Spectrally efficient single carrier 400G optical signal transmission

Jianjun YU

PDF(2004 KB)
PDF(2004 KB)
Front. Optoelectron. ›› 2019, Vol. 12 ›› Issue (1) : 15-23. DOI: 10.1007/s12200-018-0833-x
REVIEW ARTICLE
REVIEW ARTICLE

Spectrally efficient single carrier 400G optical signal transmission

Author information +
History +

Abstract

In this paper, the recent progress on spectrally efficient single carrier (SC) 400G optical signal transmission was summarized. By using quadrature phase shift keying (QPSK), 16 quadrature amplitude modulation (16QAM) and 64QAM, we can realize transmission distance over 10000, 6000 and 3000 km, respectively, with large area fiber and all-Raman amplification. To improve the system performance and generate high-order QAM, advanced digital signal processing algorithms such as probabilistic shaping and look-up table pre-distortion are employed to improve the transmission performance.

Keywords

coherent detection / digital signal processing / single carrier (SC) / probabilistic shaping / OFDM

Cite this article

Download citation ▾
Jianjun YU. Spectrally efficient single carrier 400G optical signal transmission. Front. Optoelectron., 2019, 12(1): 15‒23 https://doi.org/10.1007/s12200-018-0833-x

References

[1]
Chang F, Jiang W J, Chan T, Way W. Enabling single-carrier spectral effcient 400 Gbps transmission. Technical Publication, Inphi Corp in collaboration with NeoPhotonics, 2017, https://www.inphi.com/products/whitepapers/400GbsSingleCarrier.pdf
[2]
Savory S J, Gavioli G, Killey R I, Bayvel P. Transmission of 42.8 Gbit/s polarization multiplexed NRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation. In: Proceedings of Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference. Anaheim: Optical Society of America, 2007, paper OTuA1
[3]
Hongo J, Kasai K, Yoshida M, Nakazawa M. 1-Gsymbol/s 64-QAM coherent optical transmission over 150 km. IEEE Photonics Technology Letters, 2007, 19(9): 638–640
CrossRef Google scholar
[4]
Ip E, Kahn J M. Digital equalization of chromatic dispersion and polarization mode dispersion. Journal of Lightwave Technology, 2007, 25(8): 2033–2043
CrossRef Google scholar
[5]
Goldfarb G, Li G. Chromatic dispersion compensation using digital IIR filtering with coherent detection. IEEE Photonics Technology Letters, 2007, 19(13): 969–971
CrossRef Google scholar
[6]
Ip E, Kahn J M. Feedforward carrier recovery for coherent optical communications. Journal of Lightwave Technology, 2007, 25(9): 2675–2692
CrossRef Google scholar
[7]
Fludger C R, Duthel T, van den Borne D, Schulien C, Schmidt E, Wuth T, de Man E, Khoe G D, de Waardt H. 10 × 111 Gbit/s, 50 GHz spaced, POLMUX-RZ-DQPSK transmission over 2375 km employing coherent equalisation. In: Proceedings of Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference. Anaheim: Optical Society of America, 2007, paper PDP22
[8]
Zhou X, Yu J, Huang M, Shao Y, Wang T, Magill P, Cvijetic M, Nelson L, Birk M, Zhang G, Ten S Y, Matthew H B, Mishra S K. 32 Tb/s (320×114 Gb/s) PDM-RZ-8QAM transmission over 580 km of SMF-28 ultra-low-loss fiber. In: Proceedings of Optical Fiber Communication Conference and National Fiber Optic Engineers Conference. San Diego: Optical Society of America, 2009, paper PDPB4
[9]
Zhou X, Yu J, Huang M, Shao Y, Wang T, Nelson L, Magill P, Birk M, Borel P I, Peckham D W, Lingle R. 64-Tb/s (640×107-Gb/s) PDM-36QAM transmission over 320 km using both pre- and post-transmission digital equalization. In: Proceedings of National Fiber Optic Engineers Conference. San Diego: Optical Society of America, 2010, paper PDPB9
[10]
Chien H C, Yu J, Cai Y, Zhang J, Li X, Xiao X. 400G-over-80 km connections powered by probabilistically shaped PM-256QAM wavelengths at 34 GBaud. In: Proceedings of 43th European Conference on Optical Communication. Gothenburg: IET, 2017, P2.SC6.17
[11]
Raybon G, Adamiecki A, Winzer P, Xie C, Konczykowska A, Jorge F, Dupuy J, Buhl L L, Sethumadhavan C, Draving S, Grove M, Rush K. Single-carrier 400 G interface and 10-channel WDM transmission over 4800 km using all-ETDM 107-Gbaud PDM-QPSK. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Anaheim: Optical Society of America, 2013, PDP5A.5
[12]
Raybon G, Adamiecki A, Winzer P J, Montoliu M, Randel S, Umbach A, Margraf M, Stephan J, Draving S, Grove M, Rush K. All ETDM 107-Gbaud PDM-16QAM (856-Gb/s) transmitter and coherent receiver. In: Proceedings of 39th European Conference and Exhibition on Optical Communication. London: IET, 2013, paper PD 2.D.3
[13]
Zhang J, Yu J, Dong Z, Jia Z, Chien H C, Cai Y, Ge C, Shi S, Chen Y, WangH, Xia Y. Transmission of 20×440-Gb/s super-Nyquist-filtered signals over 3600 km based on single-carrier 110-Gbaud PDM QPSK with 100-GHz Grid. In: Proceedings of Optical Fiber Communication Conference. San Francisco: Optical Society of America, 2014, paper Th5B.3
[14]
Zhang J, Yu J, Zhu B, Li F, Chien H C, Jia Z, Cai Y, Li X, Xiao X, Fang Y, Wang Y. Transmission of single-carrier 400G signals (515.2-Gb/s) based on 128.8-GBaud PDM QPSK over 10130- and 6078 km terrestrial fiber links. Optics Express, 2015, 23(13): 16540–16545
CrossRef Google scholar
[15]
Zhang J, Yu J, Zhu B, Chien H C. WDM transmission of single-carrier 120-GBd ETDM PDM-16QAM signals over 1200-km terrestrial fiber links. Journal of Lightwave Technology, 2017, 35(4): 1033–1040
CrossRef Google scholar
[16]
Zhang J, Yu J, Chien H C. 1.6 Tb/s (4×400G) unrepeatered transmission over 205-km SSMF using 65-Gbaud PDM-16QAM with joint LUT pre-distortion and post DBP nonlinearity compensation. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2017, paper Th2A.51
[17]
Zhang J, Yu J, Chien H C. Single-carrier 400G based on 84-Gbaud PDM-8QAM transmission over 2125 km SSMF enhanced by pre-equalization, LUT and DBP. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2017, paper Tu2E.2
[18]
Schuh K, Buchali F, Idler W, Eriksson T A, Schmalen L, Templ W, Altenhain L, Dümler U, Schmid R, Möller M, Engenhardt K. Single carrier 1.2 Tbit/s transmission over 300 km with PM-64QAM at 100 GBaud. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2017, paper Th5B.5
[19]
Sano A, Nagatani M, Nosaka H, Miyamoto Y. 5 × 1-Tb/s PDM-16QAM transmission over 1920 km using high-speed InP MUX-DAC integrated module. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2015, paper M3G.3
[20]
Raybon G, Adamiecki A, Cho J, Winzer P, Konczykowska A, Jorge F, Dupuy J Y, Riet M, Duval B, Kim K, Randel S, Pilori D, Guan B, Fontaine N, Burrows E C. Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC. In: Proceedings of IEEE Photonics Conference (IPC). Reston: IEEE, 2015, 1–2
[21]
Randel S, Pilori D, Corteselli S, Raybon G, Adamiecki A, Gnauck A, Chandrasekhar S, Winzer P J, Altenhain L, Bielik A, Schmid R. All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM. In: Proceedings of Optical Fiber Communication Conference. San Francisco: Optical Society of America, 2014, paper Th5C.8
[22]
Rios-Müller R, Renaudier J, Brindel P, Mardoyan H, Jennevé P, Schmalen L, Charlet G. 1-Terabit/s net data-rate transceiver based on single-carrier nyquist-shaped 124 Gbaud PDM-32QAM. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2015, paper Th5B.1
[23]
Chen X, Chandrasekhar S, Randel S, Raybon G, Adamiecki A, Pupalaikis P, Winzer P. All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190-Gbaud. In: Proceedings of Optical Fiber Communication Conference. Anaheim: Optical Society of America, 2016, paper Th5C.5
[24]
Chien H C, Jia Z, Yu J. 256-Gb/s single-carrier PM-256QAM implementation using coordinated DD-LMS and CMA equalization. In: Proceedings of European Conference on Optical Communication (ECOC). Valencia: IEEE, 2015, Mo.3.3.2
[25]
Dong Z, Li X, Yu J, Chi N. 6 × 144-Gb/s Nyquist-WDM PDM-64QAM generation and transmission on a 12-GHz WDM grid equipped with Nyquist-band pre-equalization. Journal of Lightwave Technology, 2012, 30(23): 3687–3692
CrossRef Google scholar
[26]
Zhou X, Yu J, Huang M F, Shao Y, Wang T, Nelson L, Magill P, Birk M, Borel P I, Peckham D W, Lingle R, Zhu B. 64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post-transmission digital signal processing. Journal of Lightwave Technology, 2011, 29(4): 571–577
CrossRef Google scholar
[27]
Jia Z, Chien H, Cai Y, Yu J, Zhu B, Ge C, Wang T, Shi S, Wang H, Xia Y, Chen Y. Experimental demonstration of PDM-32QAM single-carrier 400G over 1200-km transmission enabled by training-assisted pre-equalization and look-up table. In: Proceedings of Optical Fiber Communication Conference. Anaheim: Optical Society of America, 2016, paper Tu3A.4
[28]
Yu J, Zhou X. Ultra-high-capacity DWDM transmission system for 100G and beyond. IEEE Communications Magazine, 2010, 48(3): S56–S64
CrossRef Google scholar
[29]
Yankov M P, Zibar D, Larsen K J, Christensen L P B, Forchhammer S. Constellation shaping for fiber-optic channels with QAM and high spectral efficiency. IEEE Photonics Technology Letters, 2014, 26(23): 2407–2410
[30]
Yu J, Wang K, Zhang J, Zhu B, Dzioba S, Li X, Chien H, Xiao X, Cai Y, Shi J, Chen Y, Shi S, Xia Y. 8×506-Gb/s 16QAM WDM signal coherent transmission over 6000-km enabled by PS and HB-CDM. In: Proceedings of Optical Fiber Communication Conference. San Diego: Optical Society of America, 2018, paper M2C.3
[31]
Shi J, Zhang J, Chi N, Cai Y, Li X, Zhang Y, Zhang Q, Yu J. Probabilistically shaped 1024-QAM OFDM transmission in an IM-DD system. In: Proceedings of Optical Fiber Communication Conference. San Diego: Optical Society of America, 2018, paper W2A.44
[32]
Ghazisaeidi A, Schmalen L, de Jauregui I F, Tran P, Simonneau C, Brindel P, Charlet G. 52.9 Tb/s transmission over transoceanic distances using adaptive multi-rate FEC. In: Proceedings of European Conference on Optical Communication (ECOC). Cannes: IEEE, 2014, PD.3.4
[33]
Zhu Y, Li A, Peng W, Kan C, Li Z, Chowdhury S, Cui Y, Bai Y. Spectrally-efficient single-carrier 400G transmission enabled by probabilistic shaping. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2017, M3C.1
[34]
Ghazisaeidi A, de Jauregui I F, Rios-Muller R, Schmalen L, Tran P, Brindel P, Meseguer A C, Hu Q, Buchali F, Charlet G, Renaudier J. 65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM. In: Proceedings of European Conference on Optical Communication (ECOC). Dusseldorf: VDE, 2016, Th.3.C.4
[35]
Buchali F, Böcherer G, Idler W, Schmalen L, Schulte P, Steiner F. Experimental demonstration of capacity increase and rate adaptation by probabilistically shaped 64QAM. In: Proceedings of European Conference on Optical Communication (ECOC). Valencia: IEEE, 2015, PDP3.4
[36]
Cho J, Chen X, Chandrasekhar S, Raybon G, Dar R, Schmalen L, Burrows E, Adamiecki A, Corteselli S, Pan Y, Correa D, McKay B, Zsigmond S, Winzer P, Grubb S. Trans-atlantic field trial using probabilistically shaped 64-QAM at high spectral efficiencies and single-carrier real-time 250- Gb/s 16-QAM. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2017, Th5B.3
[37]
Buchali F, Schmalen L, Schuh K, Idler W. Optimization of time-division hybrid modulation and its application to rate adaptive 200 Gb transmission. In: Proceedings of European Conference on Optical Communication (ECOC). Cannes: IEEE, 2014, Tu.4.3.1
[38]
Böcherer G, Steiner F, Schulte P. Bandwidth efficient and rate-matched low-density parity-check coded modulation. IEEE Transactions on Communications, 2015, 63(12): 4651–4665
CrossRef Google scholar
[39]
Schulte P, Böcherer G. Constant composition distribution matching. IEEE Transactions on Information Theory, 2016, 62(1): 430–434
CrossRef Google scholar
[40]
Zhang J, Yu J, Chien H C. High symbol rate signal generation and detection with linear and nonlinear signal processing. Journal of Lightwave Technology, 2018, 36(2): 408–415
CrossRef Google scholar
[41]
Zhang J, Yu J, Chi N, Chien H C. Time-domain digital pre-equalization for band-limited signals based on receiver-side adaptive equalizers. Optics Express, 2014, 22(17): 20515–20529
CrossRef Google scholar
[42]
Rafique D, Napoli A, Calabro S, Spinnler B. Digital preemphasis in optical communication systems: on the DAC requirements for terabit transmission applications. Journal of Lightwave Technology, 2014, 32(19): 3247–3256
CrossRef Google scholar
[43]
Napoli A, Mezghanni M M, Calabrò S, Palmer R, Saathoff G, Spinnler B. Digital predistortion techniques for finite extinction ratio IQ Mach–Zehnder modulators. Journal of Lightwave Technology, 2017, 35(19): 4289–4296
[44]
Berenguer P W, Nölle M, Molle L, Raman T, Napoli A, Schubert C, Fischer J K. Nonlinear digital pre-distortion of transmitter components. Journal of Lightwave Technology, 2016, 34(8): 1739–1745
CrossRef Google scholar
[45]
Ke J H, Gao Y, Cartledge J C. 400 Gbit/s single-carrier and 1 Tbit/s three-carrier superchannel signals using dual polarization 16-QAM with look-up table correction and optical pulse shaping. Optics Express, 2014, 22(1): 71–83
CrossRef Google scholar
[46]
Zhang J, Yu J, Chien H C. Advanced algorithm for high-baud rate signal generation and detection. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2017, paper M3D.1
[47]
Cai J X, Cai Y, Davidson C R, Foursa D G, Lucero A J, Sinkin O V, Patterson W W, Pilipetskii A N, Mohs G, Bergano N S. Transmission of 96×100-Gb/s bandwidth-constrained PDM-RZ-QPSK channels with 300% spectral efficiency over 10610 km and 400% spectral efficiency over 4370 km. Journal of Lightwave Technology, 2011, 29(4): 491–498
CrossRef Google scholar
[48]
Li J, Tipsuwannakul E, Eriksson T, Karlsson M, Andrekson P A. Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping. Journal of Lightwave Technology, 2012, 30(11): 1664–1676
CrossRef Google scholar
[49]
Li J, Karlsson M, Andrekson P A, Xu K. Transmission of 1.936 Tb/s (11 × 176 Gb/s) DP-16QAM superchannel signals over 640 km SSMF with EDFA only and 300 GHz WSS channel. Optics Express, 2012, 20(26): B223–B231
CrossRef Google scholar
[50]
Zhang J, Yu J, Chi N, Dong Z, Yu J, Li X, Tao L, Shao Y. Multi-modulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing. Journal of Lightwave Technology, 2013, 31(7): 1073–1078
CrossRef Google scholar
[51]
Gao Y, Lau A P T, Yan S, Lu C. Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems. Optics Express, 2011, 19(22): 21717–21729
CrossRef Pubmed Google scholar
[52]
Terayama M, Okamoto S, Kasai K, Yoshida M, Nakazawa M. 4096 QAM (72 Gbit/s) single-carrier coherent optical transmission with a potential SE of 15.8 bit/s/Hz in all-Raman amplified 160 km fiber link. In: Proceedings of Optical Fiber Communication Conference. San Diego: Optical Society of America, 2018, paper Th1F.2
[53]
Zhang J, Yu J, Chi N, Dong Z, Li X. Nonlinear compensation and crosstalk suppression for 4 × 160.8 Gb/s WDM PDM-QPSK signal with heterodyne detection. Optics Express, 2013, 21(8): 9230–9237
CrossRef Pubmed Google scholar
[54]
Ip E, Huang Y, Mateo E, Aono Y, Yano Y, Tajima T, Wang T. Interchannel nonlinearity compensation for 3×114-Gb/s DP-8QAM using three synchronized sampling scopes. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2012, paper OM3A.6
[55]
Mateo E F, Zhou X, Li G. Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems. Optics Express, 2011, 19(2): 570–583
CrossRef Pubmed Google scholar
[56]
Zhang S, Huang M, Yaman F, Mateo E, Qian D, Zhang Y, Xu L, Shao Y, Djordjevic I, Wang T, Inada Y, Inoue T, Ogata T, Aoki Y. 40×117.6 Gb/s PDM-16QAM OFDM transmission over 10181 km with soft-decision LDPC coding and nonlinearity compensation. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2012, paper PDP5C.4
[57]
Li X, Chen X, Goldfarb G, Mateo E, Kim I, Yaman F, Li G. Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing. Optics Express, 2008, 16(2): 880–888
CrossRef Pubmed Google scholar
[58]
Li L, Tao Z, Dou L, Yan W, Oda S, Tanimura T, Hoshida T, Rasmussen J C. Implementation efficient nonlinear equalizer based on correlated digital backpropagation. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Los Angeles: Optical Society of America, 2011, paper OWW3
[59]
Fehenberger T, Lavery D, Maher R, Alvarado A, Bayvel P, Hanik N. Sensitivity gains by mismatched probabilistic shaping for optical communication systems. IEEE Photonics Technology Letters, 2016, 28(7): 786–789
CrossRef Google scholar
[60]
Fehenberger T, Alvarado A, Bocherer G, Hanik N. On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel. Journal of Lightwave Technology, 2016, 34(21): 5063–5073
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2004 KB)

Accesses

Citations

Detail

Sections
Recommended

/