Information processing at the speed of light

Muhammad AbuGhanem

PDF(5650 KB)
PDF(5650 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (4) : 33. DOI: 10.1007/s12200-024-00133-3
REVIEW ARTICLE

Information processing at the speed of light

Author information +
History +

Abstract

In recent years, quantum computing has made significant strides, particularly in light-based technology. The introduction of quantum photonic chips has ushered in an era marked by scalability, stability, and cost-effectiveness, paving the way for innovative possibilities within compact footprints. This article provides a comprehensive exploration of photonic quantum computing, covering key aspects such as encoding information in photons, the merits of photonic qubits, and essential photonic device components including light squeezers, quantum light sources, interferometers, photodetectors, and wave-guides. The article also examines photonic quantum communication and internet, and its implications for secure systems, detailing implementations such as quantum key distribution and long-distance communication. Emerging trends in quantum communication and essential reconfigurable elements for advancing photonic quantum internet are discussed. The review further navigates the path towards establishing scalable and fault-tolerant photonic quantum computers, highlighting quantum computational advantages achieved using photons. Additionally, the discussion extends to programmable photonic circuits, integrated photonics and transformative applications. Lastly, the review addresses prospects, implications, and challenges in photonic quantum computing, offering valuable insights into current advancements and promising future directions in this technology.

Graphical abstract

Keywords

Photonics quantum computing / Nobel Prize-winning technology / Integrated photonics / Photonic device components / Encoding information in photons / Programmable photonic circuits / Photonic quantum computers / Quantum communication and internet / Quantum key distribution / Free-space communication / Quantum computational advantage with photons

Cite this article

Download citation ▾
Muhammad AbuGhanem. Information processing at the speed of light. Front. Optoelectron., 2024, 17(4): 33 https://doi.org/10.1007/s12200-024-00133-3

References

[1]
AbuGhanem, M., Eleuch, H.: NISQ Computers: a path to quantum supremacy. IEEE Access 12, 102941–102961 (2024)
CrossRef Google scholar
[2]
DiVincenzo, D.: The physical implementation of quantum computation. Fortschr. Phys. 48, 9–11 (2000)
CrossRef Google scholar
[3]
DiVincenzo, D., Bacon, D., Kempe, J., Burkard, G., Whaley, K.B.: Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000)
CrossRef Google scholar
[4]
DeMille, D.: Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901(2002)
CrossRef Google scholar
[5]
Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312(2003)
CrossRef Google scholar
[6]
Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902(2003)
CrossRef Google scholar
[7]
Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320(2004)
CrossRef Google scholar
[8]
Walther, P., Resch, K., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434, 169–176 (2005)
CrossRef Google scholar
[9]
Sørensen, A., Mølmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971(1999)
CrossRef Google scholar
[10]
Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054(1999)
CrossRef Google scholar
[11]
Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 2–3 (1999)
CrossRef Google scholar
[12]
Vrijen, R., Yablonovitch, E., Wang, K., Jiang, H.W., Balandin, A., Roychowdhury, V., Mor, T., DiVincenzo, D.: Electron-spinresonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62, 012306(2000)
CrossRef Google scholar
[13]
Ioffe, L., Geshkenbein, V., Feigel’man, M., Fauchère, A.L., Blatter, G.: Environmentally decoupled s-wave Josephson junctions for quantum computing. Nature 398, 679–681 (1999)
CrossRef Google scholar
[14]
Kielpinski, D., Monroe, C., Wineland, D.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)
CrossRef Google scholar
[15]
Jones, J., Vedral, V., Ekert, A., Castagnoli, G.: Geometric quantum computation using nuclear magnetic resonance. Nature 403, 869–871 (2000)
CrossRef Google scholar
[16]
Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188(2001)
CrossRef Google scholar
[17]
Leuenberger, M., Loss, D.: Quantum computing in molecular magnets. Nature 410, 789–793 (2001)
CrossRef Google scholar
[18]
Knill, E., Laflamme, R., Milburn, G.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)
CrossRef Google scholar
[19]
Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 203, 2–3 (2003)
[20]
Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457(1995)
CrossRef Google scholar
[21]
AbuGhanem, M., Eleuch, H.: Experimental characterization of Google’s Sycamore quantum AI on an IBM’s quantum computer, Elsevier, SSRN 4299338(2023)
CrossRef Google scholar
[22]
AbuGhanem, M., Eleuch, H.: Full quantum tomography study of Google’s Sycamore gate on IBM’s quantum computers. EPJ Quantum Technol. 11(1), 36(2024)
CrossRef Google scholar
[23]
DiVincenzo, D.P.: Quantum computation. Science 270, 5234(1995)
CrossRef Google scholar
[24]
Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45(2010)
CrossRef Google scholar
[25]
Nielsen, M. A., Chuang, I. L.: Quantum Computation and Quantum Information. 10th anniversary ed., Cambridge University Press (2011)
[26]
Scholten, T. L., Williams, C. J., Moody, D., Mosca, M., Hurley, W., Zeng, W. J., Troyer, M., Gambetta, J.M.: Assessing the benefits and risks of quantum computers. arXive preprints arXiv: 2401. 16317 [quant-ph] (2024)
[27]
Feynman, R.P.: Feynman and Computation. Simulating Physics with Computers. pp. 133–153. Routledge, New York (2018)
[28]
Benioff, P.: The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22(5), 563–591 (1980)
CrossRef Google scholar
[29]
Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A Math. Phys. Sci. 439(1907), 553–558 (1992)
CrossRef Google scholar
[30]
Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)
CrossRef Google scholar
[31]
Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)
CrossRef Google scholar
[32]
Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)
CrossRef Google scholar
[33]
Harrow, A.W., Montanaro, A.: Quantum computational supremacy. Nature 549(7671), 203–209 (2017)
CrossRef Google scholar
[34]
Ralph, T., Pryde, G.: Optical quantum computation. Prog. Opt. 54, 209–269 (2010)
CrossRef Google scholar
[35]
Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)
CrossRef Google scholar
[36]
Obrien, J.L., Furusawa, A., Vuckovic, J.: Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009)
CrossRef Google scholar
[37]
Takeda, S., Furusawa, A.: Toward large-scale fault-tolerant universal photonic quantum computing. APL Photonics 4, 060902(2019)
CrossRef Google scholar
[38]
Obrien, J.L.: Optical quantum computing. Science 318(5856), 1567–1570 (2007)
CrossRef Google scholar
[39]
Flamini, F., Spagnolo, N., Sciarrino, F.: Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001(2018)
CrossRef Google scholar
[40]
Slussarenko, S., Pryde, G.J.: Photonic quantum information processing: a concise review. Appl. Phys. Rev. 6(4), 041303(2019)
CrossRef Google scholar
[41]
Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., Yin, J., Shen, Q., Cao, Y., Li, Z.P., Li, F.Z., Chen, X.W., Sun, L.H., Jia, J.J., Wu, J.C., Jiang, X.J., Wang, J.F., Huang, Y.M., Wang, Q., Zhou, Y.L., Deng, L., Xi, T., Ma, L., Hu, T., Zhang, Q., Chen, Y.A., Liu, N.L., Wang, X.B., Zhu, Z.C., Lu, C.Y., Shu, R., Peng, C.Z., Wang, J.Y., Pan, J.W.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)
CrossRef Google scholar
[42]
Ren, J.G., Xu, P., Yong, H.L., Zhang, L., Liao, S.K., Yin, J., Liu, W.Y., Cai, W.Q., Yang, M., Li, L., Yang, K.X., Han, X., Yao, Y.Q., Li, J., Wu, H.Y., Wan, S., Liu, L., Liu, D.Q., Kuang, Y.W., He, Z.P., Shang, P., Guo, C., Zheng, R.H., Tian, K., Zhu, Z.C., Liu, N.L., Lu, C.Y., Shu, R., Chen, Y.A., Peng, C.Z., Wang, J.Y., Pan, J.W.: Ground-to-satellite quantum teleportation. Nature 549(7670), 70–73 (2017)
CrossRef Google scholar
[43]
Zhong, H.,Wang, H., Deng, Y., Chen, M., Peng, L., Luo, Y., Qin, J., Wu, D., Ding, X., Hu, Y., Hu, P., Yang, X., Zhang, W., Li, H., Li, Y., Jiang, X., Gan, L., Yang, G., You, L., Wang, Z., Li, L., Liu, N., Lu, C., Pan, J.: Quantum computational advantage using photons. arXiv: 2012. 01625 v1 [quant-ph] (2020)
[44]
Zhong, H.S., Deng, Y.H., Qin, J., Wang, H., Chen, M.C., Peng, L.C., Luo, Y.H., Wu, D., Gong, S.Q., Su, H., Hu, Y., Hu, P., Yang, X.Y., Zhang, W.J., Li, H., Li, Y., Jiang, X., Gan, L., Yang, G., You, L., Wang, Z., Li, L., Liu, N.L., Renema, J.J., Lu, C.Y., Pan, J.W.: Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502(2021)
CrossRef Google scholar
[45]
Madsen, L.S., Laudenbach, F., Askarani, M.F., Rortais, F., Vincent, T., Bulmer, J.F.F., Miatto, F.M., Neuhaus, L., Helt, L.G., Collins, M.J., Lita, A.E., Gerrits, T., Nam, S.W., Vaidya, V.D., Menotti, M., Dhand, I., Vernon, Z., Quesada, N., Lavoie, J.: Quantum computational advantage with a programmable photonic processor. Nature 606(7912), 75–81 (2022)
CrossRef Google scholar
[46]
Carolan, J., Harrold, C., Sparrow, C., Martín-López, E., Russell, N.J., Silverstone, J.W., Shadbolt, P.J., Matsuda, N., Oguma, M., Itoh, M., Marshall, G.D., Thompson, M.G., Matthews, J.C.F., Hashimoto, T., O’Brien, J.L., Laing, A.: Universal linear optics. Science 349, 711(2015)
CrossRef Google scholar
[47]
Qiang, X., Zhou, X., Wang, J., Wilkes, C.M., Loke, T., O’Gara, S., Kling, L., Marshall, G.D., Santagati, R., Ralph, T.C., Wang, J.B., O’Brien, J.L., Thompson, M.G., Matthews, J.C.F.: Largescale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics 12, 534–539 (2018)
CrossRef Google scholar
[48]
Santagati, R., Silverstone, J.W., Strain, M.J., Sorel, M., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., Terai, H., Tanner, M.G., Natarajan, C.M., Hadfield, R.H., O’Brien, J.L., Thompson, M.G.: Silicon photonic processor of two-qubit entangling quantum logic. J. Opt. 19, 114006(2017)
CrossRef Google scholar
[49]
Taballione, C., Wolterink, T.A.W., Lugani, J., Eckstein, A., Bell, B.A., Grootjans, R., Visscher, I., Geskus, D., Roeloffzen, C.G.H., Renema, J.J., Walmsley, I.A., Pinkse, P.W.H., Boller, K.J.: 8 × 8 reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt. Express 27, 26842–26857 (2019)
CrossRef Google scholar
[50]
Ribeiro, A., Ruocco, A., Vanacker, L., Bogaerts, W.: Demonstration of a 4 × 4-port universal linear circuit. Optica 3, 1348–1357 (2016)
CrossRef Google scholar
[51]
Koteva, K.I., Gentile, A.A., Flynn, B., Paesani, S., Laing, A.: Silicon quantum photonic device for multidimensional controlled unitaries. In: Frontiers in Optics/ Laser Science. FTu8D.1. Optical Society of America (2020)
CrossRef Google scholar
[52]
Harris, N.C., Steinbrecher, G.R., Prabhu, M., Lahini, Y., Mower, J., Bunandar, D., Chen, C., Wong, F.N.C., Baehr-Jones, T., Hochberg, M., Lloyd, S., Englund, D.: Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics 11, 447–452 (2017)
CrossRef Google scholar
[53]
Sparrow, C., Martin-Lopez, E., Maraviglia, N., Neville, A., Harrold, C., Carolan, J., Joglekar, Y.N., Hashimoto, T., Matsuda, N., O’Brien, J.L., Tew, D.P., Laing, A.: Simulating the vibrational quantum dynamics of molecules using photonics. Nature 557(7707), 660(2018)
CrossRef Google scholar
[54]
Carolan, J., Mohseni, M., Olson, J.P., Prabhu, M., Chen, C., Bunandar, D., Niu, M.Y., Harris, N.C., Wong, F.N.C., Hochberg, M., Lloyd, S., Englund, D.: Variational quantum unsampling on a quantum photonic processor. Nat. Phys. 16, 322–327 (2020)
CrossRef Google scholar
[55]
Spring, J.B., Metcalf, B.J., Humphreys, P.C., Kolthammer, W.S., Jin, X., Barbieri, M., Datta, A., Thomaspeter, N., Langford, N.K., Kundys, D., Gates, J.C., Smith, B.J., Smith, P.G.R., Walmsley, I.A.: Boson sampling on a photonic chip. Science 339(6121), 798(2013)
CrossRef Google scholar
[56]
Tillmann, M., Dakić, B., Heilmann, R., Nolte, S., Szameit, A., Walther, P.: Experimental boson sampling. Nat. Photonics 7, 540–544 (2013)
CrossRef Google scholar
[57]
Shadbolt, P.J., Verde, M.R., Peruzzo, A., Politi, A., Laing, A., Lobino, M., Matthews, J.C.F., Thompson, M.G., O’Brien, J.L.: Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photonics 6, 45–49 (2012)
CrossRef Google scholar
[58]
Paesani, S., Ding, Y., Santagati, R., Chakhmakhchyan, L., Vigliar, C., Rottwitt, K., Oxenløwe, L.K., Wang, J., Thompson, M.G., Laing, A.: Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15, 925–929 (2019)
CrossRef Google scholar
[59]
Steinbrecher, G.R., Olson, J.P., Englund, D., Carolan, J.: Quantum optical neural networks. Npj Quantum Inf. 5, 60(2019)
CrossRef Google scholar
[60]
Shen, Y., Harris, N.C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., Sun, X., Zhao, S., Larochelle, H., Englund, D., Soljačić, M.: Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017)
CrossRef Google scholar
[61]
Gentile, A. A., Flynn, B., Knauer, S., Wiebe, N., Paesani, S., Granade, C., Rarity, J., Santagati, R., Laing, A.: Learning models of quantum systems from experiments. arXiv: 2002.06169(2020)
[62]
Saggio, V., Asenbeck, B.E., Hamann, A., Strömberg, T., Schiansky, P., Dunjko, V., Friis, N., Harris, N.C., Hochberg, M., Englund, D., Wölk, S., Briegel, H.J., Walther, P.: Experimental quantum speed-up in reinforcement learning agents. Nature 591, 229–233 (2021)
CrossRef Google scholar
[63]
Feldmann, J., Youngblood, N., Karpov, M., Gehring, H., Li, X., Stappers, M., Le Gallo, M., Fu, X., Lukashchuk, A., Raja, A.S., Liu, J., Wright, C.D., Sebastian, A., Kippenberg, T.J., Pernice, W.H.P., Bhaskaran, H.: Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021)
CrossRef Google scholar
[64]
Zhuang, L., Roeloffzen, C.G., Hoekman, M., Boller, K.J., Lowery, A.J.: Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015)
CrossRef Google scholar
[65]
Pérez, D., Gasulla, I., Crudgington, L., Thomson, D.J., Khokhar, A.Z., Li, K., Cao, W., Mashanovich, G.Z., Capmany, J.: Multi-purpose silicon photonics signal processor core. Nat. Commun. 8, 1925(2017)
CrossRef Google scholar
[66]
Lee, Y., Bersin, E., Dahlberg, A., Wehner, S., Englund, D.: A quantum router architecture for high-fidelity entanglement flows in quantum networks, arXiv: 2005.01852(2020)
[67]
Chen, K. C., Bersin, E., Englund, D.: A polarization encoded photon-to-spin interface. arXiv: 2004.02381(2020)
[68]
Wan, N.H., Lu, T.J., Chen, K.C., Walsh, M.P., Trusheim, M.E., De Santis, L., Bersin, E.A., Harris, I.B., Mouradian, S.L., Christen, I.R., Bielejec, E.S., Englund, D.: Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020)
CrossRef Google scholar
[69]
Choi, H., Pant, M., Guha, S., Englund, D.: Percolation based architecture for cluster state creation using photonmediated entanglement between atomic memories. arXiv: 1704.07292(2019)
[70]
Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58(1994)
CrossRef Google scholar
[71]
Clements, W.R., Humphreys, P.C., Metcalf, B.J., Kolthammer, W.S., Walmsley, I.A.: Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016)
CrossRef Google scholar
[72]
Chuang, I.L., Yamamoto, Y.: Simple quantum computer. Phys. Rev. A 52(5), 3489(1995)
CrossRef Google scholar
[73]
Wang, J., Sciarrino, F., Laing, A., Thompson, M.G.: Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020)
CrossRef Google scholar
[74]
Piergentili, P., Amanti, F., Andrini, G., Armani, F., Bellani, V., Bonaiuto, V., Cammarata, S., Campostrini, M., Cornia, S., Dao, T.H., De Matteis, F., Demontis, V., Di Giuseppe, G., Ditalia Tchernij, S., Donati, S., Fontana, A., Forneris, J., Francini, R., Frontini, L., Gunnella, R., Iadanza, S., Kaplan, A.E., Lacava, C., Liberali, V., Marzioni, F., Nieto Hernández, E., Pedreschi, E., Prete, D., Prosposito, P., Rigato, V., Roncolato, C., Rossella, F., Salamon, A., Salvato, M., Sargeni, F., Shojaii, J., Spinella, F., Stabile, A., Toncelli, A., Trucco, G., Vitali, V.: Quantum information with integrated photonics. Appl. Sci. 14(1), 387(2024)
CrossRef Google scholar
[75]
Politi, A., Matthews, J.C.F., O’Brien, J.L.: Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221(2009)
CrossRef Google scholar
[76]
Smith, B.J., Kundys, D., Thomas-Peter, N., Smith, P.G.R., Walmsley, I.A.: Phase-controlled integrated photonic quantum circuits. Opt. Express 17, 13516–13525 (2009)
CrossRef Google scholar
[77]
Peruzzo, A., Lobino, M., Matthews, J.C.F., Matsuda, N., Politi, A., Poulios, K., Zhou, X.Q., Lahini, Y., Ismail, N., Wörhoff, K., Bromberg, Y., Silberberg, Y., Thompson, M.G., OBrien, J.L.: Quantum walks of correlated photons. Science 329, 1500–1503 (2010)
CrossRef Google scholar
[78]
Laing, A., Peruzzo, A., Politi, A., Verde, M.R., Halder, M., Ralph, T.C., Thompson, M.G., O’Brien, J.L.: High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211109(2010)
CrossRef Google scholar
[79]
Gerrits, T., Thomas-Peter, N., Gates, J.C., Lita, A.E., Metcalf, B.J., Calkins, B., Tomlin, N.A., Fox, A.E., Linares, A.L., Spring, J.B., Langford, N.K., Mirin, R.P., Smith, P.G.R., Walmsley, I.A., Nam, S.W.: On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing. Phys. Rev. A 84, 060301(R) (2011)
CrossRef Google scholar
[80]
Pernice, W., Schuck, C., Minaeva, O., Li, M., Goltsman, G.N., Sergienko, A.V., Tang, H.X.: High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325(2012)
CrossRef Google scholar
[81]
Bonneau, D., Engin, E., Ohira, K., Suzuki, N., Yoshida, H., Iizuka, N., Ezaki, M., Natarajan, C.M., Tanner, M.G., Hadfield, R.H., Dorenbos, S.N., Zwiller, V., O’Brien, J.L., Thompson, M.G.: Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New J. Phys. 14, 045003(2012)
CrossRef Google scholar
[82]
Crespi, A., Osellame, R., Ramponi, R., Brod, D.J., Galvao, E.F., Spagnolo, N., Vitelli, C., Maiorino, E., Mataloni, P., Sciarrino, F.: Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7(7), 545(2013)
CrossRef Google scholar
[83]
Broome, M.A., Fedrizzi, A., Rahimikeshari, S., Dove, J., Aaronson, S., Ralph, T.C., White, A.: Photonic boson sampling in a tunable circuit. Science 339(6121), 794(2013)
CrossRef Google scholar
[84]
Carolan, J., Meinecke, J.D.A., Shadbolt, P.J., Russell, N.J., Ismail, N., Wörhoff, K., Rudolph, T., Thompson, M.G., O’Brien, J.L., Matthews, J.C.F., Laing, A.: On the experimental verification of quantum complexity in linear optics. Nat. Photon. 8, 621–626 (2014)
CrossRef Google scholar
[85]
Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502(2012)
CrossRef Google scholar
[86]
He, Y.M., He, Y., Wei, Y.J., Wu, D., Atatüre, M., Schneider, C., Höfling, S., Kamp, M., Lu, C.Y., Pan, J.W.: On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013)
CrossRef Google scholar
[87]
Silverstone, J., Bonneau, D., Ohira, K., Suzuki, N., Yoshida, H., Iizuka, N., Ezaki, M., Natarajan, C.M., Tanner, M.G., Hadfield, R.H., Zwiller, V., Marshall, G.D., Rarity, J.G., O’Brien, J.L., Thompson, M.G.: On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2014)
CrossRef Google scholar
[88]
Arcari, M., Söllner, I., Javadi, A., Lindskov Hansen, S., Mahmoodian, S., Liu, J., Thyrrestrup, H., Lee, E.H., Song, J.D., Stobbe, S., Lodahl, P.: Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603(2014)
CrossRef Google scholar
[89]
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.H., Zhou, X.Q., Love, P.J., Aspuru-Guzik, A., O’Brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213(2014)
CrossRef Google scholar
[90]
Wang, J., Bonneau, D., Villa, M., Silverstone, J.W., Santagati, R., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., Terai, H., Tanner, M.G., Natarajan, C.M., Hadfield, R.H., O’Brien, J.L., Thompson, M.G.: Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3, 407–413 (2016)
CrossRef Google scholar
[91]
Sibson, P., Erven, C., Godfrey, M., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., Terai, H., Tanner, M.G., Natarajan, C.M., Hadfield, R.H., O’Brien, J.L., Thompson, M.G.: Chip-based quantum key distribution. Nat. Commun. 8, 13984(2017)
CrossRef Google scholar
[92]
Spring, J.B., Mennea, P.L., Metcalf, B.J., Humphreys, P.C., Gates, J.C., Rogers, H.L., Söller, C., Smith, B.J., Kolthammer, W.S., Smith, P.G.R., Walmsley, I.A.: Chip-based array of nearidentical, pure, heralded single-photon sources. Optica 4, 90–96 (2017)
CrossRef Google scholar
[93]
Bentivegna, M., Spagnolo, N., Vitelli, C., Flamini, F., Viggianiello, N., Latmiral, L., Mataloni, P., Brod, D.J., Galvao, E.F., Crespi, A., Ramponi, R., Osellame, R., Sciarrino, F.: Experimental scattershot boson sampling. Sci. Adv. 1(3), e1400255(2015)
CrossRef Google scholar
[94]
Ciampini, M., Orieux, A., Paesani, S., Sciarrino, F., Corrielli, G., Crespi, A., Ramponi, R., Osellame, R., Mataloni, P.: Path-polarization hyperentangled and cluster states of photons on a chip. Light Sci. Appl. 5, e16064(2016)
CrossRef Google scholar
[95]
Wang, H., He, Y., Li, Y.H., Su, Z.E., Li, B., Huang, H.L., Ding, X., Chen, M.C., Liu, C., Qin, J., Li, J.P., He, Y.M., Schneider, C., Kamp, M., Peng, C.Z., Höfling, S., Lu, C.Y., Pan, J.W.: High-efficiency multiphoton boson sampling. Nat. Photon. 11(6), 361(2017)
CrossRef Google scholar
[96]
Wang, J., Paesani, S., Santagati, R., Knauer, S., Gentile, A.A., Wiebe, N., Petruzzella, M., O’Brien, J.L., Rarity, J.G., Laing, A., Thompson, M.G.: Experimental quantum Hamiltonian learning. Nat. Phys. 13, 551–555 (2017)
CrossRef Google scholar
[97]
Wang, J.W., Paesani, S., Ding, Y., Santagati, R., Skrzypczyk, P., Salavrakos, A., Tura, J., Augusiak, R., Mančinska, L., Bacco, D., Bonneau, D., Silverstone, J.W., Gong, Q., Acín, A., Rottwitt, K., Oxenløwe, L.K., O’Brien, J.L., Laing, A., Thompson, M.G.: Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018)
CrossRef Google scholar
[98]
Adcock, J.C., Vigliar, C., Santagati, R., Silverstone, J.W., Thompson, M.G.: Programmable four-photon graph states on a silicon chip. Nat. Commun. 10, 3528(2019)
CrossRef Google scholar
[99]
Wang, H., Qin, J., Ding, X., Chen, M.C., Chen, S., You, X., He, Y.M., Jiang, X., You, L., Wang, Z., Schneider, C., Renema, J.J., Höfling, S., Lu, C.Y., Pan, J.W.: Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503(2019)
[100]
Arrazola, J.M., Bergholm, V., Brádler, K., Bromley, T.R., Collins, M.J., Dhand, I., Fumagalli, A., Gerrits, T., Goussev, A., Helt, L.G., Hundal, J., Isacsson, T., Israel, R.B., Izaac, J., Jahangiri, S., Janik, R., Killoran, N., Kumar, S.P., Lavoie, J., Lita, A.E., Mahler, D.H., Menotti, M., Morrison, B., Nam, S.W., Neuhaus, L., Qi, H.Y., Quesada, N., Repingon, A., Sabapathy, K.K., Schuld, M., Su, D., Swinarton, J., Száva, A., Tan, K., Tan, P., Vaidya, V.D., Vernon, Z., Zabaneh, Z., Zhang, Y.: Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021)
CrossRef Google scholar
[101]
Zhang, M., Feng, L., Li, M., Chen, Y., Zhang, L., He, D., Guo, G., Guo, G., Ren, X., Dai, D.: Supercompact photonic quantum logic gate on a silicon chip. Phys. Rev. Lett. 126, 130501(2021)
CrossRef Google scholar
[102]
Gyger, S., Zichi, J., Schweickert, L., Elshaari, A.W., Steinhauer, S., Covre Da Silva, S.F., Rastelli, A., Zwiller, V., Jöns, K.D., Errando-Herranz, C.: Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun. 12, 1408(2021)
CrossRef Google scholar
[103]
Chen, Y.A., Zhang, Q., Chen, T.Y., Cai, W.Q., Liao, S.K., Zhang, J., Chen, K., Yin, J., Ren, J.G., Chen, Z., Han, S.L., Yu, Q., Liang, K., Zhou, F., Yuan, X., Zhao, M.S., Wang, T.Y., Jiang, X., Zhang, L., Liu, W.Y., Li, Y., Shen, Q., Cao, Y., Lu, C.Y., Shu, R., Wang, J.Y., Li, L., Liu, N.L., Xu, F., Wang, X.B., Peng, C.Z., Pan, J.W.: An integrated space-to-ground quantum communication network over 4,600 kilometers. Nature 589, 214–219 (2021)
CrossRef Google scholar
[104]
Chi, Y., Huang, J., Zhang, Z., Mao, J., Zhou, Z., Chen, X., Zhai, C., Bao, J., Dai, T., Yuan, H., Zhang, M., Dai, D., Tang, B., Yang, Y., Li, Z., Ding, Y., Oxenløwe, L.K., Thompson, M.G., O’Brien, J.L., Li, Y., Gong, Q., Wang, J.: A programmable Qudit-based quantum processor. Nat. Commun. 13, 1166(2022)
CrossRef Google scholar
[105]
Zheng, Y., Zhai, C., Liu, D., Mao, J., Chen, X., Dai, T., Huang, J., Bao, J., Fu, Z., Tong, Y., Zhou, X., Yang, Y., Tang, B., Li, Z., Li, Y., Gong, Q., Tsang, H.K., Dai, D., Wang, J.: Multichip multidimensional quantum networks with entanglement retrievability. Science 381, 221–226 (2023)
CrossRef Google scholar
[106]
Ono, T., Roga, W., Wakui, K., Fujiwara, M., Miki, S., Terai, H., Takeoka, M.: Demonstration of a Bosonic quantum classifier with data reuploading. Phys. Rev. Lett. 131, 013601(2023)
CrossRef Google scholar
[107]
Bao, J., Fu, Z., Pramanik, T., Mao, J., Chi, Y., Cao, Y., Zhai, C., Mao, Y., Dai, T., Chen, X., Jia, X., Zhao, L., Zheng, Y., Tang, B., Li, Z., Luo, J., Wang, W., Yang, Y., Peng, Y., Liu, D., Dai, D., He, Q., Muthali, A.L., Oxenløwe, L.K., Vigliar, C., Paesani, S., Hou, H., Santagati, R., Silverstone, J.W., Laing, A., Thompson, M.G., O’Brien, J.L., Ding, Y., Gong, Q., Wang, J.: Verylarge- scale integrated quantum graph photonics. Nat. Photon. 17, 573–581 (2023)
CrossRef Google scholar
[108]
Deng, Y.H., Gu, Y.C., Liu, H.L., Gong, S.Q., Su, H., Zhang, Z.J., Tang, H.Y., Jia, M.H., Xu, J.M., Chen, M.C., Qin, J., Peng, L.C., Yan, J., Hu, Y., Huang, J., Li, H., Li, Y., Chen, Y., Jiang, X., Gan, L., Yang, G., You, L., Li, L., Zhong, H.S., Wang, H., Liu, N.L., Renema, J.J., Lu, C.Y., Pan, J.W.: Gaussian boson sampling with pseudo-photon-number-resolving detectors and quantum computational advantage. Phys. Rev. Lett. 131(15), 131(2023)
CrossRef Google scholar
[109]
The Nobel Prize in Physics 2022. NobelPrize.org. Nobel Prize Outreach AB 2023. Available at the website of nobel prize.org/prizes/physics/2022/summary/ (2023)
[110]
Clauser, J.F., Shimony, A.: Bell’s theorem: experimental tests and implications. Rep. Prog. Phys. 41, 1881–1927 (1978)
CrossRef Google scholar
[111]
Barreiro, J.T., Langford, N.K., Peters, N.A., Kwiat, P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501(2005)
CrossRef Google scholar
[112]
Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T., Zeilinger, A.: A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007)
CrossRef Google scholar
[113]
Cohen, O., Lundeen, J.S., Smith, B.J., Puentes, G., Mosley, P.J., Walmsley, I.A.: Tailored photon-pair generation in optical fibers. Phys. Rev. Lett. 102, 123603(2009)
CrossRef Google scholar
[114]
Langford, N., Ramelow, S., Prevedel, R., Munro, W.J., Milburn, G.J., Zeilinger, A.: Efficient quantum computing using coherent photon conversion. Nature 478, 360–363 (2011)
CrossRef Google scholar
[115]
AbuGhanem, M., Eleuch, H.: Two-qubit entangling gates for superconducting quantum computers. Results Phys. 56, 107236(2024)
CrossRef Google scholar
[116]
AbuGhanem, M.: Comprehensive characterization of three-qubit Grover search algorithm on IBM’s 127-qubit superconducting quantum computers. arXiv: 2406.16018(2024)
[117]
AbuGhanem, M., Homid, A., Abdel-Aty, M.: Cavity control as a new quantum algorithms implementation treatment. Front. Phys. 13(1), 130303(2018)
CrossRef Google scholar
[118]
Politi, A., Cryan, M.J., Rarity, J.G., Yu, S., O’Brien, J.L.: Silicaon-silicon waveguide quantum circuits. Science 320, 646–649 (2008)
CrossRef Google scholar
[119]
Bromley, T.R., Arrazola, J.M., Jahangiri, S., Izaac, J., Quesada, N., Gran, A.D., Schuld, M., Swinarton, J., Zabaneh, Z., Killoran, N.: Applications of near-term photonic quantum computers: software and algorithms. Quantum Sci. Technol. 5, 034010(2020)
CrossRef Google scholar
[120]
Kues, M., Reimer, C., Roztocki, P., Cortés, L.R., Sciara, S., Wetzel, B., Zhang, Y., Cino, A., Chu, S.T., Little, B.E., Moss, D.J., Caspani, L., Azaña, J., Morandotti, R.: On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017)
CrossRef Google scholar
[121]
Kobayashi, T., Ikuta, R., Yasui, S., Miki, S., Yamashita, T., Terai, H., Yamamoto, T., Koashi, M., Imoto, N.: Frequency-domain Hong-Ou-Mandel interference. Nat. Photon. 10, 441–444 (2016)
CrossRef Google scholar
[122]
Lukens, J.M., Lougovski, P.: Frequency-encoded photonic qubits for scalable quantum information processing. Optica 4, 8–16 (2017)
CrossRef Google scholar
[123]
Lu, H.H., Lukens, J.M., Peters, N.A., Odele, O.D., Leaird, D.E., Weiner, A.M., Lougovski, P.: Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Phys. Rev. Lett. 120, 30502(2018)
CrossRef Google scholar
[124]
Joshi, C., Farsi, A., Dutt, A., Kim, B.Y., Ji, X., Zhao, Y., Bishop, A.M., Lipson, M., Gaeta, A.L.: Frequency-domain quantum interference with correlated photons from an integrated micro-resonator. Phys. Rev. Lett. 124, 143601(2020)
CrossRef Google scholar
[125]
Kues, M., Reimer, C., Lukens, J.M., Munro, W.J., Weiner, A.M., Moss, D.J., Morandotti, R.: Quantum optical microcombs. Nat. Photon. 13, 170–179 (2019)
CrossRef Google scholar
[126]
Hu, Y., Yu, M., Zhu, D., Sinclair, N., Shams-Ansari, A., Shao, L., Holzgrafe, J., Puma, E., Zhang, M., Lončar, M.: On-chip electrooptic frequency shifters and beam splitters. Nature 599, 587–593 (2021)
CrossRef Google scholar
[127]
Miller, D.A.B.: Perfect optics with imperfect components. Optica 2, 747–750 (2015)
CrossRef Google scholar
[128]
Taballione, C., van der Meer, R., Snijders, H.J., Hooijschuur, P., Epping, J.P., de Goede, M., Kassenberg, B., Venderbosch, P., Toebes, C., van den Vlekkert, H., Pinkse, P.W.H., Renema, J.J.: A universal fully reconfigurable 12-mode quantum photonic processor. Mater. Quantum Technol. 1, 035002(2021)
CrossRef Google scholar
[129]
Cerf, N.J., Adami, C., Kwiat, P.G.: Optical simulation of quantum logic. Phys. Rev. A 57(3), 1477(1998)
CrossRef Google scholar
[130]
Milburn, G.J.: Quantum optical fredkin gate. Phys. Rev. Lett. 62(18), 2124(1989)
CrossRef Google scholar
[131]
Kok, P., Lee, H., Dowling, J.P.: Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66(6), 063814(2002)
CrossRef Google scholar
[132]
Ralph, T.C., Langford, N.K., Bell, T.B., White, A.G.: Linear optical controlled-NOT gate in the coincidence basis. Phys. Rev. A 65, 062324(2001)
CrossRef Google scholar
[133]
Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621(2012)
CrossRef Google scholar
[134]
Braunstein, S.L., Van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77(2), 513(2005)
CrossRef Google scholar
[135]
Adesso, G., Ragy, S., Lee, A.R.: Continuous variable quantum information: Gaussian states and beyond. Open. Syst. Inf. Dyn. 21(01n02), 1440001(2014)
CrossRef Google scholar
[136]
Serafini, A.: Quantum continuous variables: a primer of theoretical methods. Routledge, New York (2017)
[137]
Balthazar, W.F., Caetano, D.P., Souza, C.E.R., Huguenin, J.A.O.: Using polarization to control the phase of spatial modes for application in quantum information. Braz. J. Phys. 44(6), 658(2014)
CrossRef Google scholar
[138]
Milione, G., Nguyen, T.A., Leach, J., Nolan, D.A., Alfano, R.R.: Using the nonseparability of vector beams to encode information for optical communication. Opt. Lett. 40(21), 4887(2015)
CrossRef Google scholar
[139]
Souza, C.E.R., Borges, C.V.S., Khoury, A.Z., Huguenin, J.A.O., Aolita, L., Walborn, S.P.: Quantum key distribution without a shared reference frame. Phys. Rev. A 77, 032345(2008)
CrossRef Google scholar
[140]
Obando, P.C., Passos, M.H.M., Paula, F.M., Huguenin, J.A.O.: Simulating Markovian quantum decoherence processes through an all-optical setup. Quant. Inf. Process. 19(7), 1573(2020)
CrossRef Google scholar
[141]
Khoury, A.Z., Milman, P.: Quantum teleportation in the spinorbit variables of photon pairs. Phys. Rev. A 83, 060301(2011)
CrossRef Google scholar
[142]
Passos, M.H.M., Obando, P.C., Balthazar, W.F., Paula, F.M., Huguenin, J.A.O., Sarandy, M.S.: Non-Markovianity through quantum coherence in an all-optical setup. Opt. Lett. 44(10), 2478(2019)
CrossRef Google scholar
[143]
Passos, M.H.M., Santos, A.C., Sarandy, M.S., Huguenin, J.A.O.: Optical simulation of a quantum thermal machine. Phys. Rev. A 100, 022113(2019)
CrossRef Google scholar
[144]
Passos, M.H.M., Balthazar, W.F., Khoury, A.Z., Hor-Meyll, M., Davidovich, L., Huguenin, J.A.O.: Experimental investigation of environment-induced entanglement using an all-optical setup. Phys. Rev. A 97, 022321(2018)
CrossRef Google scholar
[145]
Pallister, S., Linden, N., Montanaro, A.: Optimal verification of entangled states with local measurements. Phys. Rev. Lett. 120, 170502(2018)
CrossRef Google scholar
[146]
Zhu, H., Hayashi, M.: Efficient verification of pure quantum states in the adversarial scenario. Phys. Rev. Lett. 123, 260504(2019)
CrossRef Google scholar
[147]
Li, Z., Han, Y.H., Zhu, H.: Efficient verification of bipartite pure states. Phys. Rev. A 100, 032316(2019)
CrossRef Google scholar
[148]
Wang, K., Hayashi, M.: Optimal verification of two-qubit pure states. Phys. Rev. A 100, 032315(2019)
CrossRef Google scholar
[149]
Sugiyama, T., Turner, P.S., Murao, M.: Precision-guaranteed quantum tomography. Phys. Rev. Lett. 111, 160406(2013)
CrossRef Google scholar
[150]
Gonzales, J.P., Sánchez, P., Auccapuclla, F., Miller, B., Andrés, M.V., De Zela, F.: Unrestricted generation of pure two-qubit states and entanglement diagnosis by single-qubit tomography. Opt. Lett. 44(13), 3310–3313 (2019)
CrossRef Google scholar
[151]
Starek, R., Miková, M., Straka, I., Dušek, M., Ježek, M., Fiurášek, J., Mičuda, M.: Experimental realization of SWAP operation on hyper-encoded qubits. Opt. Express 26(7), 8443–8452(2018)
CrossRef Google scholar
[152]
Ruelas, D.R.A., Paredes, C.M., Marrou, J.P., Yugra, Y., Uria, M., Massoni, E., De Zela, F.: Synthesis and characterization of pure, two-qubit states encoded in path and polarization. J. Opt. 23, 085201(2021)
CrossRef Google scholar
[153]
Kwek, L.C., Cao, L., Luo, W., Wang, Y., Sun, S., Wang, X., Liu, A.Q.: Chip-based quantum key distribution. AAPPS Bull. 31(1), 1–8 (2021)
CrossRef Google scholar
[154]
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301(2009)
CrossRef Google scholar
[155]
Xu, F., Ma, X., Zhang, Q., Lo, H.K., Pan, J.W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002(2020)
CrossRef Google scholar
[156]
Myers, C., Laflamme, R.: Linear optics quantum computation: an overview. arXiv preprint quant-ph/0512104(2005)
[157]
Bourassa, J.E., Alexander, R.N., Vasmer, M., Patil, A., Tzitrin, I., Matsuura, T., Su, D., Baragiola, B.Q., Guha, S., Dauphinais, G., Sabapathy, K.K., Menicucci, N.C., Dhand, I.: Blueprint for a scalable photonic fault-tolerant quantum computer. Quantum 5, 392(2021)
CrossRef Google scholar
[158]
Barzanjeh, S., Xuereb, A., Gröblacher, S., Paternostro, M., Regal, C.A., Weig, E.M.: Optomechanics for quantum technologies. Nat. Phys. 18, 15–24 (2022)
CrossRef Google scholar
[159]
Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391(2014)
CrossRef Google scholar
[160]
Wang, S., Yin, Z.Q., He, D.Y., Chen, W., Wang, R.Q., Ye, P., Zhou, Y., Fan-Yuan, G.J., Wang, F.X., Chen, W., Zhu, Y.G., Morozov, P.V., Divochiy, A.V., Zhou, Z., Guo, G.C., Han, Z.F.: Twin-field quantum key distribution over 830-km fibre. Nat. Photon. 16, 154–161 (2022)
CrossRef Google scholar
[161]
Li, W., Zhang, L., Tan, H., Lu, Y., Liao, S.K., Huang, J., Li, H., Wang, Z., Mao, H.K., Yan, B., Li, Q., Liu, Y., Zhang, Q., Peng, C.Z., You, L., Xu, F., Pan, J.W.: High-rate quantum key distribution exceeding 110 Mb s−1. Nat. Photon. 17, 416–421 (2023)
CrossRef Google scholar
[162]
Clementi, M., Sabattoli, F.A., Borghi, M., Gianini, L., Tagliavacche, N., El Dirani, H., Youssef, L., Bergamasco, N., Petit- Etienne, C., Pargon, E., Sipe, J.E., Liscidini, M., Sciancalepore, C., Galli, M., Bajoni, D.: Programmable frequency-bin quantum states in a nano-engineered silicon device. Nat. Commun. 14, 176(2023)
CrossRef Google scholar
[163]
Brendel, J., Gisin, N., Tittel, W., Zbinden, H.: Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594(1999)
CrossRef Google scholar
[164]
Marcikic, I., de Riedmatten, H., Tittel, W., Scarani, V., Zbinden, H., Gisin, N.: Time-bin entangled qubits for quantum communication created by femtosecond pulses. Phys. Rev. A 66, 062308(2002)
CrossRef Google scholar
[165]
Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H., Legré, M., Gisin, N.: Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502(2004)
CrossRef Google scholar
[166]
Inagaki, T., Matsuda, N., Tadanaga, O., Asobe, M., Takesue, H.: Entanglement distribution over 300 km of fiber. Opt. Express 21, 23241–23249 (2013)
CrossRef Google scholar
[167]
Silverstone, J.W., Santagati, R., Bonneau, D., Strain, M.J., Sorel, M., O’Brien, J.L., Thompson, M.G.: Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat. Commun. 6, 7948(2015)
CrossRef Google scholar
[168]
Kwiat, P.G., Waks, E., White, A.G., Appelbaum, I., Eberhard, P.H.: Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773–R776(1999)
CrossRef Google scholar
[169]
Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503(2010)
CrossRef Google scholar
[170]
Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Ömer, B., Fürst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)
CrossRef Google scholar
[171]
Zeuner, J., Sharma, A.N., Tillmann, M., Heilmann, R., Gräfe, M., Moqanaki, A., Szameit, A., Walther, P.: Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits. npj Quantum Inf. (2018)
[172]
Crespi, A., Ramponi, R., Osellame, R., Sansoni, L., Bongioanni, I., Sciarrino, F., Vallone, G., Mataloni, P.: Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566(2011)
CrossRef Google scholar
[173]
Marshall, G.D., Politi, A., Matthews, J.C.F., Dekker, P., Ams, M., Withford, M.J., O’Brien, J.L.: Laser written waveguide photonic quantum circuits. Opt. Express 17, 12546–12554 (2009)
CrossRef Google scholar
[174]
Davis, K.M., Miura, K., Sugimoto, N., Hirao, K.: Writing wave-guides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731(1996)
CrossRef Google scholar
[175]
Zewail, A.H.: Femtochemistry. Laser Sci. 242, 4886(1988)
CrossRef Google scholar
[176]
Zewail, A.H.: Femtochemistry: recent progress in studies of dynamics and control of reactions and their transition states. J. Phys. Chem. 100, 31(1996)
CrossRef Google scholar
[177]
Zewail, A.H.: Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture). Angewandte Chemie International Edition, 2000—Wiley Online Library (2000)
[178]
Kok, P., Lovett, B.W.: Introduction to Optical Quantum Information Processing. Cambridge University Press (2010)
[179]
Hou, Z., Xiang, G., Dong, D., Li, C.F., Guo, G.C.: Realization of mutually unbiased bases for a qubit with only one wave plate: theory and experiment. Opt. Express 23, 10018–10031 (2015)
CrossRef Google scholar
[180]
Prevedel, R., Walther, P., Tiefenbacher, F., Böhi, P., Kaltenbaek, R., Jennewein, T., Zeilinger, A.: High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007)
CrossRef Google scholar
[181]
Heilmann, R., Gräfe, M., Nolte, S., Szameit, A.: Arbitrary photonic wave plate operations on chip: realizing Hadamard, Pauli- X and rotation gates for polarisation qubits. Sci. Rep. 4, 4118(2014)
CrossRef Google scholar
[182]
Barz, S., Kassal, I., Ringbauer, M., Lipp, Y.O., Dakić, B., Aspuru-Guzik, A., Walther, P.: A two-qubit photonic quantum processor and its application to solving systems of linear equations. Sci. Rep. 4, 6115(2014)
CrossRef Google scholar
[183]
Matthews, J., Poulios, K., Meinecke, J., Politi, A., Peruzzo, A., Ismail, N., Wörhoff, K., Thompson, M.G., O’Brien, J.L.: Observing fermionic statistics with photons in arbitrary processes. Sci. Rep. 3, 1539(2013)
CrossRef Google scholar
[184]
Ma, C., Sacher, W.D., Tang, Z., Mikkelsen, J.C., Yang, Y., Feihu, X., Thiessen, T., Lo, H.K., Poon, J.K.S.: Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica 3, 1274–1278 (2016)
CrossRef Google scholar
[185]
Kim, Y.-H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370(2001)
CrossRef Google scholar
[186]
Vallés, A., Hendrych, M., Svozilík, J., Machulka, R., Abolghasem, P., Kang, D., Bijlani, B.J., Helmy, A.S., Torres, J.P.: Generation of polarization-entangled photon pairs in a Bragg reflection waveguide. Opt. Express 21, 10841–10849 (2013)
CrossRef Google scholar
[187]
Olislager, L., Safioui, J., Clemmen, S., Huy, K.P., Bogaerts, W., Baets, R., Emplit, P., Massar, S.: Silicon-on-insulator integrated source of polarization-entangled photons. Opt. Lett. 38, 1960–1962(2013)
CrossRef Google scholar
[188]
Matsuda, N., Le Jeannic, H., Fukuda, H., Tsuchizawa, T., Munro, W.J., Shimizu, K., Yamada, K., Tokura, Y., Takesue, H.: A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2, 817(2012)
CrossRef Google scholar
[189]
Kaiser, F., Ngah, L.A., Issautier, A., Delord, T., Aktas, D., D’Auria, V., De Micheli, M.P., Kastberg, A., Labonté, L., Alibart, O., Martin, A., Tanzilli, S.: Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry. Opt. Commun. 327, 7–16 (2014)
CrossRef Google scholar
[190]
Hamel, D., Shalm, L., Hübel, H., Miller, A.J., Marsili, F., Verma, V.B., Mirin, R.P., Nam, S.W., Resch, K.J., Jennewein, T.: Direct generation of three-photon polarization entanglement. Nat. Photon. 8, 801–807 (2014)
CrossRef Google scholar
[191]
Barreiro, J.T., Wei, T.-C., Kwiat, P.G.: Remote preparation of single-photon “hybrid” entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407(2010)
CrossRef Google scholar
[192]
Crespi, A., Longhi, S., Osellame, R.: Photonic realization of the quantum rabi model. Phys. Rev. Lett. 108, 163601(2012)
CrossRef Google scholar
[193]
Rojas-Rojas, S., Morales-Inostroza, L., Naether, U., Xavier, G.B., Nolte, S., Szameit, A., Vicencio, R.A., Lima, G., Delgado, A.: Analytical model for polarization-dependent light propagation in waveguide arrays and applications. Phys. Rev. A 90, 063823(2014)
CrossRef Google scholar
[194]
Bonneau, D., Lobino, M., Jiang, P., Natarajan, C.M., Tanner, M.G., Hadfield, R.H., Dorenbos, S.N., Zwiller, V., Thompson, M.G., O’Brien, J.L.: Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices. Phys. Rev. Lett. 108, 053601(2012)
CrossRef Google scholar
[195]
Müller, M., Bounouar, S., Jöns, K., Glässl, M., Michler, P.: Ondemand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014)
CrossRef Google scholar
[196]
Bhatti, D., von Zanthier, J., Agarwal, G.S.: Entanglement of polarization and orbital angular momentum. Phys. Rev. A 91, 062303(2015)
CrossRef Google scholar
[197]
Vallone, G., Ceccarelli, R., De Martini, F., Mataloni, P.: Hyper-entanglement of two photons in three degrees of freedom. Phys. Rev. A 79, 030301(R) (2009)
CrossRef Google scholar
[198]
Orieux, A., Ciampini, M.A., Mataloni, P., Bruß, D., Rossi, M., Macchiavello, C.: Experimental generation of robust entanglement from classical correlations via local dissipation. Phys. Rev. Lett. 115, 160503(2015)
CrossRef Google scholar
[199]
Fickler, R., Lapkiewicz, R., Plick, W.N., Krenn, M., Schaeff, C., Ramelow, S., Zeilinger, A.: Quantum entanglement of high angular momenta. Science 338, 640–643 (2012)
CrossRef Google scholar
[200]
Nagali, E., Sciarrino, F., De Martini, F., Marrucci, L., Piccirillo, B., Karimi, E., Santamato, E.: Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103, 013601(2009)
CrossRef Google scholar
[201]
Chen, T.Y., Zhang, J., Boileau, J.C., Jin, X.M., Yang, B., Zhang, Q., Yang, F.T., Laflamme, R., Pan, J.W.: Experimental quantum communication without a shared reference frame. Phys. Rev. Lett. 96, 150504(2006)
CrossRef Google scholar
[202]
Steinlechner, F., Ecker, S., Fink, M., Liu, B., Bavaresco, J., Huber, M., Scheidl, T., Ursin, R.: Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 8, 15971(2017)
CrossRef Google scholar
[203]
Kwiat, P.G.: Hyper-entangled states. J. Mod. Opt. 44(11–12), 2173–2184 (1997)
CrossRef Google scholar
[204]
Souza, R.C., Balthazar, W.F., Huguenin, J.A.O.: Universal quantum gates for path photonic qubit. Quantum Inf. Process. 21, 68(2022)
CrossRef Google scholar
[205]
Solntsev, A.S., Sukhorukov, A.A.: Path-entangled photon sources on nonlinear chips. Rev. Phys. 2, 19–31 (2017)
CrossRef Google scholar
[206]
Balthazar, W.F., Souza, C.E.R., Caetano, D.P., Galvão, E.F., Huguenin, J.A.O., Khoury, A.Z.: Tripartite nonseparability in classical optics. Opt. Lett. 41, 5797–5800 (2016)
CrossRef Google scholar
[207]
Li, M., Li, C., Chen, Y., Feng, L.T., Yan, L., Zhang, Q., Bao, J., Liu, B.H., Ren, X.F., Wang, J., Wang, S.: On-chip path encoded photonic quantum Toffoli gate. Photon. Res. 10, 1533–1542 (2022)
CrossRef Google scholar
[208]
Babazadeh, A., Erhard, M., Wang, F., Malik, M., Nouroozi, R., Krenn, M., Zeilinger, A.: High-dimensional single-photon quantum gates: concepts and experiments. Phys. Rev. Lett. 119(18), 180510(2017)
CrossRef Google scholar
[209]
De Oliveira, A., Walborn, S., Monken, C.: Implementing the Deutsch algorithm with polarization and transverse spatial modes. J. Opt. B Quant. Semiclass. Opt. 7(9), 288(2005)
CrossRef Google scholar
[210]
Da Lio, B., Cozzolino, D., Biagi, N., Ding, Y., Rottwitt, K., Zavatta, A., Bacco, D., Oxenløwe, L.: Path-encoded high-dimensional quantum communication over a 2-km multicore fiber. npj Quantum Inf. 7, 63(2021)
CrossRef Google scholar
[211]
D’ambrosio, V., Nagali, E., Walborn, S.P., Aolita, L., Slussarenko, S., Marrucci, L., Sciarrino, F.: Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 3(1), 1(2012)
CrossRef Google scholar
[212]
Matthews, J., Politi, A., Stefanov, A., O’Brien, J.L.: Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photon. 3, 346–350 (2009)
CrossRef Google scholar
[213]
Jin, H., Liu, F.M., Xu, P., Xia, J.L., Zhong, M.L., Yuan, Y., Zhou, J.W., Gong, Y.X., Wang, W., Zhu, S.N.: On-chip generation and manipulation of entangled photons based on reconfigurable lithium- niobate waveguide circuits. Phys. Rev. Lett. 113, 103601(2014)
CrossRef Google scholar
[214]
Harris, N.C., Grassani, D., Simbula, A., Pant, M., Galli, M., Baehr-Jones, T., Hochberg, M., Englund, D., Bajoni, D., Galland, C.: Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys. Rev. X 4, 041047(2014)
CrossRef Google scholar
[215]
Titchener, J.G., Solntsev, A.S., Sukhorukov, A.A.: Generation of photons with all-optically-reconfigurable entanglement in integrated nonlinear waveguides. Phys. Rev. A 92, 033819(2015)
CrossRef Google scholar
[216]
Solntsev, A.S., Setzpfandt, F., Clark, A.S., Wu, C.W., Collins, M.J., Xiong, C., Schreiber, A., Katzschmann, F., Eilenberger, F., Schiek, R., Sohler, W.: Generation of nonclassical biphoton states through cascaded quantum walks on a nonlinear chip. Phys. Rev. X 4, 031007(2014)
CrossRef Google scholar
[217]
Schaeff, C., Polster, R., Lapkiewicz, R., Fickler, R., Ramelow, S., Zeilinger, A.: Scalable fiber integrated source for higher-dimensional path-entangled photonic quNits. Opt. Express 20, 16145–16153 (2012)
CrossRef Google scholar
[218]
Antonosyan, D.A., Solntsev, A.S., Sukhorukov, A.A.: Effect of loss on photon-pair generation in nonlinear waveguide arrays. Phys. Rev. A 90, 043845(2014)
CrossRef Google scholar
[219]
Franson, J.D.: Bell inequality for position and time. Phys. Rev. Lett. 62, 2205(1989)
CrossRef Google scholar
[220]
Humphreys, P.C., Metcalf, B.J., Spring, J.B., Moore, M., Jin, X.M., Barbieri, M., Kolthammer, W.S., Walmsley, I.A.: Linear optical quantum computing in a single spatial mode. Phys. Rev. Lett. 111, 150501(2013)
CrossRef Google scholar
[221]
Donohue, J.M., Agnew, M., Lavoie, J., Resch, K.J.: Coherent ultrafast measurement of time-bin encoded photons. Phys. Rev. Lett. 111, 153602(2013)
CrossRef Google scholar
[222]
Ortu, A., Holzäpfel, A., Etesse, J., Afzelius, M.: Storage of photonic time-bin qubits for up to 20 ms in a rare-earth doped crystal. npj Quantum Inf. 8, 29(2022)
CrossRef Google scholar
[223]
Kochi, Y., Kurimura, S., Ishi-Hayase, J.: Evaluation of femtosecond time-bin qubits using frequency up-conversion technique. arXive preprint arXiv: 2205.06957 [quant-ph] (2022)
[224]
Bouchard, F., England, D., Bustard, P.J., Heshami, K., Sussman, B.: Quantum communication with ultrafast time-bin qubits. arXive preprint arXiv: 2106. 09833 [quant-ph] (2021)
[225]
Yu, L., Natarajan, C., Horikiri, T., Langrock, C., Pelc, J.S., Tanner, M.G., Abe, E., Maier, S., Schneider, C., Höfling, S., Kamp, M., Hadfield, R.H., Fejer, M.M., Yamamoto, Y.: Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits. Nat. Commun. 6, 8955(2015)
CrossRef Google scholar
[226]
Tang, G.Z., Sun, S.H., Chen, H., Li, C.Y., Liang, L.M.: Time-bin phase-encoding measurement-device-independent quantum key distribution with four single-photon detectors. Chin. Phys. Lett. 33, 120301(2016)
CrossRef Google scholar
[227]
Gündoğan, M., Ledingham, P.M., Kutluer, K., Mazzera, M., de Riedmatten, H.: Solid state spin-wave quantum memory for time-bin qubits. Phys. Rev. Lett. 114, 230501(2015)
CrossRef Google scholar
[228]
Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H., Gisin, N.: Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003)
CrossRef Google scholar
[229]
de Riedmatten, H., Marcikic, I., Tittel, W., Zbinden, H., Collins, D., Gisin, N.: Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 047904(2004)
CrossRef Google scholar
[230]
Landry, O., van Houwelingen, J.A., Beveratos, A., Zbinden, H., Gisin, N.: Quantum teleportation over the Swisscom telecommunication network. J. Opt. Soc. Am. B 24, 398–403 (2007)
CrossRef Google scholar
[231]
Guo, X., Mei, Y., Shengwang, D.: Testing the Bell inequality on frequency-bin entangled photon pairs using time-resolved detection. Optica 4, 388–392 (2017)
CrossRef Google scholar
[232]
Nisbet-Jones, P.B.R.: Photonic qubits, qutrits and ququads accurately prepared and delivered on demand. New J. Phys. 15, 053007(2013)
CrossRef Google scholar
[233]
Martin, A., Kaiser, F., Vernier, A., Beveratos, A., Scarani, V., Tanzilli, S.: Cross time-bin photonic entanglement for quantum key distribution. Phys. Rev. A 87, 020301(R) (2013)
CrossRef Google scholar
[234]
Harada, K.I., Takesue, H., Fukuda, H., Tsuchizawa, T., Watanabe, T., Yamada, K., Tokura, Y., Itabashi, S.I.: Generation of high-purity entangled photon pairs using silicon wire wave-guide. Opt. Express 16, 20368–20373 (2008)
CrossRef Google scholar
[235]
Wakabayashi, R., Fujiwara, M., Yoshino, K.I., Nambu, Y., Sasaki, M., Aoki, T.: Time-bin entangled photon pair generation from Si micro-ring resonator. Opt. Express 23, 1103–1113 (2015)
CrossRef Google scholar
[236]
Xiong, C., Zhang, X., Mahendra, A., He, J., Choi, D.-Y., Chae, C.J., Marpaung, D., Leinse, A., Heideman, R.G., Hoekman, M., Roeloffzen, C.G.H., Oldenbeuving, R.M., van Dijk, P.W.L., Taddei, C., Leong, P.H.W., Eggleton, B.J.: Compact and reconfigurable silicon nitride time-bin entanglement circuit. Optica 2, 724–727 (2015)
CrossRef Google scholar
[237]
He, Y., Ding, X., Su, Z.E., Huang, H.L., Qin, J., Wang, C., Unsleber, S., Chen, C., Wang, H., He, Y.M., Wang, X.L.: Time-bin-encoded boson sampling with a single-photon device. Phys. Rev. Lett. 118, 190501(2017)
CrossRef Google scholar
[238]
Motes, K.R., Gilchrist, A., Dowling, J.P., Rohde, P.P.: Scalable boson sampling with time-bin encoding using a loop-based architecture. Phys. Rev. Lett. 113, 120501(2014)
CrossRef Google scholar
[239]
Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502(2010)
CrossRef Google scholar
[240]
Regensburger, A., Bersch, C., Hinrichs, B., Onishchukov, G., Schreiber, A., Silberhorn, C., Peschel, U.: Photon propagation in a discrete fiber network: an interplay of coherence and losses. Phys. Rev. Lett. 107, 233902(2011)
CrossRef Google scholar
[241]
Schreiber, A.: A 2D quantum walk simulation of two-particle dynamics. Science 336, 55–58 (2012)
CrossRef Google scholar
[242]
Jeong, Y.C., Di Franco, C., Lim, H.T., Kim, M.S., Kim, Y.H.: Experimental realization of a delayed-choice quantum walk. Nat. Commun. 4, 2471(2013)
CrossRef Google scholar
[243]
Boutari, J., Feizpour, A., Barz, S., Franco, C.D., Kim, M.S., Kolthammer, W.S., Walmsley, I.A.: Large scale quantum walks by means of optical fiber cavities. J. Opt. 18, 094007(2016)
CrossRef Google scholar
[244]
Olislager, L., Cussey, J., Nguyen, A.T., Emplit, P., Massar, S., Merolla, J.M., Huy, K.P.: Frequency-bin entangled photons. Phys. Rev. A 82, 013804(2010)
CrossRef Google scholar
[245]
Kaneda, F., Suzuki, H., Shimizu, R., Edamatsu, K.: Direct generation of frequency-bin entangled photons via two-period quasi-phase-matched parametric downconversion. Opt. Express 27, 1416(2019)
CrossRef Google scholar
[246]
Rieländer, D., Lenhard, A., Jime’nez Farìas, O., Máttar, A., Cavalcanti, D., Mazzera, M., Acín, A., Riedmatten, H.: Frequency- bin entanglement of ultra-narrow band non-degenerate photon pairs. Quantum Sci. Technol. 3, 014007(2017)
CrossRef Google scholar
[247]
Lu, H.H., Lukens, J.M., Peters, N.A., Williams, B.P., Weiner, A.M., Lougovski, P.: Quantum interference and correlation control of frequency-bin qubits. Optica 5, 1455–1460 (2018)
CrossRef Google scholar
[248]
Imany, P., Jaramillo-Villegas, J.A., Odele, O.D., Han, K., Leaird, D.E., Lukens, J.M., Lougovski, P., Qi, M., Weiner, A.M.: 50-GHz-spaced comb of high-dimensional frequencybin entangled photons from an on-chip silicon nitride micro-resonator. Opt. Express 26, 1825(2018)
CrossRef Google scholar
[249]
Reimer, C., Kues, M., Roztocki, P., Wetzel, B., Grazioso, F., Little, B.E., Chu, S.T., Johnston, T., Bromberg, Y., Caspani, L., Moss, D.J., Morandotti, R.: Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016)
CrossRef Google scholar
[250]
Zhong, T., Zhou, H., Horansky, R.D., Lee, C., Verma, V.B., Lita, A.E., Restelli, A., Bienfang, J.C., Mirin, R.P., Gerrits, T., Nam, S.W., Marsili, F., Shaw, M.D., Zhang, Z., Wang, L., Englund, D., Wornell, G.W., Shapiro, J.H., Wong, F.N.C.: Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding. New. J. Phys. 17, 022002(2015)
CrossRef Google scholar
[251]
Nunn, J., Wright, L.J., Söller, C., Zhang, L., Walmsley, I.A., Smith, B.J.: Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion. Opt. Express 21, 15959–15973 (2013)
CrossRef Google scholar
[252]
Hayat, A., Xing, X., Feizpour, A., Steinberg, A.M.: Multidimensional quantum information based on single-photon temporal wavepackets. Opt. Express 20, 29174–29184 (2012)
CrossRef Google scholar
[253]
Roslund, J., De Araujo, R.M., Jiang, S., Fabre, C., Treps, N.: Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photon. 8, 109(2014)
CrossRef Google scholar
[254]
Kaiser, F., Aktas, D., Fedrici, B., Lunghi, T., Labonté, L., Tanzilli, S.: Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks. Appl. Phys. Lett. 108, 231108(2016)
CrossRef Google scholar
[255]
Campbell, G.T., Pinel, O., Hosseini, M., Ralph, T.C., Buchler, B.C., Lam, P.K.: Configurable unitary transformations and linear logic gates using quantum memories. Phys. Rev. Lett. 113, 063601(2014)
CrossRef Google scholar
[256]
Menicucci, N.C., Ma, X., Ralph, T.C.: Arbitrarily large continuous- variable cluster states from a single quantum nondemolition gate. Phys. Rev. Lett. 104, 250503(2010)
CrossRef Google scholar
[257]
Menicucci, N.C.: Temporal-mode continuous-variable cluster states using linear optics. Phys. Rev. A 83, 062314(2011)
CrossRef Google scholar
[258]
Yokoyama, S., Ukai, R., Armstrong, S.C., Sornphiphatphong, C., Kaji, T., Suzuki, S., Yoshikawa, J., Yonezawa, H., Menicucci, N.C., Furusawa, A.: Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photon. 7, 982(2013)
CrossRef Google scholar
[259]
Chen, M., Menicucci, N.C., Pfister, O.: Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 112, 120505(2014)
CrossRef Google scholar
[260]
Soudagar, Y., Bussières, F., Berlín, G., Lacroix, S., Fernandez, J.M., Godbout, N.: Cluster-state quantum computing in optical fibers. J. Opt. Soc. Am. B 24, 226–230 (2007)
CrossRef Google scholar
[261]
Shalm, L., Hamel, D., Yan, Z., Simon, C., Resch, K.J., Jennewein, T.: Three-photon energy-time entanglement. Nat. Phys. 9, 19–22 (2013)
CrossRef Google scholar
[262]
Hosseini, M., Sparkes, B., Hétet, G., Longdell, J.J., Lam, P.K., Buchler, B.C.: Coherent optical pulse sequencer for quantum applications. Nature 461, 241–245 (2009)
CrossRef Google scholar
[263]
Autebert, C., Bruno, N., Martin, A., Lemaitre, A., Carbonell, C.G., Favero, I., Leo, G., Zbinden, H., Ducci, S.: Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons. Optica 3, 143–146 (2016)
CrossRef Google scholar
[264]
Reddy, D.V., Raymer, M.G., McKinstrie, C.J.: Efficient sorting of quantum-optical wave packets by temporal-mode interferometry. Opt. Lett. 39, 2924–2927 (2014)
CrossRef Google scholar
[265]
Brecht, B., Eckstein, A., Ricken, R., Quiring, V., Suche, H., Sansoni, L., Silberhorn, C.: Demonstration of coherent time-frequency Schmidt mode selection using dispersion-engineered frequency conversion. Phys. Rev. A 90, 030302(R) (2014)
CrossRef Google scholar
[266]
Saglamyurek, E., Sinclair, N., Slater, J.A., Heshami, K., Oblak, D., Tittel, W.: An integrated processor for photonic quantum states using a broadband light-matter interface. New J. Phys. 16, 065019(2014)
CrossRef Google scholar
[267]
Huntington, E.H., Ralph, T.C.: Components for optical qubits encoded in sideband modes. Phys. Rev. A 69, 042318(2004)
CrossRef Google scholar
[268]
Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 1–15 (2017)
CrossRef Google scholar
[269]
Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)
CrossRef Google scholar
[270]
Wilde, M.M., Tomamichel, M., Berta, M.: Converse bounds for private communication over quantum channels. IEEE Trans. Inf. Theory 63, 1792–1817 (2017)
CrossRef Google scholar
[271]
Pirandola, S.: End-to-end capacities of a quantum communication network. Commun. Phys. 2, 1–10 (2019)
CrossRef Google scholar
[272]
Winnel, M.S., Guanzon, J.J., Hosseinidehaj, N., Ralph, T.C.: Achieving the ultimate end-to-end rates of lossy quantum communication networks. npj Quantum Inf. 8, 129(2022)
CrossRef Google scholar
[273]
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 7–11 (2014)
CrossRef Google scholar
[274]
Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661(1991)
CrossRef Google scholar
[275]
Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61, 010303(1999)
CrossRef Google scholar
[276]
Hillery, M.: Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309(2000)
CrossRef Google scholar
[277]
Wein, S.C., Loredo, J.C., Maffei, M., Hilaire, P., Harouri, A., Somaschi, N., Lemaître, A., Sagnes, I., Lanco, L., Krebs, O., Auffèves, A., Simon, C., Senellart, P., Antón-Solanas, C.: Photon-number entanglement generated by sequential excitation of a two-level atom. Nat. Photon. 16, 374–379 (2022)
CrossRef Google scholar
[278]
Santos, A.C., Schneider, C., Bachelard, R., Predojević, A., Antón-Solanas, C.: Multipartite entanglement encoded in the photon-number basis by sequential excitation of a three-level system. Opt. Lett. 48, 6332–6335 (2023)
CrossRef Google scholar
[279]
Arzani, F., Ferraro, A., Parigi, V.: High-dimensional quantum encoding via photon-subtracted squeezed states Phys. Rev. A 99, 022342(2019)
CrossRef Google scholar
[280]
Ekert, A., Renner, R.: The ultimate physical limits of privacy. Nature 507, 443–447 (2014)
CrossRef Google scholar
[281]
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)
CrossRef Google scholar
[282]
Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J.L., Razavi, M., Shamsul Shaari, J., Tomamichel, M., Usenko, V.C., Vallone, G., Villoresi, P., Wallden, P.: Advances in quantum cryptography. Adv. Opt. Photon. 12, 1012–1236 (2020)
CrossRef Google scholar
[283]
Maring, N., Kutluer, K., Cohen, J., Cristiani, M., Mazzera, M., Ledingham, P.M., Riedmatten, H.: Storage of up-converted telecom photons in a doped crystal. N. J. Phys. 16, 113021(2014)
CrossRef Google scholar
[284]
Munro, W.J., Azuma, K., Tamaki, K., Nemoto, K.: Inside quantum repeaters. IEEE J. Sel. Top. Quantum Electron. 21, 78–90 (2015)
CrossRef Google scholar
[285]
Milburn, G.J.: Photons as qubits. Phys. Scr. T137, 014003(2009)
CrossRef Google scholar
[286]
Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503(2012)
CrossRef Google scholar
[287]
Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nat. Photon. 9, 397–402 (2015)
CrossRef Google scholar
[288]
Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018)
CrossRef Google scholar
[289]
Zhong, X., Hu, J., Curty, M., Qian, L., Lo, H.K.: Proof-of-principle experimental demonstration of twin-field type quantum key distribution. Phys. Rev. Lett. 123, 100506(2019)
CrossRef Google scholar
[290]
Chen, J.P., Zhang, C., Liu, Y., Jiang, C., Zhang, W., Hu, X.L., Guan, J.Y., Yu, Z.W., Xu, H., Lin, J., Li, M.J., Chen, H., Li, H., You, L., Wang, Z., Wang, X.B., Zhang, Q., Pan, J.W.: Sending-or-not-sending with independent lasers: Secure twin-field quantum key distribution over 509 km. Phys. Rev. Lett. 124, 070501(2020)
CrossRef Google scholar
[291]
Liu, H., Jiang, C., Zhu, H.T., Zou, M., Yu, Z.W., Hu, X.L., Xu, H., Ma, S., Han, Z., Chen, J.P., Dai, Y., Tang, S.B., Zhang, W., Li, H., You, L., Wang, Z., Hua, Y., Hu, H., Zhang, H., Zhou, F., Zhang, Q., Wang, X.B., Chen, T.Y., Pan, J.W.: Field test of twin-field quantum key distribution through sending-or-not-sending over 428 km. Phys. Rev. Lett. 126, 250502(2021)
CrossRef Google scholar
[292]
Chen, J.P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.J., Han, Z.Y., Ma, S.Z., Hu, X.L., Li, Y.H., Liu, H., Zhou, F., Jiang, H.F., Chen, T.Y., Li, H., You, L.X., Wang, Z., Wang, X.B., Zhang, Q., Pan, J.W.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photon. 15, 570–575 (2021)
CrossRef Google scholar
[293]
Chen, J.P., Zhang, C., Liu, Y., Jiang, C., Zhao, D.F., Zhang, W.J., Chen, F.X., Li, H., You, L.X., Wang, Z., Chen, Y., Wang, X.B., Zhang, Q., Pan, J.W.: Quantum key distribution over 658 km fiber with distributed vibration sensing. Phys. Rev. Lett. 128, 180502(2022)
CrossRef Google scholar
[294]
Erkilic, O., Conlon, L., Shajilal, B., Kish, S., Tserkis, S., Kim, Y., Lam, P., Assad, S.: Surpassing the repeaterless bound with a photon-number encoded measurement-device-independent quantum key distribution protocol. npj Quantum Inf. 9, 29(2023)
CrossRef Google scholar
[295]
Sangouard, N., Simon, C., de Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011)
CrossRef Google scholar
[296]
Simon, C., de Riedmatten, H., Afzelius, M., Sangouard, N., Zbinden, H., Gisin, N.: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503(2007)
CrossRef Google scholar
[297]
Dias, J., Winnel, M.S., Hosseinidehaj, N., Ralph, T.C.: Quantum repeater for continuous-variable entanglement distribution. Phys. Rev. A 102, 052425(2020)
CrossRef Google scholar
[298]
Bussières, F., Clausen, C., Tiranov, A., Korzh, B., Verma, V.B., Nam, S.W., Marsili, F., Ferrier, A., Goldner, P., Herrmann, H., Silberhorn, C., Sohler, W., Afzelius, M., Gisin, N.: Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photon. 8, 775–778 (2014)
CrossRef Google scholar
[299]
Stuart, J.S., Hedges, M., Ahlefeldt, R., Sellars, M.: Initialization protocol for efficient quantum memories using resolved hyperfine structure. Phys. Rev. Res. 3, L032054(2021)
CrossRef Google scholar
[300]
Goebel, A.M., Wagenknecht, C., Zhang, Q., Chen, Y.A., Chen, K., Schmiedmayer, J., Pan, J.W.: Multistage entanglement swapping. Phys. Rev. Lett. 101, 080403(2008)
CrossRef Google scholar
[301]
Kaltenbaek, R., Prevedel, R., Aspelmeyer, M., Zeilinger, A.: High-fidelity entanglement swapping with fully independent sources. Phys. Rev. A 79, 040302(2009)
CrossRef Google scholar
[302]
Li, Z.-D., Zhang, R., Yin, X.F., Liu, L.Z., Hu, Y., Fang, Y.Q., Fei, Y.Y., Jiang, X., Zhang, J., Li, L., Liu, N.L., Xu, F., Chen, Y.A., Pan, J.W.: Experimental quantum repeater without quantum memory. Nat. Photon. 13, 644–648 (2019)
CrossRef Google scholar
[303]
Allen, L., Barnett, S.M., Padgett, M.J.: Optical Angular Momentum. CRC Press (2003)
[304]
Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)
CrossRef Google scholar
[305]
Yao, A.M., Padgett, M.J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011)
CrossRef Google scholar
[306]
Torres, J.P., Torner, L.: Twisted Photons: Applications of Light with Orbital Angular Momentum. Wiley-VCH (2011)
[307]
Grier, D.G.: A revolution in optical manipulation. Nature 424, 810–816 (2003)
CrossRef Google scholar
[308]
Uribe-Patarroyo, N., Fraine, A., Simon, D.S., Minaeva, O., Sergienko, A.V.: Object identification using correlated orbital angular momentum states. Phys. Rev. Lett. 110, 043601(2013)
CrossRef Google scholar
[309]
Wang, J., Yang, J.Y., Fazal, I.M., Ahmed, N., Yan, Y., Huang, H., Ren, Y., Yue, Y., Dolinar, S., Tur, M., Willner, A.E.: Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012)
CrossRef Google scholar
[310]
Mair, A., Vaziri, A., Weihs, G., Zeilinger, A.: Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001)
CrossRef Google scholar
[311]
Leach, J., Padgett, M.J., Barnett, S.M., Franke-Arnold, S., Courtial, J.: Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, 257901(2002)
CrossRef Google scholar
[312]
Padgett, M., Bowman, R.: Tweezers with a twist. Nat. Photon. 5, 343–348 (2011)
CrossRef Google scholar
[313]
Dholakia, K., Čižmár, T.: Shaping the future of manipulation. Nat. Photon. 5, 335–342 (2011)
CrossRef Google scholar
[314]
Moretti, D., Felinto, D., Tabosa, J. W. R.: Storage and manipulation of orbital angular momentum of light in a cold atomic ensemble. In: CLEO/Europe—EQEC 2009—European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, Munich, Germany, pp. 1–1 (2009)
CrossRef Google scholar
[315]
Liu, X.J., Liu, X., Kwek, L.C., Oh, C.H.: Manipulating atomic states via optical orbital angular-momentum. Front. Phys. China 3, 113–125 (2008)
CrossRef Google scholar
[316]
Toyoda, K., Miyamoto, K., Aoki, N., Morita, R., Omatsu, T.: Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett. 12, 3645–3649 (2012)
CrossRef Google scholar
[317]
Tamburini, F., Anzolin, G., Umbriaco, G., Bianchini, A., Barbieri, C.: Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett. 97, 163903(2006)
CrossRef Google scholar
[318]
Fürhapter, S., Jesacher, A., Bernet, S., Ritsch-Marte, M.: Spiral interferometry. Opt. Lett. 30, 1953–1955 (2005)
CrossRef Google scholar
[319]
Grillo, V., Harvey, T.R., Venturi, F., Pierce, J.S., Balboni, R., Bouchard, F., Carlo Gazzadi, G., Frabboni, S., Tavabi, A.H., Li, Z.A., Dunin-Borkowski, R.E., Boyd, R.W., McMorran, B.J., Karimi, E.: Observation of nanoscale magnetic fields using twisted electron beams. Nat. Commun. 8, 689(2017)
CrossRef Google scholar
[320]
Noguchi, Y., Nakayama, S., Ishida, T., Saitoh, K., Uchida, M.: Efficient measurement of the orbital-angular-momentum spectrum of an electron beam via a Dammann vortex grating. Phys. Rev. Appl. 12, 064062(2019)
CrossRef Google scholar
[321]
Noor, S.K., Yasin, M.N.M., Ismail, A.M., Osman, M.N., Soh, P.J., Ramli, N., Rambe, A.H.: A review of orbital angular momentum vortex waves for the next generation wireless communications. IEEE Access 10, 89465–89484 (2022)
CrossRef Google scholar
[322]
Lamilla, E., Sacarelo, C., Alvarez-Alvarado, M.S., Pazmino, A., Iza, P.: Optical encoding model based on orbital angular momentum powered by machine learning. Sensors 23, 2755(2023)
CrossRef Google scholar
[323]
Zhu, J., Wang, L., Zhao, S.: Orbital angular momentum multiplexing holography for data storage. IEEE Photon. Technol. Lett. 35, 179–182 (2023)
CrossRef Google scholar
[324]
Ding, D.S., Zhang, W., Zhou, Z.Y., Shi, S., Xiang, G.Y., Wang, X.S., Jiang, Y.K., Shi, B.S., Guo, G.C.: Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys. Rev. Lett. 114, 050502(2015)
CrossRef Google scholar
[325]
Mcmanamon, P., Vedadi, A., Willner, A.E., Choudhary, D., Montifiore, N., Harlev, O.: High capacity and access rate, data storage using laser communications. Opt. Eng. 60, 015105(2021)
CrossRef Google scholar
[326]
Vaziri, A., Pan, J.-W., Jennewein, T., Weihs, G., Zeilinger, A.: Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. Phys. Rev. Lett. 91, 227902(2003)
CrossRef Google scholar
[327]
Molina-Terriza, G., Torres, J.P., Torner, L.: Twisted photons. Nat. Phys. 3, 305–310 (2007)
CrossRef Google scholar
[328]
Nagali, E., Sansoni, L., Sciarrino, F., De Martini, F., Marrucci, L., Piccirillo, B., Karimi, E., Santamato, E.: Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nat. Photon. 3, 720–723(2009)
CrossRef Google scholar
[329]
Pors, B.-J., Miatto, F., Hooft, G.W., Eliel, E.R., Woerdman, J.P.: High-dimensional entanglement with orbital-angular-momentum states of light. J. Opt. 13, 064008(2011)
CrossRef Google scholar
[330]
Lloyd, S.M., Babiker, M., Thirunavukkarasu, G., Yuan, J.: Electron vortices: beams with orbital angular momentum. Rev. Mod. Phys. 89, 035004(2017)
CrossRef Google scholar
[331]
Zahidy, M., Liu, Y., Cozzolino, D., Ding, Y., Morioka, T., Oxenløwe, L.K., Bacco, D.: Photonic integrated chip enabling orbital angular momentum multiplexing for quantum communication. Nanophotonics 11(4), 821–827 (2022)
CrossRef Google scholar
[332]
Olaleye, T.M., Ribeiro, P.A., Raposo, M.: Generation of photon orbital angular momentum and its application in space division multiplexing. Photonics 10, 664(2023)
CrossRef Google scholar
[333]
Wu, C., Kumar, S., Kan, Y., Komisar, D., Wang, Z., Bozhevolnyi, S.I., Ding, F.: Room-temperature on-chip orbital angular momentum single-photon sources. Sci. Adv. 8, eabk3075(2022)
CrossRef Google scholar
[334]
Gröblacher, S., Jennewein, T., Vaziris, A., Weihs, G., Zeilinger, A.: Experimental quantum cryptography with qutrits. New J. Phys. 8, 75(2006)
CrossRef Google scholar
[335]
Langford, N.K., Dalton, R.B., Harvey, M.D., O’Brien, J.L., Pryde, G.J., Gilchrist, A., Bartlett, S.D., White, A.G.: Measuring entangled qutrits and their use for quantum bit commitment. Phys. Rev. Lett. 93, 053601(2004)
CrossRef Google scholar
[336]
Molina-Terriza, G., Vaziri, A., Ursin, R., Zeilinger, A.: Experimental quantum coin tossing. Phys. Rev. Lett. 94, 040501(2005)
CrossRef Google scholar
[337]
Dada, A.C., Leach, J., Buller, G.S., Padgett, M.J., Andersson, E.: Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7, 677–680 (2011)
CrossRef Google scholar
[338]
Bouchard, F., Fickler, R., Boyd, R.W., Karimi, E.: High-dimensional quantum cloning and applications to quantum hacking. Sci. Adv. 3, e1601915(2017)
CrossRef Google scholar
[339]
Nagali, E., Sansoni, L., Sciarrino, F., De Martini, F., Marrucci, L., Piccirillo, B., Karimi, E., Santamato, E.: Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nat. Photon. 3, 720–723 (2009)
CrossRef Google scholar
[340]
Hamadou Ibrahim, A., Roux, F.S., McLaren, M., Konrad, T., Forbes, A.: Orbital-angular-momentum entanglement in turbulence. Phys. Rev. A 88, 012312(2013)
CrossRef Google scholar
[341]
Goyal, S., Boukama-Dzoussi, P., Ghosh, S., Roux, F.S., Konrad, T.: Qudit-Teleportation for photons with linear optics. Sci. Rep. 4, 4543(2014)
CrossRef Google scholar
[342]
Goyal, S.K., Ibrahim, A.H., Roux, F.S., Konrad, T., Forbes, A.: The effect of turbulence on entanglement-based free-space quantum key distribution with photonic orbital angular momentum. J. Opt. 18, 064002(2016)
CrossRef Google scholar
[343]
Krenn, M., Handsteiner, J., Fink, M., Fickler, R., Zeilinger, A.: Twisted photon entanglement through turbulent air across Vienna. PNAS 112(46), 14197–14201 (2015)
CrossRef Google scholar
[344]
Hiesmayr, B.C., de Dood, M.J.A., Löffler, W.: Observation of four-photon orbital angular momentum entanglement. Phys. Rev. Lett. 116, 073601(2016)
CrossRef Google scholar
[345]
Malik, M., Erhard, M., Huber, M., Krenn, M., Fickler, R., Zeilinger, A.: Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248–252 (2016)
CrossRef Google scholar
[346]
Erhard, M., Malik, M., Zeilinger, A.: A quantum router for high-dimensional entanglement. Quantum Sci. Technol. 2, 014001(2017)
CrossRef Google scholar
[347]
Fickler, R., Campbell, G., Buchler, B., Lam, P.K., Zeilinger, A.: Quantum entanglement of angular momentum states with quantum numbers up to 10,010. PNAS 113(48), 13642–13647 (2016)
CrossRef Google scholar
[348]
Erhard, M., Malik, M., Krenn, M., et al.: Experimental Green-berger- Horne-Zeilinger entanglement beyond qubits. Nat. Photon. 12, 759–764 (2018)
CrossRef Google scholar
[349]
Leonhard, N., Sorelli, G., Shatokhin, V.N., Reinlein, C., Buchleitner, A.: Protecting the entanglement of twisted photons by adaptive optics. Phys. Rev. A 97, 012321(2018)
CrossRef Google scholar
[350]
Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)
CrossRef Google scholar
[351]
Hamilton, C.S., Gábris, A., Jex, I., Barnett, S.M.: Quantum walk with a four-dimensional coin. New J. Phys. 13, 013015(2011)
CrossRef Google scholar
[352]
Innocenti, L., Majury, H., Giordani, T., Spagnolo, N., Sciarrino, F., Paternostro, M., Ferraro, A.: Quantum state engineering using one-dimensional discrete-time quantum walks. Phys. Rev. A 96, 062326(2017)
CrossRef Google scholar
[353]
Cardano, F., Massa, F., Qassim, H., Karimi, E., Slussarenko, S., Paparo, D., de Lisio, C., Sciarrino, F., Santamato, E., Boyd, R.W., Marrucci, L.: Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv. 1, e1500087(2015)
CrossRef Google scholar
[354]
Cardano, F., Maffei, M., Massa, F., Piccirillo, B., de Lisio, C., De Filippis, G., Cataudella, V., Santamato, E., Marrucci, L.: Statistical moments of quantum-walk dynamics reveal topological quantum transitions. Nat. Commun. 7, 11439(2016)
CrossRef Google scholar
[355]
Zhang, P., Liu, B.H., Liu, R.F., Li, H.R., Li, F.L., Guo, G.C.: Implementation of one-dimensional quantum walks on spinorbital angular momentum space of photons. Phys. Rev. A 81, 052322(2010)
CrossRef Google scholar
[356]
Cardano, F., D’Errico, A., Dauphin, A., Maffei, M., Piccirillo, B., de Lisio, C., De Filippis, G., Cataudella, V., Santamato, E., Marrucci, L., Lewenstein, M., Massignan, P.: Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 8, 15516(2017)
CrossRef Google scholar
[357]
Erhard, M., Fickler, R., Krenn, M., Zeilinger, A.: Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146(2018)
CrossRef Google scholar
[358]
Vallone, G., D’Ambrosio, V., Sponselli, A., Slussarenko, S., Marrucci, L., Sciarrino, F., Villoresi, P.: Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503(2014)
CrossRef Google scholar
[359]
Mirhosseini, M., Magaña-Loaiza, O.S., O’Sullivan, M.N., Rodenburg, B., Malik, M., Lavery, M.P.J., Padgett, M.J., Gauthier, D.J., Boyd, R.W.: High-dimensional quantum cryptography with twisted light. New J. Phys. 17, 033033(2015)
CrossRef Google scholar
[360]
Lei, T., Zhang, M., Li, Y., Jia, P., Liu, G.N., Xu, X., Li, Z., Min, C., Lin, J., Yu, C., Niu, H., Yuan, X.: Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl. 4, e257(2015)
CrossRef Google scholar
[361]
Wang, F.X., Chen, W., Yin, Z.Q., Wang, S., Guo, G.C., Han, Z.F.: Erratum: scalable orbital-angular-momentum sorting without destroying photon states. Phys. Rev. A 95, 019903(2017)
CrossRef Google scholar
[362]
Pan, Z., Cai, J., Wang, C.: Quantum key distribution with high order Fibonacci-like orbital angular momentum states. Int. J. Theor. Phys. 56, 2622–2634 (2017)
CrossRef Google scholar
[363]
Sit, A., Bouchard, F., Fickler, R., Gagnon-Bischoff, J., Larocque, H., Heshami, K., Elser, D., Peuntinger, C., Günthner, K., Heim, B., Marquardt, C.: High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017)
CrossRef Google scholar
[364]
Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M., Padgett, M.J., Konrad, T., Petruccione, F., Lütkenhaus, N., Forbes, A.: Higher-dimensional orbital-angular-momentumbased quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305(2013)
CrossRef Google scholar
[365]
D’Ambrosio, V., Spagnolo, N., Del Re, L., Slussarenko, S., Li, Y., Kwek, L.C., Marrucci, L., Walborn, S.P., Aolita, L., Sciarrino, F.: Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun. 4, 2432(2013)
CrossRef Google scholar
[366]
Jha, A.K., Agarwal, G.S., Boyd, R.W.: Supersensitive measurement of angular displacements using entangled photons. Phys. Rev. A 83, 053829(2011)
CrossRef Google scholar
[367]
Karimi, E., Piccirillo, B., Nagali, E., Marrucci, L., Santamato, E.: Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl. Phys. Lett. 94, 231124(2009)
CrossRef Google scholar
[368]
Zhang, W., Qi, Q., Zhou, J., Chen, L.: Mimicking faraday rotation to sort the orbital angular momentum of light. Phys. Rev. Lett. 112, 153601(2014)
CrossRef Google scholar
[369]
Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015)
CrossRef Google scholar
[370]
Goyal, S., Konrad, T.: Teleporting photonic qudits using multimode quantum scissors. Sci. Rep. 3, 3548(2013)
CrossRef Google scholar
[371]
Ding, D.S., Zhou, Z.Y., Shi, B.S., Guo, G.C.: Single-photon-level quantum image memory based on cold atomic ensembles. Nat. Commun. 4, 2527(2013)
CrossRef Google scholar
[372]
Cai, X., Wang, J., Strain, M. J., Johnson-Morris, B., Zhu, J., Sorel, M., O’Brien, J., Thompson, M., Yu, S.: Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012)
CrossRef Google scholar
[373]
Alonso, J.R.G., Brun, T.A.: Protecting orbital-angular-momentum photons from decoherence in a turbulent atmosphere. Phys. Rev. A 88, 022326(2013)
CrossRef Google scholar
[374]
Alonso, J.R.G., Brun, T.: Recovering quantum information in orbital angular momentum of photons by adaptive optics. arXive preprints arXiv: 1612. 02552 [quant-ph] (2016)
[375]
Padgett, M.J., Miatto, F.M., Lavery, M.P.J., Zeilinger, A., Boyd, R.W.: Divergence of an orbital-angular-momentum-carrying beam upon propagation. New J. Phys. 17, 023011(2015)
CrossRef Google scholar
[376]
Farías, O., D’Ambrosio, V., Taballione, C., Bisesto, F., Slussarenko, S., Aolita, L., Marrucci, L., Walborn, S.P., Sciarrino, F.: Resilience of hybrid optical angular momentum qubits to turbulence. Sci. Rep. 5, 8424(2015)
CrossRef Google scholar
[377]
Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photon. 3, 706–714 (2009)
CrossRef Google scholar
[378]
Inoue, R., Kanai, N., Yonehara, T., Miyamoto, Y., Koashi, M., Kozuma, M.: Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon. Phys. Rev. A 74, 053809(2006)
CrossRef Google scholar
[379]
Pugatch, R., Shuker, M., Firstenberg, O., Ron, A., Davidson, N.: Topological stability of optical vortices. Phys. Rev. Lett. 98, 203601(2007)
CrossRef Google scholar
[380]
Moretti, D., Felinto, D., Tabosa, J.W.R.: Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble. Phys. Rev. A 79, 023825(2009)
CrossRef Google scholar
[381]
Veissier, L., Nicolas, A., Giner, L., Maxein, D., Sheremet, A.S., Giacobino, E., Laurat, J.: Reversible optical memory for twisted photons. Opt. Lett. 38, 712–714 (2013)
CrossRef Google scholar
[382]
Ding, D.S., Zhou, Z.Y., Shi, B.S., Guo, G.G.: Single-photon level quantum image memory based on cold atomic ensembles. Nat. Commun. 4, 2527(2013)
CrossRef Google scholar
[383]
Nicolas, A., Veissier, L., Giner, L., Giacobino, E., Maxein, D., Laurat, J.: A quantum memory for orbital angular momentum photonic qubits. Nat. Photon. 8, 234–238 (2014)
CrossRef Google scholar
[384]
Zhou, Z.Y., Li, Y., Ding, D.S., Zhang, W., Shi, S., Shi, B.S., Guo, G.C.: Orbital angular momentum photonic quantum interface. Light Sci. Appl. 5, e16019(2016)
CrossRef Google scholar
[385]
Choi, C.Q.: Two of world’s biggest quantum computers made in China: Quantum computers Zuchongzi and Jiuzhang 2.0 may both display “quantum primacy” over classical computers. IEEE Spectrum (2021). Available at the website of spectrum.ieee.org/quantum-computing-china
[386]
Chen, Y.H., Cho, C.H., Yuan, W., Ma, Y., Wen, K., Chang, C.R.: Photonic quantum computers enlighten the world: a review of their development, types, and applications. IEEE Nanatechnol. Mag. 16(4), 4–9 (2022)
CrossRef Google scholar
[387]
Bartlett, B., Dutt, A., Fan, S.: Deterministic photonic quantum computation in a synthetic time dimension. Optica 8, 1515–1523 (2021)
CrossRef Google scholar
[388]
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303(1999)
CrossRef Google scholar
[389]
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325(1997)
CrossRef Google scholar
[390]
Pfister, O.: Continuous-variable quantum computing in the quantum optical frequency comb. J. Phys. B: At. Mol. Opt. Phys. 53, 012001(2019)
CrossRef Google scholar
[391]
Fukui, K., Takeda, S.: Building a large-scale quantum computer with continuous-variable optical technologies. J. Phys. B: At. Mol. Opt. Phys. 55, 012001(2022)
CrossRef Google scholar
[392]
Yoshikawa, J., Yokoyama, S., Kaji, T., Sornphiphatphong, C., Shiozawa, Y., Makino, K., Furusawa, A.: Generation of onemillion- mode continuous-variable cluster state by unlimited time-domain multiplexing. APL Photon. 1(6), 060801(2016)
CrossRef Google scholar
[393]
Asavanant, W., Shiozawa, Y., Yokoyama, S., Charoensombutamon, B., Emura, H., Alexander, R.N., Takeda, S., Yoshikawa, J.I., Menicucci, N.C., Yonezawa, H., Furusawa, A.: Generation of time-domain-multiplexed two-dimensional cluster state. Science 366(6463), 373–376 (2019)
CrossRef Google scholar
[394]
Larsen, M.V., Guo, X., Breum, C.R., Neergaard-Nielsen, J.S., Andersen, U.L.: Deterministic generation of a two-dimensional cluster state. Science 366, 369(2019)
CrossRef Google scholar
[395]
Larsen, M.V., Guo, X., Breum, C.R., Neergaard-Nielsen, J.S., Andersen, U.L.: Deterministic multi-mode gates on a scalable photonic quantum computing platform. Nat. Phys. 17, 1018–1023(2021)
CrossRef Google scholar
[396]
Asavanant, W., Charoensombutamon, B., Yokoyama, S., Ebihara, T., Nakamura, T., Alexander, R.N., Endo, M., Yoshikawa, J.I., Menicucci, N.C., Yonezawa, H., Furusawa, A.: Time-domainmultiplexed measurement-based quantum operations with 25-mHz clock frequency. Phys. Rev. Appl. 16, 034005(2021)
CrossRef Google scholar
[397]
Pysher, M., Miwa, Y., Shahrokhshahi, R., Bloomer, R., Pfister, O.: Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys. Rev. Lett. 107, 030505(2011)
CrossRef Google scholar
[398]
Cai, Y., Roslund, J., Ferrini, G., Arzani, F., Xu, X., Fabre, C., Treps, N.: Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645(2017)
CrossRef Google scholar
[399]
Grimsmo, A.L., Blais, A.: Squeezing and quantum state engineering with Josephson travelling wave amplifiers. npj Quantum Inf. 3, 20(2017)
CrossRef Google scholar
[400]
Schmidt, M., Ludwig, M., Marquardt, F.: Optomechanical circuits for nanomechanical continuous variable quantum state processing. New J. Phys. 14, 125005(2012)
CrossRef Google scholar
[401]
Houhou, O., Aissaoui, H., Ferraro, A.: Generation of cluster states in optomechanical quantum systems. Phys. Rev. A 92, 063843(2015)
CrossRef Google scholar
[402]
Ikeda, Y., Yamamoto, N.: Deterministic generation of gaussian pure states in a quasilocal dissipative system. Phys. Rev. A 87, 033802(2013)
CrossRef Google scholar
[403]
Motes, K.R., Baragiola, B.Q., Gilchrist, A., Menicucci, N.C.: Encoding qubits into oscillators with atomic ensembles and squeezed light. Phys. Rev. A 95, 053819(2017)
CrossRef Google scholar
[404]
Flühmann, C., Negnevitsky, V., Marinelli, M., Home, J.P.: Sequential modular position and momentum measurements of a trapped ion mechanical oscillator. Phys. Rev. X 8, 02100110(2018)
CrossRef Google scholar
[405]
Flühmann, C., Nguyen, T.L., Marinelli, M., Negnevitsky, V., Mehta, K., Home, J.: Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513(2019)
CrossRef Google scholar
[406]
Pegg, D., Barnett, S.: Phase properties of the quantized single-mode electromagnetic field. Phys. Rev. A 39, 1665(1989)
CrossRef Google scholar
[407]
Chuang, I.L., Leung, D.W., Yamamoto, Y.: Bosonic quantum codes for amplitude damping. Phys. Rev. A 56, 1114(1997)
CrossRef Google scholar
[408]
Albert, V.V., Noh, K., Duivenvoorden, K., Young, D.J., Brierley, R., Reinhold, P., Vuillot, C., Li, L., Shen, C., Girvin, S., Terhal, B.M., Jiang, L.: Performance and structure of single-mode bosonic codes. Phys. Rev. A 97, 032346(2018)
CrossRef Google scholar
[409]
Grimsmo, A.L., Combes, J., Baragiola, B.Q.: Quantum computing with rotation-symmetric bosonic codes. Phys. Rev. X 10, 011058(2020)
CrossRef Google scholar
[410]
Cochrane, P.T., Milburn, G.J., Munro, W.J.: Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping. Phys. Rev. A 59, 2631(1999)
CrossRef Google scholar
[411]
Michael, M.H., Silveri, M., Brierley, R., Albert, V.V., Salmilehto, J., Jiang, L., Girvin, S.M.: New class of quantum errorcorrecting codes for a bosonic mode. Phys. Rev. X 6, 031006(2016)
CrossRef Google scholar
[412]
Gottesman, D., Kitaev, A., Preskill, J.: Encoding a qubit in an oscillator. Phys. Rev. A 64(1), 012310(2001)
CrossRef Google scholar
[413]
Menicucci, N.C.: Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. Phys. Rev. Lett. 112, 120504(2014)
CrossRef Google scholar
[414]
Fukui, K., Tomita, A., Okamoto, A.: Analog quantum error correction with encoding a qubit into an oscillator. Phys. Rev. Lett. 119, 180507(2017)
CrossRef Google scholar
[415]
Fukui, K., Tomita, A., Okamoto, A., Fujii, K.: High-threshold fault-tolerant quantum computation with analog quantum error correction. Phys. Rev. X 8, 021054(2018)
CrossRef Google scholar
[416]
Douce, T., Markham, D., Kashefi, E., Van Loock, P., Ferrini, G.: Probabilistic fault-tolerant universal quantum computation and sampling problems in continuous variables. Phys. Rev. A 99, 012344(2019)
CrossRef Google scholar
[417]
Vuillot, C., Asasi, H., Wang, Y., Pryadko, L.P., Terhal, B.M.: Quantum error correction with the toric Gottesman-Kitaev-Preskill code. Phys. Rev. A 99, 032344(2019)
CrossRef Google scholar
[418]
Baragiola, B.Q., Pantaleoni, G., Alexander, R.N., Karanjai, A., Menicucci, N.C.: All-gaussian universality and fault tolerance with the Gottesman-Kitaev-Preskill code. Phys. Rev. Lett. 123, 200502(2019)
CrossRef Google scholar
[419]
Shi, Y., Chamberland, C., Cross, A.: Fault-tolerant preparation of approximate GKP states. New J. Phys. 21, 093007(2019)
CrossRef Google scholar
[420]
Walshe, B.W., Mensen, L.J., Baragiola, B.Q., Menicucci, N.C.: Robust fault tolerance for continuous-variable cluster states with excess antisqueezing. Phys. Rev. A 100, 010301(2019)
CrossRef Google scholar
[421]
Pantaleoni, G., Baragiola, B.Q., Menicucci, N.C.: Modular bosonic subsystem codes. Phys. Rev. Lett. 125, 040501(2020)
CrossRef Google scholar
[422]
Walshe, B.W., Baragiola, B.Q., Alexander, R.N., Menicucci, N.C.: Continuous-variable gate teleportation and bosonic-code error correction. Phys. Rev. A 102, 062411(2020)
CrossRef Google scholar
[423]
Pantaleoni, G., Baragiola, B.Q., Menicucci, N.C.: Subsystem analysis of continuous-variable resource states. Phys. Rev. A 104, 012430(2021)
CrossRef Google scholar
[424]
Grimsmo, A.L., Puri, S.: Quantum error correction with the Gottesman-Kitaev-Preskill code. PRX Quantum 2, 020101(2021)
CrossRef Google scholar
[425]
Fukui, K., Tomita, A., Okamoto, A.: Tracking quantum error correction. Phys. Rev. A 98, 022326(2018)
CrossRef Google scholar
[426]
Noh, K., Chamberland, C.: Fault-tolerant bosonic quantum error correction with the surface-Gottesman-Kitaev-Preskill code. Phys. Rev. A 101, 012316(2020)
CrossRef Google scholar
[427]
Noh, K., Girvin, S., Jiang, L.: Encoding an oscillator into many oscillators. Phys. Rev. Lett. 125, 080503(2020)
CrossRef Google scholar
[428]
Yamasaki, H., Fukui, K., Takeuchi, Y., Tani, S., Koashi, M.: Polylog-overhead highly fault-tolerant measurement-based quantum computation: all-gaussian implementation with gottesmankitaev-preskill code. arXiv preprint arXiv: 2006.05416(2020)
[429]
Noh, K., Chamberland, C., Brandão, F. G.: Low overhead fault-tolerant quantum error correction with the surface-gkp code. arXiv preprint arXiv: 2103.06994(2021)
[430]
Tzitrin, I., Matsuura, T., Alexander, R.N., Dauphinais, G., Bourassa, J.E., Sabapathy, K.K., Menicucci, N.C., Dhand, I.: Fault-tolerant quantum computation with static linear optics. PRX Quantum 2, 040353(2021)
CrossRef Google scholar
[431]
Seshadreesan, K.P., Dhara, P., Patil, A., Jiang, L., Guha, S.: Coherent manipulation of graph states composed of finite-energy Gottesman-Kitaev-Preskill-encoded qubits. Phys. Rev. A 105, 052416(2022)
CrossRef Google scholar
[432]
Stafford, M. P., Menicucci, N. C.: Biased gottesman-kitaevpreskill repetition code. arXiv preprint arXiv: 2212.11397(2022)
[433]
Takeda, S., Furusawa, A.: Universal quantum computing with measurement-induced continuous-variable gate sequence in a loop-based architecture. Phys. Rev. Lett. 119, 120504(2017)
CrossRef Google scholar
[434]
Alexander, R.N., Yokoyama, S., Furusawa, A., Menicucci, N.C.: Universal quantum computation with temporal-mode bilayer square lattices. Phys. Rev. A 97, 032302(2018)
CrossRef Google scholar
[435]
Fukui, K., Alexander, R.N., van Loock, P.: All-optical long-distance quantum communication with Gottesman-Kitaev-Preskill qubits. Phys. Rev. Res. 3, 033118(2021)
CrossRef Google scholar
[436]
Rozpędek, F., Noh, K., Xu, Q., Guha, S., Jiang, L.: Quantum repeaters based on concatenated bosonic and discrete-variable quantum codes. npj Quantum Inf. 7, 102(2021)
CrossRef Google scholar
[437]
Terhal, B., Weigand, D.: Encoding a qubit into a cavity mode in circuit QED using phase estimation. Phys. Rev. A 93, 012315(2016)
CrossRef Google scholar
[438]
Campagne-Ibarcq, P., Eickbusch, A., Touzard, S., Zalys-Geller, E., Frattini, N.E., Sivak, V.V., Reinhold, P., Puri, S., Shankar, S., Schoelkopf, R.J., Frunzio, L., Mirrahimi, M., Devoret, M.H.: Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368(2020)
CrossRef Google scholar
[439]
Pirandola, S., Mancini, S., Vitali, D., Tombesi, P.: Constructing finite-dimensional codes with optical continuous variables. Europhys. Lett. 68, 323(2004)
CrossRef Google scholar
[440]
Pirandola, S., Mancini, S., Vitali, D., Tombesi, P.: Continuous variable encoding by ponderomotive interaction. Eur. Phys. J. D-Atomic Mol. Opt. Plasma. Phys. 37, 283(2006)
CrossRef Google scholar
[441]
Pirandola, S., Mancini, S., Vitali, D., Tombesi, P.: Generating continuous variable quantum codewords in the near-field atomic lithography. J. Phys. B: At. Mol. Opt. Phys. 39, 997(2006)
CrossRef Google scholar
[442]
Eaton, M., Nehra, R., Pfister, O.: Non-Gaussian and Gottesman- Kitaev-Preskill state preparation by photon catalysis. New J. Phys. 21, 113034(2019)
CrossRef Google scholar
[443]
Su, D., Myers, C.R., Sabapathy, K.K.: Conversion of gaussian states to non-gaussian states using photon-number-resolving detectors. Phys. Rev. A 100, 052301(2019)
CrossRef Google scholar
[444]
Arrazola, J.M., Bromley, T.R., Izaac, J., Myers, C.R., Brádler, K., Killoran, N.: Machine learning method for state preparation and gate synthesis on photonic quantum computers. Quantum Sci. Technol. 4, 024004(2019)
CrossRef Google scholar
[445]
Tzitrin, I., Bourassa, J.E., Menicucci, N.C., Sabapathy, K.K.: Progress towards practical qubit computation using approximate Gottesman-Kitaev-Preskill codes. Phys. Rev. A 101, 032315(2020)
CrossRef Google scholar
[446]
Lin, C.Y., Su, W.C., Wu, S.T.: Encoding qubits into harmonicoscillator modes via quantum walks in phase space. Quantum Inf. Process. 19, 1(2020)
CrossRef Google scholar
[447]
Hastrup, J., Andersen, U. L.: Generation of optical Gottesman-Kitaev-Preskil states with cavity QED. arXiv preprint arXiv: 2104.07981(2021)
[448]
Fukui, K., Endo, M., Asavanant, W., Sakaguchi, A., Yoshikawa, J., Furusawa, A.: Generating the gottesman-kitaevpreskill qubit using a cross-kerr interaction between squeezed light and fock states in optics. Phys. Rev. A 105, 022436(2022)
CrossRef Google scholar
[449]
Fukui, K., Menicucci, N. C.: An efficient, concatenated, bosonic code for additive gaussian noise. arXiv preprint arXiv: 2102.01374(2021)
[450]
Takase, K., Fukui, K., Kawasaki, A., Asavanant, W., Endo, M., Yoshikawa, J., van Loock, P., Furusawa, A.: Gaussian breeding for encoding a qubit in propagating light. arXiv preprint arXiv: 2212.05436(2022)
[451]
Fukui, K.: High-threshold fault-tolerant quantum computation with the Gottesman-Kitaev-Preskill qubit under noise in an optical setup. Phys. Rev. A 107, 052414(2023)
CrossRef Google scholar
[452]
Fluhmann, C., Home, J.P.: Direct characteristic-function tomography of quantum states of the trapped-ion motional oscillator. Phys. Rev. Lett. 125, 043602(2020)
CrossRef Google scholar
[453]
de Neeve, B., Nguyen, T. L., Behrle, T., Home, J.: Error correction of a logical grid state qubit by dissipative pumping. arXiv preprint arXiv: 2010.09681 [quant-ph] (2020)
[454]
Larsen, M. V., Chamberland, C., Noh, K., Neergaard-Nielsen, J. S., Andersen, U. L.: A fault-tolerant continuous-variable measurement-based quantum computation architecture. arXiv preprint arXiv: 2101.03014(2021)
[455]
Xue, X., D’Anjou, B., Watson, T.F., Ward, D.R., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A., Coish, W.A., Vandersypen, L.M.K.: Repetitive quantum nondemolition measurement and soft decoding of a silicon spin qubit. Phys. Rev. X 10, 021006(2020)
CrossRef Google scholar
[456]
D’Anjou, B.: Generalized figure of merit for qubit read-out. Phys. Rev. A 103, 042404(2021)
CrossRef Google scholar
[457]
Aharonovich, I., Englund, D., Toth, M.: Solid-state single-photon emitters. Nat. Photon. 10(10), 631–641 (2016)
CrossRef Google scholar
[458]
Meyer-Scott, E., Silberhorn, C., Migdall, A.: Single-photon sources: approaching the ideal through multiplexing. Rev. Sci. Instrum. 91, 041101(2020)
CrossRef Google scholar
[459]
Thomas, S., Senellart, P.: The race for the ideal single-photon source is on. Nat. Nanotechnol. 16, 367–368 (2021)
CrossRef Google scholar
[460]
Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press (1995)
[461]
Grynberg, G., Aspect, A., Fabre, C.: Introduction to Quantum Optics. Cambridge University Press (2010)
[462]
Mansuripur, M., Wright, E.M.: Fundamental properties of beamsplitters in classical and quantum optics. Am. J. Phys. 91, 298–306(2023)
CrossRef Google scholar
[463]
Soref, R., Bennett, B.: Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987)
CrossRef Google scholar
[464]
Nedeljkovic, M., Soref, R., Mashanovich, G.Z.: Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-µm infrared wavelength range. IEEE Photon. J. 3, 1171–1180 (2011)
CrossRef Google scholar
[465]
Liu, S., Feng, J., Tian, Y., Zhao, H., Jin, L., Ouyang, B., Zhu, J., Guo, J.: Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review. Front. Optoelectron. 15, 9(2022)
CrossRef Google scholar
[466]
Wu, K., Guo, C., Wang, H., Zhang, X., Wang, J., Chen, J.: All-optical phase shifter and switch near 1550 nm using tungsten disulfide (WS2) deposited tapered fiber. Opt. Express 25, 17639–17649(2017)
CrossRef Google scholar
[467]
Supradeepa, V.R., Long, C.M., Wu, R., Ferdous, F., Hamidi, E., Leaird, D.E., Weiner, A.M.: Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nat. Photon. 6, 186–194 (2012)
CrossRef Google scholar
[468]
Marpaung, D., Yao, J., Capmany, J.: Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019)
CrossRef Google scholar
[469]
Fandiño, J.S., Muñoz, P., Doménech, D., Capmany, J.: A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2016)
CrossRef Google scholar
[470]
Eggleton, B.J., Poulton, C.G., Rakich, P.T., Steel, M.J., Bahl, G.: Brillouin integrated photonics. Nat. Photon. 13, 664–677 (2019)
CrossRef Google scholar
[471]
Greiner, M., Mandel, O., Esslinger, T., Hänsch, T.W., Bloch, I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)
CrossRef Google scholar
[472]
Hu, J., Urvoy, A., Vendeiro, Z., Crépel, V., Chen, W., Vuletić, V.: Creation of a Bose-condensed gas of 87Rb by laser cooling. Science 358, 1078–1080 (2017)
CrossRef Google scholar
[473]
Yoo, S.J.B.: Wavelength conversion technologies for WDM network applications. J. Light. Technol. 14, 955–966 (1996)
CrossRef Google scholar
[474]
Lukens, J.M., Lu, H.H., Qi, B., Lougovski, P., Weiner, A.M., & Williams, B.P.: All-optical frequency processor for networking applications. J. Light. Technol. 38, 1678–1687 (2020)
CrossRef Google scholar
[475]
Mueller, T., Xia, F., Avouris, P.: Graphene photodetectors for high-speed optical communications. Nat. Photon. 4(5), 297–301 (2010)
CrossRef Google scholar
[476]
Li, G., Wang, Y., Huang, L., Sun, W.: Research progress of high-sensitivity perovskite photodetectors: a review of photodetectors: noise, structure, and materials. ACS Appl. Electron. Mater. 4(4), 1485–1505 (2022)
CrossRef Google scholar
[477]
Konstantatos, G.: Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 9, 5266(2018)
CrossRef Google scholar
[478]
Peumans, P., Bulovic, V., Forrest, S.R.: Efficient, high-bandwidth organic multilayer photodetectors. Appl. Phys. Lett. 76, 3855–3857(2000)
CrossRef Google scholar
[479]
Baeg, K.J., Binda, M., Natali, D., Caironi, M., Noh, Y.Y.: Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25, 4267–95 (2013)
CrossRef Google scholar
[480]
Sarto, A.W., Van Zeghbroeck, B.J.: Photocurrents in a metalsemiconductor- metal photodetector. IEEE J. Quantum Electron. 33(12), 2188–2194 (1997)
CrossRef Google scholar
[481]
Yang, T., Shou, C., Xu, L., Tran, J., He, Y., Li, Y., Wei, P., Liu, J.: Metal-semiconductor-metal photodetectors based on β−MgGaO thin films. ACS Appl. Electron. Mater. 5(4), 2122–2130 (2023)
CrossRef Google scholar
[482]
Averin, S.V., Kotov, V.M.: High spectral selectivity metal-sem-iconductor-metal photodetector. Opt. Quant. Electron. 55, 37(2023)
CrossRef Google scholar
[483]
Yoo, H., Lee, I.S., Jung, S., Rho, S.M., Kang, B.H., Kim, H.J.: A review of phototransistors using metal oxide semiconductors: research progress and future directions. Adv. Mater. 33(47), 2006091(2021)
CrossRef Google scholar
[484]
Glover, A.M.: A review of the development of sensitive phototubes. Proc. IRE 29(8), 413–423 (1941)
CrossRef Google scholar
[485]
Ekert, A.: Quantum interferometers as quantum computers. Phys. Scr. 1998, 218(1998)
CrossRef Google scholar
[486]
Spagnolo, N., Aparo, L., Vitelli, C., Crespi, A., Ramponi, R., Osellame, R., Mataloni, P., Sciarrino, F.: Quantum interferometry with three-dimensional geometry. Sci. Rep. 2, 862(2012)
CrossRef Google scholar
[487]
Tan, S.H., Rohde, P.P.: The resurgence of the linear optics quantum interferometer—recent advances and applications. Rev. Phys. 4, 100030(2019)
CrossRef Google scholar
[488]
Chen, Y., Hong, L., Chen, L.: Quantum interferometric metrology with entangled photons. Front. Phys. 10, 892519(2022)
CrossRef Google scholar