrossRef Google scholar
[722]
Beyer, A.D., Briggs, R.M., Marsili, F., Cohen, J.D., Meenehan, S.M., Painter, O.J., Shaw, M.D.: Waveguide-coupled superconducting nanowire single-photon detectors. In: CLEO: 2015, OSA Technical Digest (online) (Optica Publishing Group) (2015)
[723]
Shainline, J.M., Buckley, S.M., Nader, N., Gentry, C.M., Cossel, K.C., Cleary, J.W., Popović, M., Newbury, N.R., Nam, S.W., Mirin, R.P.: Room-temperature-deposited dielectrics and superconductors for integrated photonics. Opt. Express 25, 10322–10334(2017)
CrossRef Google scholar
[724]
Rath, P., Kahl, O., Ferrari, S., Sproll, F., Lewes-Malandrakis, G., Brink, D., Ilin, K., Siegel, M., Nebel, C., Pernice, W.: Supercon-ducting single-photon detectors integrated with diamond nanophotonic circuits. Light Sci. Appl. 4, e338(2015)
CrossRef Google scholar
[725]
Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V.: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101(2011)
[726]
Natarajan, C.M., Tanner, M.G., Hadfield, R.H.: Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001(2012)
CrossRef Google scholar
[727]
Melati, D., Melloni, A., Morichetti, F.: Real photonic waveguides: guiding light through imperfections. Adv. Opt. Photon. 6, 156–224 (2014)
CrossRef Google scholar
[728]
Bazzan, M., Sada, C.: Optical waveguides in lithium niobate: recent developments and applications. Appl. Phys. Rev. 2, 040603(2015)
CrossRef Google scholar
[729]
Kima, S., Yan, R.: Recent developments in photonic, plasmonic and hybrid nanowire waveguides. J. Mater. Chem. C 6, 11795(2018)
CrossRef Google scholar
[730]
Saito, S., Tomita, I., Sotto, M., Debnath, K., Byers, J., Al-Attili, A.Z., Burt, D., Husain, M.K., Arimoto, H., Ibukuro, K., Charlton, M., Thomson, D.J., Zhang, W., Chen, B., Gardes, F.Y., Reed, G.T., Rutt, H.N.: Si photonic waveguides with broken symmetries: applications from modulators to quantum simulations. Jpn. J. Appl. Phys. 59, SO0801(2020)
CrossRef Google scholar
[731]
Katyba, G.M., Zaytsev, K.I., Dolganova, I.N., Chernomyrdin, N.V., Ulitko, V.E., Rossolenko, S.N., Shikunova, I.A., Kurlov, V.N.: Sapphire waveguides and fibers for terahertz applications. Prog. Cryst. Growth Charact. Mater. 67(3), 100523(2021)
CrossRef Google scholar
[732]
Meng, Y., Chen, Y., Lu, L., Ding, Y., Cusano, A., Fan, J.A., Hu, Q., Wang, K., Xie, Z., Liu, Z., Yang, Y., Liu, Q., Gong, M., Xiao, Q., Sun, S., Zhang, M., Yuan, X., Ni, X.: Optical metawaveguides for integrated photonics and beyond. Light Sci. Appl. 10, 235(2021)
CrossRef Google scholar
[733]
Chen, S., Zhuo, M.P., Wang, X.D., Wei, G.Q., Liao, L.S.: Optical waveguides based on one-dimensional organic crystals. PhotoniX 2, 2(2021)
CrossRef Google scholar
[734]
Urbonas, D., Mahrt, R.F., Stöferle, T.: Low-loss optical waveguides made with a high-loss material. Light Sci. Appl. 10, 15(2021)
CrossRef Google scholar
[735]
Hassan, H.M.I., Areed, N.F.F., El-Mikati, H.A., Hameed, M.F.O., Obayya, S.S.A.: Low loss hybrid plasmonic photonic crystal waveguide for optical communication applications. Opt. Quant. Electron. 54, 431(2022)
CrossRef Google scholar
[736]
Zejie, Y., Gao, H., Wang, Y., Yue, Y., Tsang, H.K., Sun, X., Dai, D.: Fundamentals and applications of photonic waveguides with bound states in the continuum. J. Semicond. 44(10), 101301(2023)
CrossRef Google scholar
[737]
Messner, A., Moor, D., Chelladurai, D., Svoboda, R., Smajic, J., Leuthold, J.: Plasmonic, photonic, or hybrid? Reviewing waveguide geometries for electro-optic modulators. APL Photon. 8, 100901(2023)
CrossRef Google scholar
[738]
Wang, J., Dong, J.: Optical waveguides and integrated optical devices for medical diagnosis, health monitoring and light therapies. Sensors 20, 3981(2020)
CrossRef Google scholar
[739]
Wang, X., Li, Z., Lei, S.: Soft optical waveguides for biomedical applications. Wearable devices, and soft robotics: a review. Adv. Intel. Syst. 6, 2300482(2024)
CrossRef Google scholar
[740]
Corrielli, G., Crespi, A., Geremia, R., Ramponi, R., Sansoni, L., Santinelli, A., Mataloni, P., Sciarrino, F., Osellame, R.: Rotated waveplates in integrated waveguide optics. Nat. Commun. 5, 4249(2014)
CrossRef Google scholar
[741]
Takesue, H., Tokura, Y., Fukuda, H., Tsuchizawa, T., Watanabe, T., Yamada, K., Itabashi, S.: Entanglement generation using silicon wire waveguide. Appl. Phys. Lett. 91, 201108(2007)
CrossRef Google scholar
[742]
Zhang, M., Feng, L.T., Zhou, Z.Y., Chen, Y., Wu, H., Li, M., Gao, S.M., Guo, G.P., Guo, G.C., Dai, D.X., Ren, X.F.: Generation of multiphoton quantum states on silicon. Light Sci. Appl. 8, 41(2019)
CrossRef Google scholar
[743]
Zhang, X., Bell, B.A., Mahendra, A., Xiong, C., Leong, P.H.W., Eggleton, B.J.: Integrated silicon nitride time-bin entanglement circuits. Opt. Lett. 43, 3469–3472 (2018)
CrossRef Google scholar
[744]
Lu, X., Li, Q., Westly, D.A., Moille, G., Singh, A., Anant, V., Srinivasan, K.: Chip-integrated visible-telecom entangled photon pair source for quantum communication. Nat. Phys. 15, 373–381 (2019)
CrossRef Google scholar
[745]
Horn, R., Abolghasem, P., Bijlani, B.J., Kang, D., Helmy, A.S., Weihs, G.: Monolithic source of photon pairs. Phys. Rev. Lett. 108, 153605(2012)
CrossRef Google scholar
[746]
Wang, J., Santamato, A., Jiang, P., Bonneau, D., Engin, E., Silverstone, J.W., Lermer, M., Beetz, J., Kamp, M., Höfling, S., Tanner, M.G., Natarajan, C.M., Hadfield, R.H., Dorenbos, S.N., Zwiller, V., O’Brien, J.L., Thompson, M.G.: Gallium arsenide (GaAs) quantum photonic waveguide circuits. Opt. Commun. 327, 49–55 (2014)
CrossRef Google scholar
[747]
Sprengers, J.P., Gaggero, A., Sahin, D., Jahanmirinejad, S., Frucci, G., Mattioli, F., Leoni, R., Beetz, J., Lermer, M., Kamp, M., Höfling, S., Sanjines, R., Fiore, A.: Waveguide superconducting single photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 181110(2011)
CrossRef Google scholar
[748]
Tanzilli, S., Tittel, W., De Riedmatten, H., Zbinden, H., Baldi, P., DeMicheli, M., Ostrowsky, D.B., Gisin, N.: PPLN waveguide for quantum communication. Eur. Phys. J. D 18, 155–160 (2002)
CrossRef Google scholar
[749]
Abellan, C., Amaya, W., Domenech, D., Muñoz, P., Capmany, J., Longhi, S., Mitchell, M.W., Pruneri, V.: Quantum entropy source on an InP photonic integrated circuit for random number generation. Optica 3, 989–994 (2016)
CrossRef Google scholar
[750]
Capmany, J., Gasulla, I., Pérez, D.: Microwave photonics: the programmable processor. Nat. Photon. 10, 6–8 (2016)
CrossRef Google scholar
[751]
Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Verstraeten, D., Schrauwen, B., Dambre, J., Bienstman, P.: Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541(2014)
CrossRef Google scholar
[752]
Brunner, D., Soriano, M. C., der Sande, G. V.: Eds., Photonic Reservoir Computing: Optical Recurrent Neural Networks. De Gruyter (2019)
[753]
Rafayelyan, M., Dong, J., Tan, Y., Krzakala, F., Gigan, S.: Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction. Phys. Rev. X 10, 041037(2020)
CrossRef Google scholar
[754]
Nakajima, M., Tanaka, K., Hashimoto, T.: Scalable reservoir computing on coherent linear photonic processor. Commun. Phys. 4, 20(2021)
CrossRef Google scholar
[755]
Pierangeli, D., Marcucci, G., Conti, C.: Large-scale photonic ising machine by spatial light modulation. Phys. Rev. Lett. 122, 213902(2019)
CrossRef Google scholar
[756]
Okawachi, Y., Yu, M., Jang, J.K., Ji, X., Zhao, Y., Kim, B.Y., Lipson, M., Gaeta, A.L.: Demonstration of chip-based coupled degenerate optical parametric oscillators for realizing a nanophotonic spin-glass. Nat. Commun. 11, 4119(2020)
CrossRef Google scholar
[757]
Leonetti, M., Hormann, E., Leuzzi, L., Parisi, G., Ruocco, G.: Optical computation of a spin glass dynamics with tunable complexity. Proc. Natl. Acad. Sci. 118(21), e2015207118(2021)
CrossRef Google scholar
[758]
Wang, T., Ma, S.Y., Wright, L.G., Onodera, T., Richard, B.C., McMahon, P.L.: An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123(2022)
CrossRef Google scholar
[759]
Yung, M.H., Gao, X., Huh, J.: Universal bound on sampling bosons in linear optics and its computational implications. Natl. Sci. Rev. 6(4), 719–729 (2019)
CrossRef Google scholar
[760]
Triggiani, D., Facchi, P., Tamma, V.: Heisenberg scaling precision in the estimation of functions of parameters in linear optical networks. Phys. Rev. A 104, 062603(2021)
CrossRef Google scholar
[761]
Hoch, F., Giordani, T., Spagnolo, N., Crespi, A., Osellame, R., Sciarrino, F.: Characterization of multimode linear optical networks. Adv. Photon. Nexus 2(1), 016007(2023)
CrossRef Google scholar
[762]
Rahman, M.S.S., Yang, X., Li, J., Bai, B., Ozcan, A.: Universal linear intensity transformations using spatially incoherent diffractive processors. Light Sci. Appl. 12, 195(2023)
CrossRef Google scholar
[763]
Erhard, M., Krenn, M., Zeilinger, A.: Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2(7), 365–381 (2020)
CrossRef Google scholar
[764]
Cozzolino, D., Da Lio, B., Bacco, D., Oxenløwe, L.K.: Highdimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol. 2(12), 1900038(2019)
CrossRef Google scholar
[765]
Imany, P., Jaramillo-Villegas, J.A., Alshaykh, M.S., Lukens, J.M., Odele, O.D., Moore, A.J., Leaird, D.E., Qi, M., Weiner, A.M.: High-dimensional optical quantum logic in large operational spaces. npj Quantum Inf. 5(1), 59(2019)
CrossRef Google scholar
[766]
Reimer, C., Sciara, S., Roztocki, P., Islam, M., Romero Cortés, L., Zhang, Y., Fischer, B., Loranger, S., Kashyap, R., Cino, A., Chu, S.T., Little, B.E., Moss, D.J., Caspani, L., Munro, W.J., Azaña, J., Kues, M., Morandotti, R.: High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148–153 (2019)
CrossRef Google scholar
[767]
Xavier, G.B., Lima, G.: Quantum information processing with space-division multiplexing optical fibres. Commun. Phys. 3(1), 9(2020)
CrossRef Google scholar
[768]
Leedumrongwatthanakun, S., Innocenti, L., Defienne, H., Juffmann, T., Ferraro, A., Paternostro, M., Gigan, S.: Programmable linear quantum networks with a multimode fibre. Nat. Photon. 14(3), 139–142 (2020)
CrossRef Google scholar
[769]
Marrucci, L., Karimi, E., Slussarenko, S., Piccirillo, B., Santamato, E., Nagali, E., Sciarrino, F.: Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 13, 064001(2011)
CrossRef Google scholar
[770]
Loudon, R.: The Quantum Theory of Light. Clarendon Press, Oxford (1983)
[771]
Diamanti, E., Leverrier, A.: Distributing secret keys with quantum continuous variables: principle, security and implementations. Entropy 17(9), 6072–6092 (2015)
CrossRef Google scholar
[772]
Rahimi-Keshari, S., Lund, A.P., Ralph, T.C.: What can quantum optics say about computational complexity theory? Phys. Rev. Lett. 114, 060501(2015)
CrossRef Google scholar
[773]
Hamilton, C.S., Kruse, R., Sansoni, L., Barkhofen, S., Silberhorn, C., Jex, I.: Gaussian boson sampling. Phys. Rev. Lett. 119(17), 170501(2017)
CrossRef Google scholar
[774]
Lund, A.P., Laing, A., Rahimikeshari, S., Rudolph, T., Obrien, J.L., Ralph, T.C.: Boson sampling from a Gaussian state. Phys. Rev. Lett. 113(10), 100502(2014)
CrossRef Google scholar
[775]
Bharti, K., Cervera-Lierta, A., Kyaw, T.H., Haug, T., Alperin-Lea, S., Anand, A., Degroote, M., Heimonen, H., Kottmann, J.S., Menke, T., Mok, W.K.: Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004(2022)
CrossRef Google scholar
[776]
Yanagimoto, R., Ng, E., Jankowski, M., Nehra, R., McKenna, T.P., Onodera, T., Wright, L.G., Hamerly, R., Marandi, A., Fejer, M.M., Mabuchi, H.: Mesoscopic ultrafast nonlinear optics-the emergence of multimode quantum non-Gaussian physics. Optica 11, 896–918 (2024)
CrossRef Google scholar
[777]
Rakhubovsky, A.A., Moore, D.W., Filip, R.: Quantum non-Gaussian optomechanics and electromechanics. Prog. Quantum Electron. 93, 100495(2024)
CrossRef Google scholar
[778]
Menicucci, N.C., van Loock, P., Gu, M., Weedbrook, C., Ralph, T.C., Nielsen, M.A.: Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501(2006)
CrossRef Google scholar
[779]
Andersen, U.L., Neergaard-Nielsen, J.S., van Loock, P., Furusawa, A.: Hybrid discrete- and continuous-variable quantum information. Nat. Phys. 11(9), 713–719 (2015)
CrossRef Google scholar
[780]
Myers, C.R., Ralph, T.C.: Coherent state topological cluster state production. New J. Phys. 13(11), 115015(2011)
CrossRef Google scholar
[781]
Auger, J.M., Anwar, H., Gimeno-Segovia, M., Stace, T.M., Browne, D.E.: Fault-tolerant quantum computation with non-deterministic entangling gates. Phys. Rev. A 97(3), 5–9 (2018)
CrossRef Google scholar
[782]
Alexander, R.N., Wang, P., Sridhar, N., Chen, M., Pfister, O., Menicucci, N.C.: One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator. Phys. Rev. A 94, 032327(2016)
CrossRef Google scholar
[783]
Larsen, M.V., Neergaard-Nielsen, J.S., Andersen, U.L.: Architecture and noise analysis of continuous-variable quantum gates using two-dimensional cluster states. Phys. Rev. A 102, 042608(2020)
CrossRef Google scholar
[784]
Alexander, R.N., Yokoyama, S., Furusawa, A., Menicucci, N.C.: Universal quantum computation with temporal-mode bi-layer square lattices. Phys. Rev. A 97, 032302(2018)
CrossRef Google scholar
[785]
Wang, P., Chen, M., Menicucci, N.C., Pfister, O.: Weaving quantum optical frequency combs into continuous-variable hyper-cubic cluster states. Phys. Rev. A 90(3), 032325(2014)
CrossRef Google scholar
[786]
Wu, B.H., Alexander, R.N., Liu, S., Zhang, Z.: Quantum computing with multi-dimensional continuous-variable cluster states in a scalable photonic platform. Phys. Rev. Res. 2(2), 023138(2020)
CrossRef Google scholar
[787]
Fukui, K., Asavanant, W., Furusawa, A.: Temporal-mode continuous- variable 3-dimensional cluster state for topologically-protected measurement-based quantum computation. Phys. Rev. A 102, 032614(2020)
CrossRef Google scholar
[788]
Lund, A.P., Ralph, T.C., Haselgrove, H.L.: Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503(2008)
CrossRef Google scholar
[789]
Rudolph, T.: Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2(3), 030901(2017)
CrossRef Google scholar
[790]
Doerr, C.R., Okamoto, K.: Advances in silica planar lightwave circuits. J. Lightw. Technol. 24, 4763–4789 (2006)
CrossRef Google scholar
[791]
Coldren, L.A., Nicholes, S.C., Johansson, L., Ristic, S., Guzzon, R.S., Norberg, E.J., Krishnamachari, U.: High performance InP-based photonic ICs-A tutorial. J. Lightw. Technol 29, 554–570 (2011)
CrossRef Google scholar
[792]
Soref, R.: The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006)
CrossRef Google scholar
[793]
Bogaerts, W.: Design challenges in silicon photonics. IEEE J. Sel. Top. Quantum Electron. 20, 8202008(2014)
[794]
Bogaerts, W., Baets, R., Dumon, P., Wiaux, V., Beckx, S., Taillaert, D., Luyssaert, B., Van Campenhout, J., Bienstman, P., Van Thourhout, D.: Nanophotonic waveguides in silicon-oninsulator fabricated with CMOS technology. J. Lightw. Technol. 23, 401–412 (2005)
[795]
Smit, M.K., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., de Vries, T., Geluk, E.J., Bolk, J., van Veldhoven, R., Augustin, L., Thijs, P., D’Agostino, D., Rabbani, H., Lawniczuk, K., Stopinski, S., Tahvili, S., Corradi, A., Kleijn, E., Dzibrou, D., Felicetti, M., Bitincka, E., Moskalenko, V., Zhao, J., Santos, R., Gilardi, G., Yao, W., Williams, K., Stabile, P., Kuindersma, P., Pello, J., Bhat, S., Jiao, Y., Heiss, D., Roelkens, G., Wale, M., Firth, P., Soares, F., Grote, N., Schell, M., Debregeas, H., Achouche, M., Gentner, J.L., Bakker, A., Korthorst, T., Gallagher, D., Dabbs, A., Melloni, A., Morichetti, F., Melati, D., Wonfor, A., Penty, R., Broeke, R., Musk, B., Robbins, D.: An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29, 083001(2014)
CrossRef Google scholar
[796]
Leinse, A., Heideman, R.G., Hoekman, M., Schreuder, F., Falke, F., Roeloffzen, C.G.H., Zhuang, L., Burla, M., Marpaung, D., Geuzebroek, D.H., Dekker, R., Klein, E.J., van Dijk, P.W.L., Oldenbeuving, R.M.: TriPleX waveguide platform: low-loss technology over a wide wavelength range. Proc. SPIE 8767, 87670E (2013)
CrossRef Google scholar
[797]
Kish, F., Nagarajan, R., Welch, D., Evans, P., Rossi, J., Pleumeekers, J., Dentai, A., Kato, M., Corzine, S., Muthiah, R., Ziari, M., Schneider, R., Reffle, M., Butrie, T., Lambert, D., Missey, M., Lal, V., Fisher, M., Murthy, S., Salvatore, R., Demars, S., James, A., Joyner, C.: From visible light-emitting diodes to large-scale III-V photonic integrated circuits. Proc. IEEE 101, 2255–2270 (2013)
CrossRef Google scholar
[798]
Heck, M.J.R., Bauters, J.F., Davenport, M.L., Doylend, J.K., Jain, S., Kurczveil, G., Srinivasan, S., Tang, Y., Bowers, J.E.: Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quantum Electron. 19, 6100117(2013)
CrossRef Google scholar
[799]
Sacher, W., Huang, Y., Lo, G.Q., Poon, J.K.S.: Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J. Lightw. Technol. 33, 901–910 (2015)
CrossRef Google scholar
[800]
Chen, X., Milosevic, M.M., Stankovic, S., Reynolds, S., Bucio, T.D., Li, K., Thomson, D.J., Gardes, F., Reed, G.T.: The emergence of silicon photonics as a flexible technology platform. Proc. IEEE 106, 2101–2116 (2018)
CrossRef Google scholar
[801]
Smit, M., Williams, K., van der Tol, J.: Past, present, and future of InP-based photonic integration. APL Photon. 4, 050901(2019)
CrossRef Google scholar
[802]
Miller, D.A.B.: Self-aligning universal beam coupler. Opt. Express 21, 6360–6370 (2013)
CrossRef Google scholar
[803]
Pai, S., Williamson, I.A.D., Hughes, T.W., Minkov, M., Miller, D.A.B.: Parallel programming of an arbitrary feedforward photonic network. IEEE J. Sel. Top. Quantum Electron. 25, 6100813(2020)
[804]
Bogaerts, W., Pérez, D., Capmany, J., Miller, D.A.B., Poon, J., Englund, D., Morichetti, F., Melloni, A.: Programmable photonic circuits. Nature 586, 207–216 (2020)
CrossRef Google scholar
[805]
Amanti, F., Andrini, G., Armani, F., Barbato, F., Bellani, V., Bonaiuto, V., Cammarata, S., Campostrini, M., Dao, T.H., De Matteis, F., Demontis, V., Donati, S., Di Giuseppe, G., Ditalia Tchernij, S., Fontana, A., Forneris, J., Frontini, L., Gunnella, R., Iadanza, S., Kaplan, A.E., Lacava, C., Liberali, V., Martini, L., Marzioni, F., Morescalchi, L., Pedreschi, E., Piergentili, P., Prete, D., Rigato, V., Roncolato, C., Rossella, F., Salvato, M., Sargeni, F., Shojaii, J., Spinella, F., Stabile, A., Toncelli, A., Vitali, V.: Integrated photonic passive building blocks on siliconon- insulator platform. Photonics 11(6), 494(2024)
CrossRef Google scholar
[806]
Capmany, J., Perez, D.: Programmable Integrated Photonics. Oxford University Press (2020)
[807]
Perez-Lopez, D.: Programmable integrated silicon photonics waveguide meshes: optimized designs and control algorithms. IEEE J. Sel. Top. Quantum Electron. 26, 8301312(2020)
CrossRef Google scholar
[808]
Harris, N.C., Carolan, J., Bunandar, D., Prabhu, M., Hochberg, M., Baehr-Jones, T., Fanto, M.L., Smith, A.M., Tison, C.C., Alsing, P.M., Englund, D.: Linear programmable nanophotonic processors. Optica 5, 1623–1631 (2018)
CrossRef Google scholar
[809]
Harris, N.C., Bunandar, D., Pant, M., Steinbrecher, G.R., Mower, J., Prabhu, M., Baehr-Jones, T., Hochberg, M., Englund, D.: Large-scale quantum photonic circuits in silicon. Nanophotonics 5, 456–468 (2016)
CrossRef Google scholar
[810]
Notaros, J., Mower, J., Heuck, M., Lupo, C., Harris, N.C., Steinbrecher, G.R., Bunandar, D., Baehr-Jones, T., Hochberg, M., Lloyd, S., Englund, D.: Programmable dispersion on a photonic integrated circuit for classical and quantum applications. Opt. Express 25, 21275–21285 (2017)
CrossRef Google scholar
[811]
Ipronic Programmable Photonics. Programmable Photonics: What, why and when? Available at the website of ipronics.com, accessed, White paper (2023)
[812]
Micó. G., Bru, L., Pastor, D., Pérez, D., Munoz, P.: C-band linear propagation properties for a 300 nm film height Silicon Nitride photonics platform. In: European Conference on Integrated Optics 2017: Eindhoven, Netherlands (2017)
[813]
Giordani, T., Hoch, F., Carvacho, G., Spagnolo, N., Sciarrino, F.: Integrated photonics in quantum technologies. Riv. Nuovo Cim. 46, 71–103 (2023)
CrossRef Google scholar
[814]
Mennea, P.L., Clements, W.R., Smith, D.H., Gates, J.C., Metcalf, B.J., Bannerman, R.H.S., Burgwal, R., Renema, J.J., Kolthammer, W.S., Walmsley, I.A., Smith, P.G.R.: Modular linear optical circuits. Optica 5, 1087–1090 (2018)
CrossRef Google scholar
[815]
Taballione, C., Wolterink, T.A.W., Eckstein, A., Lugani, J., Grootjans, R.: 8 × 8 programmable quantum photonic processor based on silicon nitride waveguides. In: Frontiers in Optics, JTu3A.58, Optical Society of America (2018)
CrossRef Google scholar
[816]
Xie, Y., Geng, Z., Zhuang, L., Burla, M., Taddei, C., Hoekman, M., Leinse, A., Roeloffzen, C.G.H., Boller, K.J., Lowery, A.J.: Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity. Nanophotonics 7, 421–454 (2017)
CrossRef Google scholar
[817]
Hall, T.J., Hasan, M.: Universal discrete Fourier optics RF photonic integrated circuit architecture. Opt. Express 24, 7600–7610 (2016)
CrossRef Google scholar
[818]
Dyakonov, I.V., Pogorelov, I.A., Bobrov, I.B., Kalinkin, A.A., Straupe, S.S., Kulik, S.P., Dyakonov, P.V., Evlashin, S.A.: Reconfigurable photonics on a glass chip. Phys. Rev. Appl. 10, 044048(2018)
CrossRef Google scholar
[819]
Shokraneh, F., Geoffroy-Gagnon, S., Nezami, M.S., Liboiron-Ladouceur, O.: A single layer neural network implemented by a 4 × 4 MZI-based optical processor. IEEE Photon. J. 11, 4501612(2019)
CrossRef Google scholar
[820]
Lu, L., Zhou, L., Chen, J.: Programmable SCOW mesh silicon photonic processor for linear unitary operator. Micromachines 10, 646(2019)
CrossRef Google scholar
[821]
Schaeff, C., Polster, R., Huber, M., Ramelow, S., Zeilinger, A.: Experimental access to higher-dimensional entangled quantum systems using integrated optics. Optica 2, 523–529 (2015)
CrossRef Google scholar
[822]
Miller, D.A.B.: Waves, modes, communications, and optics: a tutorial. Adv. Opt. Photon. 11, 679(2019)
CrossRef Google scholar
[823]
Annoni, A., Guglielmi, E., Carminati, M., Ferrari, G., Sampietro, M., Miller, D.A.B., Melloni, A., Morichetti, F.: Unscrambling light-automatically undoing strong mixing between modes. Light Sci. Appl. 6, e17110(2017)
CrossRef Google scholar
[824]
Bogaerts, W., Rahim, A.: Programmable photonics: an opportunity for an accessible large-volume PIC ecosystem. IEEE J. Sel. Top. Quantum Electron. 26, 1–17 (2020)
CrossRef Google scholar
[825]
Pérez-López, D., López, A., DasMahapatra, P., Capmany, J.: Multipurpose self-configuration of programmable photonic circuits. Nat. Commun. 11, 6359(2020)
CrossRef Google scholar
[826]
Peters, N., Altepeter, J., Jeffrey, E., Branning, D., Kwiat, P.: Precise creation, characterization, and manipulation of single optical qubits. Quantum Inf. Comput. 3, 503(2003)
CrossRef Google scholar
[827]
Luo, W., Cao, L., Shi, Y., Wan, L., Zhang, H., Li, S., Chen, G., Li, Y., Li, S., Wang, Y., Sun, S., Karim, M.F., Cai, H., Kwek, L.C., Liu, A.Q.: Recent progress in quantum photonic chips for quantum communication and internet. Light Sci. Appl. 12, 175(2023)
CrossRef Google scholar
[828]
Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901(2003)
CrossRef Google scholar
[829]
Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504(2005)
CrossRef Google scholar
[830]
Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503(2005)
CrossRef Google scholar
[831]
Semenenko, H., Sibson, P., Hart, A., Thompson, M.G., Rarity, J.G., Erven, C.: Chip-based measurement-device-independent quantum key distribution. Optica 7, 238–242 (2020)
CrossRef Google scholar
[832]
Agnesi, C., Da Lio, B., Cozzolino, D., Cardi, L., Ben Bakir, B., Hassan, K., Della Frera, A., Ruggeri, A., Giudice, A., Vallone, G., Villoresi, P., Tosi, A., Rottwitt, K., Ding, Y., Bacco, D.: Hong-Ou-Mandel interference between independent III-V on silicon waveguide integrated lasers. Opt. Lett. 44, 271–274 (2019)
CrossRef Google scholar
[833]
Ma, Y.J., Liu, Y., Guan, H., Gazman, A., Li, Q., Ding, R., Li, Y., Bergman, K., Baehr-Jones, T., Hochberg, M.: Symmetrical polarization splitter/rotator design and application in a polarization insensitive WDM receiver. Opt. Express 23, 16052–16062 (2015)
CrossRef Google scholar
[834]
Harris, N.C., Ma, Y., Mower, J., Baehr-Jones, T., Englund, D., Hochberg, M., Galland, C.: Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express 22, 10487–10493(2014)
CrossRef Google scholar
[835]
Weigel, P.O., Zhao, J., Fang, K., Al-Rubaye, H., Trotter, D., Hood, D., Mudrick, J., Dallo, C., Pomerene, A.T., Starbuck, A.L., DeRose, C.T., Lentine, A.L., Rebeiz, G., Mookherjea, S.: Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation band-width. Opt. Express 26, 23728–23739 (2018)
CrossRef Google scholar
[836]
Xu, P.P., Zheng, J., Doylend, J.K., Majumdar, A.: Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photon. 6, 553–557 (2019)
CrossRef Google scholar
[837]
Peruzzo, A., Laing, A., Politi, A., Rudolph, T., O’Brien, J.L.: Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2, 224(2011)
CrossRef Google scholar
[838]
Elshaari, A.W., Zadeh, I.E., Fognini, A., Reimer, M.E., Dalacu, D., Poole, P.J., Zwiller, V., Jöns, K.D.: On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nat. Commun. 8, 379(2017)
CrossRef Google scholar
[839]
Hong, S.H., Zhang, L., Wang, Y., Zhang, M., Xie, Y., Dai, D.: Ultralow-loss compact silicon photonic waveguide spirals and delay lines. Photon. Res. 10, 1–7 (2022)
CrossRef Google scholar
[840]
He, M., Xu, M., Ren, Y., Jian, J., Ruan, Z., Xu, Y., Gao, S., Sun, S., Wen, X., Zhou, L., Liu, L., Guo, C., Chen, H., Yu, S., Liu, L., Cai, X.: High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photon. 13, 359–364 (2019)
CrossRef Google scholar
[841]
Metcalf, B.J., Spring, J.B., Humphreys, P.C., Thomas-Peter, N., Barbieri, M., Kolthammer, W.S., Jin, X.M., Langford, N.K., Kundys, D., Gates, J.C., Smith, B.J., Smith, P.G.R., Walmsley, I.A.: Quantum teleportation on a photonic chip. Nat. Photon. 8, 770–774 (2014)
CrossRef Google scholar
[842]
Zhang, G., Haw, J.Y., Cai, H., Xu, F., Assad, S., Fitzsimons, J.F., Zhou, X., Zhang, Y., Yu, S., Wu, J., Ser, W., Kwek, L.C., Liu, A.Q.: An integrated silicon photonic chip platform for continuous- variable quantum key distribution. Nat. Photon. 13(12), 839–842 (2019)
CrossRef Google scholar
[843]
Wei, K.J., Li, W., Tan, H., Li, Y., Min, H., Zhang, W.J., Li, H., You, L., Wang, Z., Jiang, X., Chen, T.Y., Liao, S.K., Peng, C.Z., Xu, F., Pan, J.W.: High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X 10, 031030(2020)
CrossRef Google scholar
[844]
Cao, L., Luo, W., Wang, Y.X., Zou, J., Yan, R.D., Cai, H., Zhang, Y., Hu, X.L., Jiang, C., Fan, W.J., Zhou, X.Q., Dong, B., Luo, X.S., Lo, G.Q., Wang, Y.X., Xu, Z.W., Sun, S.H., Wang, X.B., Hao, Y.L., Jin, Y.F., Kwong, D.L., Kwek, L.C., Liu, A.Q.: Chipbased measurement-device-independent quantum key distribution using integrated silicon photonic systems. Phys. Rev. Appl. 14, 011001(2020)
CrossRef Google scholar
[845]
Marchetti, R., Lacava, C., Carroll, L., Gradkowski, K., Minzioni, P.: Coupling strategies for silicon photonics integrated chips. Photon. Res. 7, 201–239 (2019)
CrossRef Google scholar
[846]
Cardenas, J., Poitras, C.B., Luke, K., Luo, L.W., Morton, P.A., Lipson, M.: High coupling efficiency etched facet tapers in silicon waveguides. IEEE Photon. Technol. Lett. 26, 2380–2382 (2014)
CrossRef Google scholar
[847]
Dirac, P.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1930)
[848]
Kržič, A., Sharma, S., Spiess, C., Chandrashekara, U., Töpfer, S., Sauer, G., del Campo, L., Kopf, T., Petscharnig, S., Grafenauer, T., Lieger, R., Ömer, B., Pacher, C., Berlich, R., Peschel, T., Damm, C., Risse, S., Goy, M., Rieländer, D., Tünnermann, A., Steinlechner, F.: Towards metropolitan free-space quantum networks. npj Quantum Inf. 9, 95(2023)
CrossRef Google scholar
[849]
Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proc. International Conference on Computers, Systems ∓ Signal Processing. IEEE, Bangalore, 175–179 (1984)
[850]
Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)
CrossRef Google scholar
[851]
Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)
CrossRef Google scholar
[852]
Ding, Y., Bacco, D., Dalgaard, K., Cai, X., Zhou, X., Rottwitt, K., Oxenlwe, L.: High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inf. 3, 25(2017)
CrossRef Google scholar
[853]
Diamanti, E., Lo, H.K., Qi, B., Yuan, Z.: Practical challenges in quantum key distribution. npj Quantum Inf. 2, 16025(2016)
CrossRef Google scholar
[854]
Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., Debuisschert, T., Diamanti, E., Dianati, M., Dynes, J.F., Fasel, S., Fossier, S., Fürst, M., Gautier, J.D., Gay, O., Gisin, N., Grangier, P., Happe, A., Hasani, Y., Hentschel, M., Hübel, H., Humer, G., Länger, T., Legré, M., Lieger, R., Lodewyck, J., Lorünser, T., Lütkenhaus, N., Marhold, A., Matyus, T., Maurhart, O., Monat, L., Nauerth, S., Page, J.B., Poppe, A., Querasser, E., Ribordy, G., Robyr, S., Salvail, L., Sharpe, A.W., Shields, A.J., Stucki, D., Suda, M., Tamas, C., Themel, T., Thew, R.T., Thoma, Y., Treiber, A., Trinkler, P., Tualle-Brouri, R., Vannel, F., Walenta, N., Weier, H., Weinfurter, H., Wimberger, I., Yuan, Z.L., Zbinden, H., Zeilinger, A.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001(2009)
CrossRef Google scholar
[855]
Stucki, D., Legré, M., Buntschu, F., Clausen, B., Felber, N., Gisin, N., Henzen, L., Junod, P., Litzistorf, G., Monbaron, P., Monat, L., Page, J.B., Perroud, D., Ribordy, G., Rochas, A., Robyr, S., Tavares, J., Thew, R., Trinkler, P., Ventura, S., Voirol, R., Walenta, N., Zbinden, H.: Long-term performance of the SwissQuantum quantum key distribution network in a field environment. New J. Phys. 13, 123001(2011)
CrossRef Google scholar
[856]
Avesani, M., Foletto, G., Padovan, M., Calderaro, L., Agnesi, C., Bazzani, E., Berra, F., Bertapelle, T., Picciariello, F., Santagiustina, F.B.L., Scalcon, D., Scriminich, A., Stanco, A., Vedovato, F., Vallone, G., Villoresi, P.: Deployment-ready quantum key distribution over a classical network infrastructure in Padua. J. Lightwave Technol. 40, 1658–1663 (2022)
CrossRef Google scholar
[857]
Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., Miki, S., Yamashita, T., Wang, Z., Tanaka, A., Yoshino, K., Nambu, Y., Takahashi, S., Tajima, A., Tomita, A., Domeki, T., Hasegawa, T., Sakai, Y., Kobayashi, H., Asai, T., Shimizu, K., Tokura, T., Tsurumaru, T., Matsui, M., Honjo, T., Tamaki, K., Takesue, H., Tokura, Y., Dynes, J.F., Dixon, A.R., Sharpe, A.W., Yuan, Z.L., Shields, A.J., Uchikoga, S., Legré, M., Robyr, S., Trinkler, P., Monat, L., Page, J.B., Ribordy, G., Poppe, A., Allacher, A., Maurhart, O., Länger, T., Peev, M., Zeilinger, A.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387–10409 (2011)
CrossRef Google scholar
[858]
Chen, T.Y., Liang, H., Liu, Y., Cai, W.Q., Ju, L., Liu, W.Y., Wang, J., Yin, H., Chen, K., Chen, Z.B., Peng, C.Z., Pan, J.W.: Field test of a practical secure communication network with decoy-state quantum cryptography. Opt. Express 17, 6540–6549(2009)
CrossRef Google scholar
[859]
Wang, S., Chen, W., Yin, Z.Q., Li, H.W., He, D.Y., Li, Y.H., Zhou, Z., Song, X.T., Li, F.Y., Wang, D., Chen, H., Han, Y.G., Huang, J.Z., Guo, J.F., Hao, P.L., Li, M., Zhang, C.M., Liu, D., Liang, W.Y., Miao, C.H., Wu, P., Guo, G.C., Han, Z.F.: Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 22, 21739–21756 (2014)
CrossRef Google scholar
[860]
Dynes, J.F., Wonfor, A., Tam, W.S., Sharpe, A.W., Shields, A.J.: Cambridge quantum network. npj Quantum Inf. 5, 101(2019)
CrossRef Google scholar
[861]
Wang, L.J., Zhang, K.Y., Wang, J.Y., Cheng, J., Yang, Y.H., Tang, S.B., Yan, D., Tang, Y.L., Liu, Z., Yu, Y.: Experimental authentication of quantum key distribution with post-quantum cryptography. npj Quantum Inf. 7, 67(2021)
CrossRef Google scholar
[862]
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
CrossRef Google scholar
[863]
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)
CrossRef Google scholar
[864]
Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: a vision for the road ahead. Science 362, eaam9288(2018)
CrossRef Google scholar
[865]
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302(2002)
CrossRef Google scholar
[866]
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317(2003)
CrossRef Google scholar
[867]
Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319(2004)
CrossRef Google scholar
[868]
Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144(2016)
CrossRef Google scholar
[869]
Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501(2017)
CrossRef Google scholar
[870]
Zhu, F., Zhang, W., Sheng, Y., Huang, Y.: Experimental longdistance quantum secure direct communication. Sci. Bull. 62, 1519–1524 (2017)
CrossRef Google scholar
[871]
Qi, R.Y., Sun, Z., Lin, Z., Niu, P., Hao, W., Song, L., Huang, Q., Gao, J., Yin, L., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8, 22(2019)
CrossRef Google scholar
[872]
Zhang, H.R., Sun, Z., Qi, R., Yin, L., Long, G.L., Lu, J.: Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl. 11, 83(2022)
CrossRef Google scholar
[873]
Qi, Z.T., Li, Y., Huang, Y., Feng, J., Zheng, Y., Chen, X.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10, 183(2021)
CrossRef Google scholar
[874]
Long, G.L., Pan, D., Sheng, Y.B., Xue, Q., Lu, J., Hanzo, L.: An evolutionary pathway for the quantum internet relying on secure classical repeaters. IEEE Netw. 36, 82–88 (2022)
CrossRef Google scholar
[875]
Orieux, A., Diamanti, E.: Recent advances on integrated quantum communications. J. Opt. 18, 083002(2016)
CrossRef Google scholar
[876]
Żukowski, M., Zeilinger, A., Horne, M., Weinfurter, H.: Quest for GHZ states. Acta Phys. Pol. 93, 187–95 (1998)
CrossRef Google scholar
[877]
Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829(1999)
CrossRef Google scholar
[878]
Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557(1992)
CrossRef Google scholar
[879]
Hatakeyama, Y., Mizutani, A., Kato, G., Imoto, N., Tamaki, K.: Differential-phase-shift quantum-key-distribution protocol with a small number of random delays. Phys. Rev. A 95, 042301(2017)
CrossRef Google scholar
[880]
Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400(2018)
CrossRef Google scholar
[881]
Wang, X.B., Yu, Z.W., Hu, X.L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98, 062323(2018)
CrossRef Google scholar
[882]
Liu, Y., Zhang, W.J., Jiang, C., Chen, J.P., Zhang, C., Pan, W.X., Ma, D., Dong, H., Xiong, J.M., Zhang, C.J., Li, H., Wang, R.C., Wu, J., Chen, T.Y., You, L., Wang, X.B., Zhang, Q., Pan, J.W.: Experimental twin-field quantum key distribution over 1000 km fiber distance. Phys. Rev. Lett. 130, 210801(2023)
CrossRef Google scholar
[883]
Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902(2002)
CrossRef Google scholar
[884]
Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238–241 (2003)
CrossRef Google scholar
[885]
Ziebell, M., Persechino, M., Harris, N., Galland, C., Marris- Morini, D., Vivien, L., Diamanti, E., Grangier, P.: Towards onchip continuous-variable quantum key distribution. In: Proc. European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference 2015. Optica Publishing Group, Munich (2015)
[886]
Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s theorem, quantum theory and conceptions of the universe, pp. 69–72. Kluwer Academic, Dordrecht (1989)
CrossRef Google scholar
[887]
Zhao, Y., Zhang, R., Chen, W., Wang, X. B., Hu, J.: Creation of Greenberger-Horne-Zeilinger states with thousands of atoms by entanglement amplification. npj Quantum Inf. 7, 24(2021)
CrossRef Google scholar
[888]
Sibson, P., Kennard, J.E., Stanisic, S., Erven, C., O’Brien, J.L., Thompson, M.G.: Integrated silicon photonics for high-speed quantum key distribution. Optica 4, 172–177 (2017)
CrossRef Google scholar
[889]
Gisin, N., Ribordy, G., Zbinden, H., Stucki, D., Brunner, N., Scarani, V.: Towards practical and fast quantum cryptography. arXiv preprint arXiv: quant- ph/0411022(2004)
[890]
Dai, J.C., Zhang, L., Fu, X., Zheng, X., Yang, L.: Pass-block architecture for distributed-phase-reference quantum key distribution using silicon photonics. Opt. Lett. 45, 2014–2017 (2020)
CrossRef Google scholar
[891]
Sax, R., Boaron, A., Boso, G., Atzeni, S., Crespi, A., Grünenfelder, F., Rusca, D., Al-Saadi, A., Bronzi, D., Kupijai, S., Rhee, H., Osellame, R., Zbinden, H.: High-speed integrated QKD system. Photon. Res. 11(6), 1007–1014 (2023)
CrossRef Google scholar
[892]
Collins, R.J., Amiri, R., Fujiwara, M., Honjo, T., Shimizu, K., Tamaki, K., Takeoka, M., Andersson, E., Buller, G.S., Sasaki, M.: Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system. Opt. Lett. 41, 4883–4886 (2016)
CrossRef Google scholar
[893]
Sun, Q.C., Mao, Y.L., Chen, S.J., Zhang, W., Jiang, Y.F., Zhang, Y.B., Zhang, W.J., Miki, S., Yamashita, T., Terai, H., Jiang, X.: Entanglement swapping with independent sources over an optical- fiber network. Phys. Rev. A 95, 032306(2017)
CrossRef Google scholar
[894]
Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, C., Rarity, J.G., Zeilinger, A.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504(2007)
CrossRef Google scholar
[895]
Sun, S.H., Tang, G.Z., Li, C.Y., Liang, L.M.: Experimental demonstration of passive-decoy-state quantum key distribution with two independent lasers. Phys. Rev. A 94, 032324(2016)
CrossRef Google scholar
[896]
Cañas, G., Vera, N., Cariñe, J., González, P., Cardenas, J., Connolly, P.W.R., Przysiezna, A., Gómez, E.S., Figueroa, M., Vallone, G., Villoresi, P., Ferreira da Silva, T., Xavier, G.B., Lima, G.: High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers. Phys. Rev. A 96, 022317(2017)
CrossRef Google scholar
[897]
Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8, 595(2014)
CrossRef Google scholar
[898]
Moskovich, D.: An overview of the state of the art for practical quantum key distribution. arXive preprint arXiv: 1504. 05471 v4 [quant-ph] (2015)
[899]
Bunandar, D., Lentine, A., Lee, C., Cai, H., Long, C.M., Boynton, N., Martinez, N., DeRose, C., Chen, C., Grein, M., Trotter, D., Starbuck, A., Pomerene, A., Hamilton, S., Wong, F.N.C., Camacho, R., Davids, P., Urayama, J., Englund, D.: Metropolitan quantum key distribution with silicon photonics. Phys. Rev. X 8, 021009(2018)
CrossRef Google scholar
[900]
Paraïso, T.K., De Marco, I., Roger, T., Marangon, D.G., Dynes, J.F., Lucamarini, M., Yuan, Z., Shields, A.J.: A modulator-free quantum key distribution transmitter chip. npj Quantum Inf. 5, 42(2019)
CrossRef Google scholar
[901]
Geng, W., Zhang, C., Zheng, Y., He, J., Zhou, C., Kong, Y.: Stable quantum key distribution using a silicon photonic transceiver. Opt. Express 27, 29045–29054 (2019)
CrossRef Google scholar
[902]
Paraïso, T.K., Roger, T., Marangon, D.G., De Marco, I., Sanzaro, M., Woodward, R.I., Dynes, J.F., Yuan, Z., Shields, A.J.: A photonic integrated quantum secure communication system. Nat. Photon. 15, 850–856 (2021)
CrossRef Google scholar
[903]
Avesani, M., Calderaro, L., Schiavon, M., Stanco, A., Agnesi, C., Santamato, A., Zahidy, M., Scriminich, A., Foletto, G., Contestabile, G.: Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics. npj Quantum Inf. 7, 93(2021)
CrossRef Google scholar
[904]
Zheng, X.D., Zhang, P., Ge, R., Lu, L., He, G., Chen, Q., Qu, F., Zhang, L., Cai, X., Lu, Y., Zhu, S., Wu, P., Ma, X.S.: Heterogeneously integrated, superconducting silicon-photonic platform for measurement-device-independent quantum key distribution. Adv. Photon. 3, 055002(2021)
CrossRef Google scholar
[905]
Elshaari, A.W., Pernice, W., Srinivasan, K., Benson, O., Zwiller, V.: Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020)
CrossRef Google scholar
[906]
Xu, F., Chen, W., Wang, S., Yin, Z.Q., Zhang, Y., Liu, Y., Zhou, Z., Zhao, Y.B., Li, H.W., Liu, D., Han, Z.F., Guo, G.C.: Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin. Sci. Bull. 54, 2991–2997 (2009)
CrossRef Google scholar
[907]
Fujiwara, M., Waseda, A., Nojima, R., Moriai, S., Ogata, W., Sasaki, M.: Unbreakable distributed storage with quantum key distribution network and password-authenticated secret sharing. Sci. Rep. 6, 28988(2016)
CrossRef Google scholar
[908]
Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status of the DARPA quantum network. arXiv preprint arXiv: quant-ph/0503058v2(2005)
[909]
Schiavon, M., Vallone, G., Villoresi, P.: Experimental realization of equiangular three-state quantum key distribution. Sci. Rep. 6, 30089(2016)
CrossRef Google scholar
[910]
Autebert, C., Trapateau, J., Orieux, A., Lemaître, A., Gomez- Carbonell, C., Diamanti, E., Zaquine, I., Ducci, S.: Multi-user quantum key distribution with entangled photons from an AlGaAs chip. Quantum Sci. Technol. 1, 01LT02(2016)
CrossRef Google scholar
[911]
Sun, W., Wang, L.J., Sun, X.X., Mao, Y., Yin, H.L., Wang, B.X., Chen, T.Y., Pan, J.W.: Experimental integration of quantum key distribution and gigabit-capable passive optical network. J. Appl. Phys. 123, 043105(2018)
CrossRef Google scholar
[912]
Tang, G.Z., Sun, S.H., Feihu, X., Chen, H., Li, C.Y., Liang, L.M.: Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution. Phys. Rev. A 94, 032326(2016)
CrossRef Google scholar
[913]
Yin, H.L., Chen, T.Y., Yu, Z.W., Liu, H., You, L.X., Zhou, Y.H., Chen, S.J., Mao, Y., Huang, M.Q., Zhang, W.J., Chen, H., Li, M.J., Nolan, D., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.B., Pan, J.W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501(2016)
CrossRef Google scholar
[914]
Dynes, J., Tam, W.S., Plews, A., Fröhlich, B., Sharpe, A.W., Lucamarini, M., Yuan, Z., Radig, C., Straw, A., Edwards, T., Shields, A.J.: Ultra-high bandwidth quantum secured data transmission. Sci. Rep. 6, 35149(2016)
CrossRef Google scholar
[915]
Lee, C., Bunandar, D., Zhang, Z., Steinbrecher, G. R., Ben Dixon, P., Wong, F. N. C., Shapiro, J. H., Hamilton, S. A., Englund, D.: High-rate large-alphabet quantum key distribution over deployed telecom fiber. In: Conference on Lasers and Electro-Optics, OSA Technical Digest (online). Optica Publishing Group (2016)
[916]
Dynes, J.F., Kindness, S.J., Tam, S.W.-B., Plews, A., Sharpe, A.W., Lucamarini, M., Fröhlich, B., Yuan, Z.L., Penty, R.V., Shields, A.J.: Quantum key distribution over multicore fiber. Opt. Express 24, 8081–8087 (2016)
CrossRef Google scholar
[917]
Liao, S.K., Yong, H.L., Liu, C., Shentu, G.L., Li, D.D., Lin, J., Dai, H., Zhao, S.Q., Li, B., Guan, J.Y., Chen, W., Gong, Y.H., Li, Y., Lin, Z.H., Pan, G.S., Pelc, J.S., Fejer, M.M., Zhang, W.Z., Liu, W.Y., Yin, J., Ren, J.G., Wang, X.B., Zhang, Q., Peng, C.Z., Pan, J.W.: Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photon. 11, 509–513 (2017)
CrossRef Google scholar
[918]
Wang, L.J., Zou, K.H., Sun, W., Mao, Y., Zhu, Y.X., Yin, H.L., Chen, Q., Zhao, Y., Zhang, F., Chen, T.Y., Pan, J.W.: Long-distance copropagation of quantum key distribution and terabit classical optical data channels. Phys. Rev. A 95, 012301(2017)
CrossRef Google scholar
[919]
Collins, R.J., Amiri, R., Fujiwara, M., Honjo, T., Shimizu, K., Tamaki, K., Takeoka, M., Sasaki, M., Andersson, E., Buller, G.S.: Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution. Sci. Rep. 7, 3235(2017)
CrossRef Google scholar
[920]
Roberts, G.L., Lucamarini, M., Yuan, Z.L., Dynes, J.F., Comandar, L.C., Sharpe, A.W., Shields, A.J., Curty, M., Puthoor, I.V., Andersson, E.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8, 1098(2017)
CrossRef Google scholar
[921]
Yin, H.L., Wang, W.L., Tang, Y.L., Zhao, Q., Liu, H., Sun, X.X., Zhang, W.J., Li, H., Puthoor, I.V., You, L.X., Andersson, E., Wang, Z., Liu, Y., Jiang, X., Ma, X., Zhang, Q., Curty, M., Chen, T.Y., Pan, J.W.: Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Phys. Rev. A 95, 042338(2017)
CrossRef Google scholar
[922]
Kiktenko, E.O., Pozhar, N.O., Duplinskiy, A.V., Kanapin, A.A., Sokolov, A.S., Vorobey, S.S., Miller, A.V., Ustimchik, V.E., Anufriev, M.N., Trushechkin, A.T., Yunusov, R.R., Kurochkin, V.L., Kurochkin, Y.V., Fedorov, A.K.: Demonstration of a quantum key distribution network in urban fibre-optic communication lines. Quantum Electron. 47, 798(2017)
CrossRef Google scholar
[923]
Pugh, C.J., Kaiser, S., Bourgoin, J.P., Jin, J., Sultana, N., Agne, S., Anisimova, E., Makarov, V., Choi, E., Higgins, B.L., Jennewein, T.: Airborne demonstration of a quantum key distribution receiver payload. Quantum Sci. Technol. 2, 024009(2017)
CrossRef Google scholar
[924]
Yin, J., Cao, Y., Li, Y.H., Liao, S.K., Zhang, L., Ren, J.G., Cai, W.Q., Liu, W.Y., Li, B., Dai, H., Li, G.B., Lu, Q.M., Gong, Y.H., Xu, Y., Li, S.L., Li, F.Z., Yin, Y.Y., Jiang, Z.Q., Li, M., Jia, J.J., Ren, G., He, D., Zhou, Y.L., Zhang, X.X., Wang, N., Chang, X., Zhu, Z.C., Liu, N.L., Chen, Y.A., Lu, C.Y., Shu, R., Peng, C.Z., Wang, J.Y., Pan, J.W.: Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140(2017)
CrossRef Google scholar
[925]
Liao, S.K., Lin, J., Ren, J.G., Liu, W.Y., Qiang, J., Yin, J., Li, Y., Shen, Q., Zhang, L., Liang, X.F., Yong, H.L., Li, F.Z., Yin, Y.Y., Cao, Y., Cai, W.Q., Zhang, W.Z., Jia, J.J., Wu, J.C., Chen, X.W., Zhang, S.C., Jiang, X.J., Wang, J.F., Huang, Y.M., Wang, Q., Ma, L., Li, L., Pan, G.S., Zhang, Q., Chen, Y.A., Lu, C.Y., Liu, N.L., Ma, X., Shu, R., Peng, C.Z., Wang, J.Y., Pan, J.W.: Space-to-ground quantum key distribution using a small-sized payload on Tiangong-2 Space Lab. Chin. Phys. Lett. 34, 090302(2017)
CrossRef Google scholar
[926]
Takenaka, H., Carrasco-Casado, A., Fujiwara, M., Kitamura, M., Sasaki, M., Toyoshima, M.: Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite. Nat. Photon. 11, 502–508 (2017)
CrossRef Google scholar
[927]
Liao, S.K., Cai, W.Q., Handsteiner, J., Liu, B., Yin, J., Zhang, L., Rauch, D., Fink, M., Ren, J.G., Liu, W.Y., Li, Y., Shen, Q., Cao, Y., Li, F.Z., Wang, J.F., Huang, Y.M., Deng, L., Xi, T., Ma, L., Hu, T., Li, L., Liu, N.L., Koidl, F., Wang, P., Chen, Y.A., Wang, X.B., Steindorfer, M., Kirchner, G., Lu, C.Y., Shu, R., Ursin, R., Scheidl, T., Peng, C.Z., Wang, J.Y., Zeilinger, A., Pan, J.W.: Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501(2018)
CrossRef Google scholar
[928]
Fröhlich, B., Lucamarini, M., Dynes, J.F., Comandar, L.C., Tam, W.W., Plews, A., Sharpe, A.W., Yuan, Z., Shields, A.J.: Long-distance quantum key distribution secure against coherent attacks. Optica 4, 163–167 (2017)
CrossRef Google scholar
[929]
Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W., Nordholt, J.E.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503(2007)
CrossRef Google scholar
[930]
Peng, C.Z., Zhang, J., Yang, D., Gao, W.B., Ma, H.X., Yin, H., Zeng, H.P., Yang, T., Wang, X.B., Pan, J.W.: Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505(2007)
CrossRef Google scholar
[931]
Fang, X.T., Zeng, P., Liu, H., Zou, M., Wu, W., Tang, Y.L., Sheng, Y.J., Xiang, Y., Zhang, W., Li, H., Wang, Z., You, L., Li, M.J., Chen, H., Chen, Y.A., Zhang, Q., Peng, C.Z., Ma, X., Chen, T.Y., Pan, J.W.: Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photon. 14, 422–425 (2020)
CrossRef Google scholar
[932]
Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., Perrenoud, M., Gras, G., Bussières, F., Li, M.J., Nolan, D., Martin, A., Zbinden, H.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502(2018)
CrossRef Google scholar
[933]
Qiu, J.: Quantum communications leap out of the lab. Nature 508, 441–442 (2014)
CrossRef Google scholar
[934]
Micius Quantum Communication Satellite (QUESS). Aerospace Technology. Available at the website of aerospace-technology.com/projects/micius-quantum-communication-satellite. Accessed 11 July (2024)
[935]
Nippon Telegraph and Telephone Corporation (NTT). Available at the website of group.ntt. Accessed 11 July (2024)
[936]
University of Geneva—Université de Genève. Available at the website of unige.ch. Accessed 11 July (2024)
[937]
ID Quantique. Available at the website of idquantique.com. Accessed 11 July (2024)
[938]
Pittaluga, M., Minder, M., Lucamarini, M., Sanzaro, M., Woodward, R.I., Li, M.J., Yuan, Z., Shields, A.J.: 600-km repeater-like quantum communications with dual-band stabilization. Nat. Photon. 15, 530–535 (2021)
CrossRef Google scholar
[939]
Toshiba Europe. Available at the website of toshiba.co.uk/pages/uk. Accessed 11 July (2024)
[940]
BT Labs. Available at the website of atadastral.co.uk/bt/. Accessed 11 July (2024)
[941]
Woodward, R. I., Dynes, J. F., Wright, P., White, C., Parker, R. C., Wonfor, A., Yuan, Z. L., Lord, A., Shields A. J.: Quantum key secured communications field trial for Industry 4.0. In: Optical Fiber Communication Conference (OFC) 2021. OSA Technical Digest (Optica Publishing Group, 2021), paper Th4H.4. (2021)
CrossRef Google scholar
[942]
Quantum Xchange. Available at the website of quantumxc.com. Accessed 11 July (2024)
[943]
QuTech—Research institute for quantum computing and quantum internet. Available at the website of qutech.nl. Accessed 11 July (2024)
[944]
China Mobile Limited. Available at the website of chinamobileltd.com. Accessed 11 July (2024)
[945]
Quantum Network Facility, Brookhaven National Laboratory. Available at the website of bnl.gov/instrumentation/quantum/. Accessed 11 July (2024)
[946]
Sukachev, D., Bhaskar, M.: Announcing the AWS Center for Quantum Networking, AWS Quantum Technologies Blog (21 JUN 2022). Available at the website of aws.amazon.com/blogs/quantum-computing/announcing-the-aws-center-for-quantumnetworking/. Accessed 12 July (2024)
[947]
Schmaltz, T., Becher, C., Endo, C., Becher, C., Schmidt, J., Krieg, L., Weymann, L., Shirinzadeh, S., Schmaltz, T.: Monitoring Report 1 - Quantum Communication (July 2024). Fraunhofer ISI (2024)
[948]
Müller, R., Greinert, F.: Quantentechnologien: Für Ingenieure, Berlin, Boston: De Gruyter Oldenbourg (2023)
[949]
Tian, Y., Zhang, Y., Liu, S., Wang, P., Lu, Z., Wang, X., Li, Y.: High-performance long-distance discrete-modulation continuous- variable quantum key distribution. Opt. Lett. 48, 2953–6 (2023)
CrossRef Google scholar
[950]
Zhang, Y., Bian, Y., Li, Z., Yu, S., Guo, H.: Continuous-variable quantum key distribution system: past, present, and future. Appl. Phys. Rev. 11(2024)
CrossRef Google scholar
[951]
Preskill, J.: Quantum computing and the entanglement frontier. arXiv preprint arXiv: 1203.5813v3 [quant-ph] (2012)
[952]
Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S.V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., Barends, R., Burkett, B., Chen, Y., Chen, Z., Fowler, A., Foxen, B., Giustina, M., Graff, R., Jeffrey, E., Huang, T., Kelly, J., Klimov, P., Lucero, E., Mutus, J., Neeley, M., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Neven, H., Martinis, J.M.: A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360, 195–199 (2018)
CrossRef Google scholar
[953]
Brod, D.J., Galvão, E.F., Crespi, A., Osellame, R., Spagnolo, N., Sciarrino, F.: Photonic implementation of boson sampling: a review. Adv. Photon. 1(3), 034001(2019)
[954]
Zhu, H., Zou, J., Zhang, H., Shi, Y., Luo, S., Wang, N., Cai, H., Wan, L., Wang, B., Jiang, X., Thompson, J., Luo, X.S., Zhou, X.H., Xiao, L.M., Huang, W., Patrick, L., Gu, M., Kwek, L.C., Liu, A.Q.: Space-efficient optical computing with an integrated chip diffractive neural network. Nat. Commun. 13(1), 1–9 (2022)
CrossRef Google scholar
[955]
Arora, S., Barak, B.: Computational Complexity: a Modern Approach. Cambridge University Press (2009)
[956]
Lund, A.P., Bremner, M.J., Ralph, T.C.: Quantum sampling problems, BosonSampling and quantum supremacy. npj Quantum Inf 3, 15(2017)
CrossRef Google scholar
[957]
Aaronson, S., Brod, D.J.: BosonSampling with lost photons. Phys. Rev. A 93, 012335(2016)
CrossRef Google scholar
[958]
Leverrier, A., Garcia-Patron, R.: Analysis of circuit imperfections in bosonsampling. Quantum Inf. Comput. 15, 489–512 (2015)
CrossRef Google scholar
[959]
Arkhipov, A.: BosonSampling is robust against small errors in the network matrix. Phys. Rev. A 92, 062326(2015)
CrossRef Google scholar
[960]
Rahimi-Keshari, S., Ralph, T.C., Caves, C.M.: Sufficient conditions for efficient classical simulation of quantum optics. Phys. Rev. X 6, 021039(2016)
CrossRef Google scholar
[961]
Rohde, P.P., Ralph, T.C.: Error tolerance of the boson-sampling model for linear optics quantum computing. Phys. Rev. A 85, 022332(2012)
CrossRef Google scholar
[962]
Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749(1932)
CrossRef Google scholar
[963]
Husimi, K.: Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 22, 264(1940)
[964]
Kruse, R., Hamilton, C.S., Sansoni, L., Barkhofen, S., Silberhorn, C., Jex, I.: Detailed study of gaussian boson sampling. Phys. Rev. A 100(3), 032326(2019)
CrossRef Google scholar
[965]
Jahangiri, S., Arrazola, J.M., Quesada, N., Killoran, N.: Point processes with Gaussian boson sampling. Phys. Rev. E 101, 022134(2020)
CrossRef Google scholar
[966]
Banchi, L., Fingerhuth, M., Babej, T., Ing, C., Arrazola, J.M.: Molecular docking with Gaussian boson sampling. Sci. Adv. 6, eaax1950(2020)
CrossRef Google scholar
[967]
Banchi, L., Quesada, N., Arrazola, J.M.: Training Gaussian boson sampling distributions. Phys. Rev. A 102, 012414(2020)
CrossRef Google scholar
[968]
Jahangiri, S., Arrazola, J.M., Quesada, N., Delgado, A.: Quantum algorithm for simulating molecular vibrational excitations. Phys. Chem. Chem. Phys. 22, 25528–25537 (2020)
CrossRef Google scholar
[969]
Villalonga, B., Niu, M., Li, L., Neven, H., Platt, J.C., Smelyanskiy, V.N., Boixo, S.: Efficient approximation of experimental Gaussian boson sampling. arXiv preprint arXiv: 2109.11525(2021)
[970]
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S., Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S., Isakov, S.V., Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh, S., Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandrà, S., McClean, J.R., McEwen, M., Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu, M.Y., Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C., Sank, D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A., Villalonga, B., White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H., Martinis, J.M.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019)
CrossRef Google scholar
[971]
Morvan, A., Villalonga, B., Mi, X., Mandrà, S., Bengtsson, A., Klimov, P.V., Chen, Z., Hong, S., Erickson, C.: Phase transition in random circuit sampling. arXiv preprint arXiv: 2304.11119(2023)
[972]
Wu, Y., Bao, W.S., Cao, S., Chen, F., Chen, M.C., Chen, X., Chung, T.H., Deng, H., Du, Y., Fan, D., Gong, M., Guo, C., Guo, C., Guo, S., Han, L., Hong, L., Huang, H.L., Huo, Y.H., Li, L., Li, N., Li, S., Li, Y., Liang, F., Lin, C., Lin, J., Qian, H., Qiao, D., Rong, H., Su, H., Sun, L., Wang, L., Wang, S., Wu, D., Xu, Y., Yan, K., Yang, W., Yang, Y., Ye, Y., Yin, J., Ying, C., Yu, J., Zha, C., Zhang, C., Zhang, H., Zhang, K., Zhang, Y., Zhao, H., Zhao, Y., Zhou, L., Zhu, Q., Lu, C.Y., Peng, C.Z., Zhu, X., Pan, J.W.: Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501(2021)
CrossRef Google scholar
[973]
Zhu, Q., Cao, S., Chen, F., Chen, M.C., Chen, X., Chung, T.H., Deng, H., Du, Y., Fan, D., Gong, M., Guo, C., Guo, C., Guo, S., Han, L., Hong, L., Huang, H.L., Huo, Y.H., Li, L., Li, N., Li, S., Li, Y., Liang, F., Lin, C., Lin, J., Qian, H., Qiao, D., Rong, H., Su, H., Sun, L., Wang, L., Wang, S., Wu, D., Wu, Y., Xu, Y., Yan, K., Yang, W., Yang, Y., Ye, Y., Yin, J., Ying, C., Yu, J., Zha, C., Zhang, C., Zhang, H., Zhang, K., Zhang, Y., Zhao, H., Zhao, Y., Zhou, L., Lu, C.Y., Peng, C.Z., Zhu, X., Pan, J.W.: Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Sci. Bull. 67, 240–245 (2022)
CrossRef Google scholar
[974]
Zlokapa, A., Villalonga, B., Boixo, S.L.D.A.: Boundaries of quantum supremacy via random circuit sampling. npj Quantum Inf. 9, 1(2023)
CrossRef Google scholar
[975]
Bouland, A., Fefferman, B., Nirkhe, C., Vazirani, U.: On the complexity and verification of quantum random circuit sampling. Nat. Phys. 15, 2(2019)
CrossRef Google scholar
[976]
Zhong, H.S., Li, Y., Li, W., Peng, L.C., Su, Z.E., Hu, Y., He, Y.M., Ding, X., Zhang, W., Li, H., Zhang, L., Wang, Z., You, L., Wang, X.L., Jiang, X., Li, L., Chen, Y.A., Liu, N.L., Lu, C.Y., Pan, J.W.: 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121(25), 250505(2018)
CrossRef Google scholar
[977]
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79(2018)
CrossRef Google scholar
[978]
Qi, H., Brod, D.J., Quesada, N., García-Patrón, R.: Regimes of classical simulability for noisy Gaussian Boson sampling. Phys. Rev. Lett. 124(10), 100502(2020)
CrossRef Google scholar
[979]
AbuGhanem, M.: Properties of some quantum computing models. Master’s Thesis, Ain Shams University (2019)
[980]
Huang, H.Y., Broughton, M., Cotler, J., Chen, S., Li, J., Mohseni, M., Neven, H., Babbush, R., Kueng, R., Preskill, J., McClean, J.R.: Quantum advantage in learning from experiments. Science 376, 6598(2022)
CrossRef Google scholar
[981]
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press (2016)
[982]
Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. The MIT Press (2018)
[983]
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017)
CrossRef Google scholar
[984]
Broughton, M., Verdon, G., Mccourt, T., Martinez, A.J., Mohseni, M.: Tensorflow quantum: a software framework for quantum machine learning. arXiv preprint arXiv 2003. 02989 [quant-ph] (2021)
[985]
Benedetti, M., Coyle, B., Fiorentini, M., Lubasch, M., Rosenkranz, M.: Variational inference with a quantum computer. Phys. Rev. Appl. 16, 044057(2021)
CrossRef Google scholar
[986]
Alvarez-Rodriguez, U., Sanz, M., Lamata, L., Solano, E.: Quantum artificial life in an IBM quantum computer. Sci. Rep. 8, 14793(2018)
CrossRef Google scholar
[987]
IBM, Exploring quantum use cases for chemicals and petroleum: changing how chemicals are designed and petroleum is refined. Available at the website of ibm.com/downloads/cas/BDGQRXOZ (2023)
[988]
Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017)
CrossRef Google scholar
[989]
Aspuru-Guzik, A., Walther, P.: Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012)
CrossRef Google scholar
[990]
Gircha, A.I., Boev, A.S., Avchaciov, K., Fedichev, P.O., Fedorov, A.K.: Hybrid quantum-classical machine learning for generative chemistry and drug design. Sci. Rep. 13, 8250(2023)
CrossRef Google scholar
[991]
Degen, C.L., Reinhard, F., Cappellaro, P.: Quantum sensing. Rev. Mod. Phys. 89, 035002(2017)
CrossRef Google scholar
[992]
Yin, J., Li, Y.H., Liao, S.K., Yang, M., Cao, Y., Zhang, L., Ren, J.G., Cai, W.Q., Liu, W.Y., Li, S.L., Shu, R., Huang, Y.M., Deng, L., Li, L., Zhang, Q., Liu, N.L., Chen, Y.A., Lu, C.Y., Wang, X.B., Xu, F., Wang, J.Y., Peng, C.Z., Ekert, A.K., Pan, J.W.: Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501–505 (2020)
CrossRef Google scholar
[993]
Yin, J., Cao, Y., Li, Y.H., Ren, J.G., Liao, S.K., Zhang, L., Cai, W.Q., Liu, W.Y., Li, B., Dai, H., Li, M., Huang, Y.M., Deng, L., Li, L., Zhang, Q., Liu, N.L., Chen, Y.A., Lu, C.Y., Shu, R., Peng, C.Z., Wang, J.Y., Pan, J.W.: Satellite-to-ground entanglementbased quantum key distribution. Phys. Rev. Lett. 119, 200501(2017)
CrossRef Google scholar
[994]
Ebadi, S., Keesling, A., Cain, M., Wang, T.T., Levine, H., Bluvstein, D., Semeghini, G., Omran, A., Liu, J.G., Samajdar, R., Luo, X.Z., Nash, B., Gao, X., Barak, B., Farhi, E., Sachdev, S., Gemelke, N., Zhou, L., Choi, S., Pichler, H., Wang, S.T., Greiner, M., Vuletić, V., Lukin, M.D.: Quantum optimization of maximum independent set using Rydberg atom arrays. Science 376, 1209(2022)
CrossRef Google scholar
[995]
Aspuru-Guzik, A., Dutoi, A.D., Love, P.J., Head-Gordon, M.: Simulated quantum computation of molecular energies. Science 309(5741), 1704–1707 (2005)
CrossRef Google scholar
[996]
Paesani, S., Gentile, A.A., Santagati, R., Wang, J., Wiebe, N., Tew, D.P., O’Brien, J.L., Thompson, M.G.: Experimental Bayesian quantum phase estimation on a silicon photonic chip. Phys. Rev. Lett. 118, 100503(2017)
CrossRef Google scholar
[997]
Nam, Y., Chen, J.-S., Pisenti, N.C., Wright, K., Delaney, C., Maslov, D., Brown, K.R., Allen, S., Amini, J.M., Apisdorf, J., Beck, K.M., Blinov, A., Chaplin, V., Chmielewski, M., Collins, C., Debnath, S., Hudek, K.M., Ducore, A.M., Keesan, M., Kreikemeier, S.M., Mizrahi, J., Solomon, P., Williams, M., Wong-Campos, J.D., Moehring, D., Monroe, C., Kim, J.: Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. NPJ Quantum Inf. 6(1), 1–6 (2020)
CrossRef Google scholar
[998]
Quantum Collaborators, G.A.: Hartree-fock on a superconducting qubit quantum computer. Science 369(6507), 1084–1089 (2020)
[999]
O’Malley, P.J., Babbush, R., Kivlichan, I.D., Romero, J., McClean, J.R., Barends, R., Kelly, J., Roushan, P., Tranter, A., Ding, N., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Fowler, A.G., Jeffrey, E., Lucero, E., Megrant, A., Mutus, J.Y., Neeley, M., Neill, C., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Coveney, P.V., Love, P.J., Neven, H., Aspuru-Guzik, A., Martinis, J.M.: Scalable quantum simulation of molecular energies. Phys. Rev. X 6(3), 031007(2016)
CrossRef Google scholar
[1000]
McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18(2), 023023(2016)
CrossRef Google scholar
[1001]
Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Course Technology, Boston (2013)
[1002]
Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv: 1411.4028 [quantph] (2014)
[1003]
Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv preprint arXiv: quant-ph/0001106(2000)
[1004]
Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002(2018)
CrossRef Google scholar
[1005]
Glover, F., Kochenberger, G., Hennig, R., Du, Y.: Quantum bridge analytics I: a tutorial on formulating and using QUBO models. Ann. Oper. Res. 17(4), 335–371 (2019)
CrossRef Google scholar
[1006]
Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355(1998)
CrossRef Google scholar
[1007]
Ikeda, K., Nakamura, Y., Humble, T.S.: Application of quantum annealing to nurse scheduling problem. Sci. Rep. 9(1), 1–10 (2019)
CrossRef Google scholar
[1008]
Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5(2014)
CrossRef Google scholar
[1009]
Pelucchi, E., Fagas, G., Aharonovich, I., Englund, D., Figueroa, E., Gong, Q., Hannes, H., Liu, J., Lu, C.Y., Matsuda, N., Pan, J.W., Schreck, F., Sciarrino, F., Silberhorn, C., Wang, J., Jöns, K.D.: The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022)
CrossRef Google scholar
[1010]
Nielsen, M.A.: Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503(2004)
CrossRef Google scholar
[1011]
Menicucci, N.C., Flammia, S.T., Pfister, O.: One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501(2008)
CrossRef Google scholar
[1012]
Quesada, N.: Franck-Condon factors by counting perfect matchings of graphs with loops. J. Chem. Phys. 150, 164113(2019)
CrossRef Google scholar
[1013]
Huh, J., Yung, M.H.: Vibronic Boson sampling: generalized Gaussian Boson sampling for molecular vibronic spectra at finite temperature. Sci. Rep. 7, 7462(2017)
CrossRef Google scholar
[1014]
AbuGhanem, M.: Fast Universal Entangling Gate for Superconducting Quantum Computers. Elsevier, SSRN 4726035(2024)
[1015]
AbuGhanem, M.: Full quantum process tomography of a universal entangling gate on an IBM’s quantum computer. arXiv preprint arXiv: 2402.06946(2024)
[1016]
Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501(2005)
CrossRef Google scholar
[1017]
Pant, M., Towsley, D., Englund, D., Guha, S.: Percolation thresholds for photonic quantum computing. Nat. Commun. 10, 1070(2019)
CrossRef Google scholar
[1018]
Vigliar, C., Paesani, S., Ding, Y., Adcock, J.C., Wang, J., Morley-Short, S., Bacco, D., Oxenløwe, L.K., Thompson, M.G., Rarity, J.G., Laing, A.: Error-protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021)
CrossRef Google scholar
[1019]
Stipcevic, M.: Quantum random number generators and their applications in cryptography. In: Proc. SPIE 8375, Advanced Photon Counting Techniques VI. SPIE, Baltimore, 837504(2012)
CrossRef Google scholar
[1020]
Williams, C.R.S., Salevan, J.C., Li, X., Roy, R., Murphy, T.E.: Fast physical random number generator using amplified spontaneous emission. Opt. Express 18, 23584–23597 (2010)
CrossRef Google scholar
[1021]
Qi, B., Chi, Y.M., Lo, H.K., Qian, L.: High-speed quantum random number generation by measuring phase noise of a singlemode laser. Opt. Lett. 35, 312–314 (2010)
CrossRef Google scholar
[1022]
Xu, F.H., Qi, B., Ma, X., Xu, H., Zheng, H., Lo, H.K.: Ultrafast quantum random number generation based on quantum phase fluctuations. Opt. Express 20, 12366–12377 (2012)
CrossRef Google scholar
[1023]
Nie, Y.Q., Huang, L., Liu, Y., Payne, F., Zhang, J., Pan, J.W.: The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. Rev. Sci. Instrum. 86, 063105(2015)
CrossRef Google scholar
[1024]
Liu, J.L., Yang, J., Li, Z., Su, Q., Huang, W., Xu, B., Guo, H.: 117 Gbits/s quantum random number generation with simple structure. IEEE Photon. Technol. Lett. 29, 283–286 (2017)
CrossRef Google scholar
[1025]
Gabriel, C., Wittmann, C., Sych, D., Dong, R., Mauerer, W., Andersen, U.L., Marquardt, C., Leuchs, G.: A generator for unique quantum random numbers based on vacuum states. Nat. Photon. 4, 711–715 (2010)
CrossRef Google scholar
[1026]
Symul, T., Assad, S.M., Lam, P.K.: Real time demonstration of high bitrate quantum random number generation with coherent laser light. Appl. Phys. Lett. 98, 231103(2011)
CrossRef Google scholar
[1027]
Shi, Y.C., Chng, B., Kurtsiefer, C.: Random numbers from vacuum fluctuations. Appl. Phys. Lett. 109, 041101(2016)
CrossRef Google scholar
[1028]
Zheng, Z.Y., Zhang, Y., Huang, W., Yu, S., Guo, H.: 6 Gbps real-time optical quantum random number generator based on vacuum fluctuation. Rev. Sci. Instrum. 90, 043105(2019)
CrossRef Google scholar
[1029]
Zhou, Q., Valivarthi, R., John, C., Tittel, W.: Practical quantum random-number generation based on sampling vacuum fluctuations. Quantum Eng. 1, e8(2019)
CrossRef Google scholar
[1030]
Haylock, B., Peace, D., Lenzini, F., Weedbrook, C., Lobino, M.: Multiplexed quantum random number generation. Quantum 3, 141(2019)
CrossRef Google scholar
[1031]
Regazzoni, F., Amri, E., Burri, S., Rusca, D., Charbon, E.: A high speed integrated quantum random number generator with on-chip real-time randomness extraction. arXiv preprint arXiv: 2102. 06238 [quant-ph] (2021)
[1032]
Bruynsteen, C., Gehring, T., Lupo, C., Bauwelinck, J., Yin, X.: 100-Gbit/s integrated quantum random number generator based on vacuum fluctuations. PRX Quantum 4, 010330(2023)
CrossRef Google scholar
[1033]
Raffaelli, F., Sibson, P., Kennard, J.E., Mahler, D.H., Thompson, M.G., Matthews, J.C.F.: Generation of random numbers by measuring phase fluctuations from a laser diode with a siliconon- insulator chip. Opt. Express 26, 19730–19741 (2018)
CrossRef Google scholar
[1034]
Freedman, S.J., Clauser, J.F.: Experimental test of local hiddenvariable theories. Phys. Rev. Lett. 28, 938–941 (1972)
CrossRef Google scholar
[1035]
Flamini, F., Magrini, L., Rab, A.S., Spagnolo, N., D’Ambrosio, V., Mataloni, P., Sciarrino, F., Zandrini, T., Crespi, A., Ramponi, R., Osellame, R.: Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining. Light Sci. Appl. 4, e354(2015)
CrossRef Google scholar
[1036]
Ding, Y., Llewellyn, D., Faruque, I., Paesani, S., Bacco, D., Santagati, R., Qian, Y., Li, Y., Xiao, Y., Huber, M.: Demonstration of chip-to-chip quantum teleportation. In: Conference on Lasers Electro-Optics (CLEO). Optical Society of America, JTh5C.4(2019)
CrossRef Google scholar
[1037]
Spagnolo, N., Vitelli, C., Aparo, L., Mataloni, P., Sciarrino, F., Crespi, A., Ramponi, R., Osellame, R.: Three-photon bosonic coalescence in an integrated tritter. Nat. Commun. 4, 1606(2013)
CrossRef Google scholar
[1038]
Metcalf, B.J., Thomas-Peter, N., Spring, J.B., Kundys, D., Broome, M.A., Humphreys, P.C., Jin, X.M., Barbieri, M., Steven Kolthammer, W., Gates, J.C., Smith, B.J., Langford, N.K., Smith, P.G.R., Walmsley, I.A.: Multiphoton quantum interference in a multiport integrated photonic device. Nat. Commun. 4, 1356(2013)
CrossRef Google scholar
[1039]
Spagnolo, N., Vitelli, C., Bentivegna, M., Brod, D.J., Crespi, A., Flamini, F., Giacomini, S., Milani, G., Ramponi, R., Mataloni, P., Osellame, R., Galvão, E.F., Sciarrino, F.: Experimental validation of photonic boson sampling. Nat. Photon. 8, 615–620 (2014)
CrossRef Google scholar
[1040]
Giordani, T., Flamini, F., Pompili, M., Viggianiello, N., Spagnolo, N., Crespi, A., Osellame, R., Wiebe, N., Walschaers, M., Buchleitner, A., Sciarrino, F.: Experimental statistical signature of many-body quantum interference. Nat. Photon. 12, 173–178 (2018)
CrossRef Google scholar
[1041]
Agresti, I., Viggianiello, N., Flamini, F., Spagnolo, N., Crespi, A., Osellame, R., Wiebe, N., Sciarrino, F.: Pattern recognition techniques for Boson sampling validation. Phys. Rev. X 9, 011013(2019)
CrossRef Google scholar
[1042]
Neville, A., Sparrow, C., Clifford, R., Johnston, E., Birchall, P.M., Montanaro, A., Laing, A.: Classical boson sampling algorithms with superior performance to near-term experiments. Nat. Phys. 13, 1153–1157 (2017)
CrossRef Google scholar
[1043]
Crespi, A., Osellame, R., Ramponi, R., Giovannetti, V., Fazio, R., Sansoni, L., De Nicola, F., Sciarrino, F., Mataloni, P.: Anderson localization of entangled photons in an integrated quantum walk. Nat. Photon. 7, 322–328 (2013)
CrossRef Google scholar
[1044]
Pitsios, I., Banchi, L., Rab, A.S., Bentivegna, M., Caprara, D., Crespi, A., Spagnolo, N., Bose, S., Mataloni, P., Osellame, R., Sciarrino, F.: Photonic simulation of entanglement growth and engineering after a spin chain quench. Nat. Commun. 8, 1569(2017)
CrossRef Google scholar
[1045]
Crespi, A., Sansoni, L., Della Valle, G., Ciamei, A., Ramponi, R., Sciarrino, F., Mataloni, P., Longhi, S., Osellame, R.: Particle statistics affects quantum decay and Fano interference. Phys. Rev. Lett. 114, 090201(2015)
CrossRef Google scholar
[1046]
Caruso, F., Crespi, A., Ciriolo, A.G., Sciarrino, F., Osellame, R.: Fast escape of a quantum walker from an integrated photonic maze. Nat. Commun. 7, 1682(2016)
CrossRef Google scholar
[1047]
Biggerstaff, D.N., Heilmann, R., Zecevik, A.A., Gräfe, M., Broome, M.A., Fedrizzi, A., Nolte, S., Szameit, A., White, A.G., Kassal, I.: Enhancing coherent transport in a photonic network using controllable decoherence. Nat. Commun. 7, 11282(2016)
CrossRef Google scholar
[1048]
Tang, H., Di Franco, C., Shi, Z.Y., He, T.S., Feng, Z., Gao, J., Sun, K., Li, Z.M., Jiao, Z.Q., Wang, T.Y., Kim, M.S., Jin, X.M.: Experimental quantum fast hitting on hexagonal graphs. Nat. Photon. 12, 754–758 (2018)
CrossRef Google scholar
[1049]
Poulios, K., Keil, R., Fry, D., Meinecke, J.D.A., Matthews, J.C.F., Politi, A., Lobino, M., Gräfe, M., Heinrich, M., Nolte, S., Szameit, A., O’Brien, J.L.: Quantum walks of correlated photon pairs in two-dimensional waveguide arrays. Phys. Rev. Lett. 112, 143604(2014)
CrossRef Google scholar
[1050]
Santagati, R., Wang, J., Gentile, A.A., Paesani, S., Wiebe, N., McClean, J.R., Morley-Short, S., Shadbolt, P.J., Bonneau, D., Silverstone, J.W., Tew, D.P., Zhou, X., O’Brien, J.L., Thompson, M.G.: Witnessing eigenstates for quantum simulation of Hamiltonian spectra. Sci. Adv. 4, eaap9646(2018)
CrossRef Google scholar
[1051]
Photonics Market by Type (LED, Lasers, Detectors, Sensors and Imaging Devices, Optical Communication Systems & Networking components, Consumer Electronic & Devices), Application End-use Industry, and Region—Global Forecast to 2025, Photonics Market Report 2023, MarketsandMarkets Research Pvt. Ltd. Available at the website of marketsandmarkets.com/Market-Reports/photonics-market-88194993.html#utm_source=Globenewswire&utm_medium=Referal&utm_campaign=PaidPR. Accessed 21 July (2024)

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(5650 KB)

Accesses

Citations

Detail

Sections
Recommended

/