Carbon dioxide fixation presents a potential solution for mitigating the greenhouse gas issue. During carbon dioxide fixation, C1 compound reduction requires a high energy supply. Thermodynamic calculations suggest that the energy source for cofactor regeneration plays a vital role in the effective enzymatic C1 reduction. Hydrogenase utilizes renewable hydrogen to achieve the regeneration and supply cofactor nicotinamide adenine dinucleotide (NADH), providing a driving force for the reduction reaction to reduce the thermodynamic barrier of the reaction cascade, and making the forward reduction pathway thermodynamically feasible. Based on the regeneration of cofactor NADH by hydrogenase, and coupled with formaldehyde dehydrogenase and formolase, a favorable thermodynamic mode of the C1 reduction pathway for reducing formate to dihydroxyacetone (DHA) was designed and constructed. This resulted in accumulation of 373.19 μmol·L–1 DHA after 2 h, and conversion reaching 7.47%. These results indicate that enzymatic utilization of hydrogen as the electron donor to regenerate NADH is of great significance to the sustainable and green development of bio-manufacturing because of its high economic efficiency, no by-products, and environment-friendly operation. Moreover, formolase efficiently and selectively fixed the intermediate formaldehyde (FALD) to DHA, thermodynamically pulled formate to efficiently reduce to DHA, and finally stored the low-grade renewable energy into chemical energy with high energy density.
The urgent need for sustainable waste management has led to the exploration of upcycling waste plastics and biomass as viable solutions. In 2018, global plastic production reached 359 million tonnes, with an estimated 12000 million tonnes projected to be delivered and disposed of in landfills by 2050. Unfortunately, current waste management practices result in only 19.5% of plastics being recycled, while the rest is either landfilled (55%) or incinerated (25.5%). The improper disposal of plastics contributes to issues such as soil and groundwater contamination, air pollution, and wildlife disturbance. On the other hand, biomass has the potential to deliver around 240 exajoules of energy per year by 2060. However, its current utilization remains relatively small, with only approximately 9% of biomass-derived energy being consumed in Europe in 2017. This review explores various upcycling methods for waste plastics and biomass, including mechanical, chemical, biological, and thermal approaches. It also highlights the applications of upcycled plastics and biomass in sectors such as construction, packaging, energy generation, and chemicals. The environmental and economic benefits of upcycling are emphasized, including the reduction of plastic pollution, preservation of natural resources, carbon footprint reduction, and circular economy advancement.
Amino acids are important nitrogen carriers in biomass and entail a broad spectrum of industrial uses, most notably as food additives, pharmaceutical ingredients, and raw materials for bio-based plastics. Attaining detailed information in regard to the fragmentation of amino acids is essential to comprehend the nitrogen transformation chemistry at conditions encountered during hydrothermal and pyrolytic degradation of biomass. The underlying aim of this review is to survey literature studies pertinent to the complex structures of amino acids, their formation yields from various categories of biomass, and their fragmentation routes at elevated temperatures and in the aqueous media. Two predominant degradation reactions ensue in the decomposition of amino acids, namely deamination and decarboxylation. Notably, minor differences in structure can greatly affect the fate for each amino acid. Moreover, amino acids, being nitrogen-rich compounds, play pivotal roles across various fields. There is a growing interest in producing varied types and configurations of amino acids. Microbial fermentation appears to a viable approach to produce amino acids at an industrial scale. One innovative method under investigation is catalytic synthesis using renewable biomass as feedstocks. Such a method taps into the inherent nitrogen in biomass sources like chitin and proteins, eliminating the need for external nitrogen sources. This environmentally friendly approach is in line with green chemistry principles and has been gathering momentum in the scientific community.
Regulation of aluminum distribution in zeolite framework is an effective method for improving its catalytic performance for propane aromatization. Herein, we found that recrystallization and post-realuminization of ZSM-5 cannot only create hollow structures to enhance the diffusion ability, but also adjust the content and position of paired aluminum species in its framework. Various characterizations results confirmed that increase of paired aluminum content and inducement of more aluminum atoms sited in the intersection cavity are beneficial to the formation of aromatic products in propane aromatization. As a result, the hollow-structured ZSM-5 zeolite with more paired aluminum (H-200-hollow) showed higher propane conversion and aromatics selectivity than other samples at the same conditions. The catalytic performance of H-200-hollow can be further improved by ion-exchanging with a small amount of Ga(III) species. The propane conversion and aromatics selectivity of Ga-200-hollow reached as high as 95% and 70%, respectively, at 540 °C and 1 atm.
This study utilized a thermogravimetric analyzer to assess the thermal decomposition behaviors and kinetics properties of vacuum residue (VR) and low-density polyethylene (LDPE) polymers. The kinetic parameters were calculated using the Friedman technique. To demonstrate the interactive effects between LDPE and VR during the co-pyrolysis process, the disparity in mass loss and mass loss rate between the experimental and calculated values was computed. The co-pyrolysis curves obtained through estimation and experimentation exhibited significant deviations, which were influenced by temperature and mixing ratio. A negative synergistic interaction was observed between LDPE and VR, although this inhibitory effect could be mitigated or eliminated by reducing the LDPE ratio in the mixture and increasing the co-pyrolysis temperature. The co-pyrolysis process resulted in a reduction in carbon residue, which could be attributed to the interaction between LDPE and the heavy fractions, particularly resin and asphaltene, present in VR. These findings align with the pyrolysis behaviors exhibited by the four VR fractions. Furthermore, it was observed that the co-pyrolysis process exhibited lower activation energy as the VR ratio increased, indicating a continuous enhancement in the reactivity of the mixed samples during co-pyrolysis.
Hydrogenolysis has been explored as a promising approach for plastic chemical recycling. Noble metals, such as Ru and Pt, are considered effective catalysts for plastic hydrogenolysis, however, they result in a high yield of low-value gaseous products. In this research, an efficient bimetallic catalyst was developed by separate impregnation of Ni and Ru on SiO2 support resulting in liquid products yield of up to 83.1 C % under mild reaction conditions, compared to the 65.5 C % yield for the sole noble metal catalyst. The carbon distribution of the liquid products from low density polyethylene hydrogenolysis with Ni-modified catalyst also shifted to a heavier fraction, compared to that with Ru catalyst. Meanwhile, the NiRu catalyst exhibited excellent performance in suppressing the cleavage of the end-chain C–C bond, leading to a methane yield of only 10.4 C %, which was 69% lower than that of the Ru/SiO2 catalyst. Temperature programmed reduction and desorption of hydrogen and propane were further conducted to reveal the detailed mechanism of low density polyethylene hydrogenolysis over the bimetallic catalyst. The results suggested that the Ni-Ru alloy exhibited stronger H adsorption properties indicating improved hydrogen coverage on the catalyst surface thus enhancing the desorption of reaction intermediates. The carbon number distribution was ultimately skewed toward heavier liquid products.
Nowadays, global warming caused by the increasing levels of CO2 has become a serious environmental problem. Membrane separation technology has demonstrated its promising potential in carbon capture due to its easy operation, energy-efficientness and high efficiency. Interfacial polymerization process, as a facile and well-established technique for preparing membranes with a thin selective layer, has been widely used for fabricating commercial reverse osmosis and nanofiltration membranes in water treatment domain. To push forward such an interfacial polymerization process in the research of CO2 separation membranes, herein we make a review on the regulation and research progress of the interfacial polymerization membranes for CO2 separation. First, a comprehensive and critical review of the progress in the monomers, nanoparticles and interfacial polymerization process optimization for preparing CO2 separation membrane is presented. In addition, the potential of molecular dynamics simulation and machine learning in accelerating the screen and design of interfacial polymerization membranes for CO2 separation are outlined. Finally, the possible challenges and development prospects of CO2 separation membranes by interfacial polymerization process are proposed. It is believed that this review can offer valuable insights and guidance for the future advancement of interfacial polymerization membranes for CO2 separation, thereby fostering its development.
Sodium-ion batteries (SIBs) have garnered significant interest in energy storage due to their similar working mechanism to lithium ion batteries and abundant reserves of sodium resource. Exploring facile synthesis of a carbon-based anode materials with capable electrochemical performance is key to promoting the practical application of SIBs. In this work, a combination of petroleum pitch and recyclable sodium chloride is selected as the carbon source and template to obtain hard carbon (HC) anode for SIBs. Carbonization times and temperatures are optimized by assessing the sodium ion storage behavior of different HC materials. The optimized HC exhibits a remarkable capacity of over 430 mAh·g–1 after undergoing full activation through 500 cycles at a density of current of 0.1 A·g–1. Furthermore, it demonstrates an initial discharge capacity of 276 mAh·g–1 at a density of current of 0.5 A·g–1. Meanwhile, the optimized HC shows a good capacity retention (170 mAh·g–1 after 750 cycles) and a remarkable rate ability (166 mAh·g–1 at 2 A·g–1). The enhanced capacity is attributed to the suitable degree of graphitization and surface area, which improve the sodium ion transport and storage.
We report results from computational modeling of the relative stability of germanosilicate SCM-15 structure due to different distribution of germanium heteroatoms in the double four-member rings (D4Rs) of the framework and the orientation of the structure directing agent (SDA) molecules in the as-synthesized zeolite. The calculated relative energies of the bare zeolite framework suggest that structures with germanium ions clustered in the same D4Rs, e.g., with large number of Ge–O–Ge contacts, are the most stable. The simulations of various orientations of the SDA in the pores of the germanosilicate zeolite show different stability order—the most stable models are the structures with germanium spread among all D4Rs. Thus, for SCM-15 the stabilization due to the presence of the SDA and their orientation, is thermodynamic factor directing both the formation of specific framework type and Ge distribution in the framework during the synthesis. The relative stability of bare structures with different germanium distribution is of minor importance. This differs from SCM-14 germanosilicate, reported earlier, for which the stability order is preserved in presence of SDA. Thus, even for zeolites with the same chemical composition and SDA, the characteristics of their framework lead to different energetic preference for germanium distribution.
Eucalyptus species are extensively cultivated trees commonly used for timber production, firewood, paper manufacturing, and essential nutrient extraction, while lacking consumption of the leaves increases soil acidity. The objective of this study was to recover bio-oil through microwave pyrolysis of eucalyptus camaldulensis leaves. The effects of microwave power (450, 550, 650, 750, and 850 W), pyrolysis temperature (500, 550, 600, 650, and 700 °C), and silicon carbide amount (10, 25, 40, 55, and 70 g) on the products yields and bio-oil constituents were investigated. The yields of bio-oil, gas, and residue varied within the ranges of 19.8–39.25, 33.75–46.7, and 26.0–33.5 wt %, respectively. The optimal bio-oil yield of 39.25 wt % was achieved at 650 W, 600 °C, and 40 g. The oxygenated derivatives, aromatic compounds, aliphatic hydrocarbons, and phenols constituted 40.24–74.25, 3.25–23.19, 0.3–9.77, and 1.58–7.75 area % of the bio-oils, respectively. Acetic acid (8.17–38.18 area %) was identified as a major bio-oil constituent, and hydrocarbons with carbon numbers C1 and C2 were found to be abundant. The experimental results demonstrate the potential of microwave pyrolysis as an eco-friendly and efficient way for converting eucalyptus waste into valuable bio-oil, contributing to the sustainable utilization of biomass resources.
Unraveling the structure-activity relationship and improving the catalytic performance is paramount in propane dehydro-aromatization reactions. Herein, a tandem catalyst with high propane dehydro-aromatization reaction performance was prepared via coupling the PtFe@S-1 with Zn/ZSM-5 zeolites (PtFe@S-1&1.0Zn/ZSM-5), which exhibits high dehydrogenation activity, aromatics selectivity (~60% at ~78% propane conversion), and stability. The addition of zinc inhibits the cleavage of C6= intermediates on ZSM-5 and promotes the aromatization pathway by weakening zeolite acid strength, significantly improving the selectivity to aromatics. This understanding of the structure-activity relationship in propane dehydro-aromatization reaction helps develop future high-performance catalysts.
Zeolites, with their exquisite microporous frameworks and tailorable acidities, serve as ubiquitous catalysts across a diverse spectrum of industrial applications, ranging from petroleum and coal processing to sustainable chemistry and environmental remediation. Optimizing their performance hinges on a thorough understanding of the structure-performance relationship. In situ solid-state nuclear magnetic resonance spectroscopy has emerged as a critical tool, providing unparalleled atomic-level insights into both structure and dynamic aspects of zeolite-catalyzed reactions. Herein, we review recent progress in the development and application of the in situ solid-state nuclear magnetic resonance technique to zeolite catalysis. We first review the in situ nuclear magnetic resonance techniques used in zeolite-catalyzed reaction, including batch-like and continuous-flow reaction modes. The conditions and limitations for these techniques are thoroughly summarized. Subsequently, we review the applications of in situ nuclear magnetic resonance techniques in zeolite-catalyzed reaction, focusing on some important catalytic reactions like methanol-to-hydrocarbons, ethanol dehydration, alkane activation, and beyond. Emphasis is placed on the strategies of specific in situ nuclear magnetic resonance methodologies to tackle critical challenges encountered in these fields, such as probing intermediates and unraveling reaction mechanisms. Additionally, we discuss the burgeoning opportunities and prospective challenges associated with in situ nuclear magnetic resonance studies of zeolite-catalyzed processes.
Enhancing nitrogen removal is a very active branch in municipal wastewater treatment research, toward this end, anammox technology is a sustainable solution. This review systematically outlines the strategies employed to enhance mainstream anammox performance, including nitrite accumulation and microbial enrichment based on partial nitrification coupled anammox and partial denitrification coupled anammox, developed to address the challenges of low ammonium content in wastewater, nitrate accumulation in the effluent, and the influence of organic matter. The characteristics and advantages of novel anammox-coupled processes, including partial nitrification and partial denitrification coupled anammox, endogenous partial denitrification coupled anammox, and denitrifying anaerobic methane oxic coupled anammox are also comprehensively discussed; these aim to ensure the highly efficient and stable operation of anammox under diverse wastewater conditions by constructing a composite biological nitrogen removal system based on anammox, supplemented by nitrification-denitrification and other processes. Additionally, a novel anammox application route including mainstream partial denitrification/anammox and absorption-biodegradation as well as sidestream partial nitrification/anammox is proposed, and its application pathway in conceptual wastewater treatment plants is outlined, aiming to foster the development of cost-effective, efficient, and energy-saving advanced wastewater treatment processes. Finally, prospects are presented that indicate the gaps in contemporary research and potential future research directions. Overall, this review provides a reference for treating municipal wastewater with anammox and sheds new light on related strategies and nitrogen removal mechanisms.
The applicability of the life cycle assessment (LCA) to the Fenton process should be considered not only at the laboratory-scale but also at the full-scale. In this study, the LCA process was applied to evaluate the homogeneous Fenton process for the treatment of high salinity pharmaceutical wastewater. The potential environmental impacts were calculated using Simapro software implementing the CML 2001 methodology with normalization factors of 1995 world. Foreground data obtained directly from the full-scale wastewater treatment plant and laboratory were used to conduct a life cycle inventory analysis, ensuring highly accurate results. By normalized results, the Fenton process reveals sensitive indicators, primarily toxicity indicators (human toxicity, freshwater aquatic toxicity, and marine aquatic toxicity), as well as acidification and eutrophication impacts, contributed by hydrogen peroxide and iron sludge incineration, respectively. Overall, hydrogen peroxide and iron sludge incineration contribute significantly, accounting for at least 78% of these indicators. In sludge treatment phase, treatment of iron mud and infrastructure of hazardous waste incineration plants were the key contributors of environmental impacts, adding up to more than 95%. This study suggests the need to develop efficient oxidation processes and effective iron sludge treatment methods to reduce resource utilization and improve environmental benefits.
The engineering of microbial cell factories for the production of high-value chemicals from renewable resources presents several challenges, including the optimization of key enzymes, pathway fluxes and metabolic networks. Addressing these challenges involves the development of synthetic auxotrophs, a strategy that links cell growth with enzyme properties or biosynthetic pathways. This linkage allows for the improvement of enzyme properties by in vivo directed enzyme evolution, the enhancement of metabolic pathway fluxes under growth pressure, and remodeling of metabolic networks through directed strain evolution. The advantage of employing synthetic auxotrophs lies in the power of growth-coupled selection, which is not only high-throughput but also labor-saving, greatly simplifying the development of both strains and enzymes. Synthetic auxotrophs play a pivotal role in advancing microbial cell factories, offering benefits from enzyme optimization to the manipulation of metabolic networks within single microbes. Furthermore, this strategy extends to coculture systems, enabling collaboration within microbial communities. This review highlights the recently developed applications of synthetic auxotrophs as microbial cell factories, and discusses future perspectives, aiming to provide a practical guide for growth-coupled models to produce value-added chemicals as part of a sustainable biorefinery.
As an important technology in fine chemical production, the selective hydrogenation of α,β-unsaturated aldehydes has attracted much attention in recent years. In the process of α,β-unsaturated aldehyde hydrogenation, a conjugated system is formed between >C=C< and >C=O, leading to hydrogenation at both ends of the conjugated system, which competes with each other and results in more complex products. Therefore, improving the reaction selectivity is also difficult in industrial fields. Recently, many researchers have reported that surface-active sites on catalysts play a crucial role in α,β-unsaturated aldehyde hydrogenation. This review attempts to summarize recent advances in understanding the effects of surface-active sites (SASs) over metal catalysts for enhancing the process of hydrogenation. The construction strategies and roles of SASs for hydrogenation catalysts are summarized. Particular attention has been given to the adsorption configuration and transformation mechanism of α,β-unsaturated aldehydes on catalysts, which contributes to understanding the relationship between SASs and hydrogenation activity. In addition, recent advances in metal-supported catalysts for the selective hydrogenation of α,β-unsaturated aldehydes to understand the role of SASs in hydrogenation are briefly reviewed. Finally, the opportunities and challenges will be highlighted for the future development of the precise construction of SASs.
We proposed a facile synthesis of single-Ni-atom catalysts on low-cost porous carbon using a calcination method at the temperatures of 850–1000 °C, which were used for CO2 electrochemical reduction to CO. The porous carbon was prepared by carbonizing cheap and abundant humic acid. The structural characterizations of the as-synthesized catalysts and their electrocatalytic performances were analyzed. The results showed that the single-Ni-atom catalyst activated at 950 °C showed an optimum catalytic performance, and it reached a CO Faradaic efficiency of 91.9% with a CO partial current density of 6.9 mA·cm−2 at −0.9 V vs. reversible hydrogen electrode (RHE). Additionally, the CO Faradaic efficiency and current density of the optimum catalyst changed slightly after 8 h of continuous operation, suggesting that it possessed an excellent stability. The structure-activity relations indicate that the variation in the CO2 electrochemical reduction performance for the as-synthesized catalysts is ascribed to the combined effects of the increase in the content of pyrrolic N, the evaporation of Ni and N, the decrease in pore volume, and the change in graphitization degree.
Removal of boric acid from seawater and wastewater using reverse osmosis membrane technologies is imperative and yet remains inadequately addressed by current commercial membranes. Existing research efforts performed post-modification of reverse osmosis membranes to enhance boron rejection, which is usually accompanied by substantial sacrifice in water permeability. This study delves into the surface engineering of low-pressure reverse osmosis membranes, aiming to elevate boron removal efficiency while maintaining optimal salt rejection and water permeability. Membranes were modified by the self-polymerization and co-deposition of dopamine and polystyrene sulfonate at varying ratios and concentrations. The surfaces became smoother and more hydrophilic after modification. The optimum membrane exhibited a water permeability of 9.2 ± 0.1 L·m−2·h−1·bar−1, NaCl rejection of 95.8% ± 0.3%, and boron rejection of 49.7% ± 0.1% and 99.6% ± 0.3% at neutral and alkaline pH, respectively. The water permeability is reduced by less than 15%, while the boron rejection is 3.7 times higher compared to the blank membrane. This research provides a promising avenue for enhancing boron removal in reverse osmosis membranes and addressing water quality concerns in the desalination process.
Lignin, an abundant aromatic polymer in nature, has received significant attention for its potential in the production of bio-oils and chemicals owing to increased resource availability and environmental issues. The hydrodeoxygenation of guaiacol, a lignin-derived monomer, can produce cyclohexanol, a nylon precursor, in a carbon-negative and environmentally friendly manner. This study explored the porous properties and the effects of activation methods on the Ru-based catalyst supported by environmentally friendly and cost-effective hydrochar. Highly selective cleavage of Caryl–O bonds was achieved under mild conditions (160 °C, 0.2 MPa H2, and 4 h), and alkali activation further improved the catalytic activity. Various characterization methods revealed that hydrothermal treatment and alkali activation relatively contributed to the excellent performance of the catalysts and influenced their porous structure and Ru dispersion. X-ray photoelectron spectroscopy results revealed an increased formation of metallic ruthenium, indicating the effective regulation of interaction between active sites and supports. This synergistic approach used in this study, involving the valorization of cellulose-derived hydrochar and the selective production of nylon precursors from lignin-derived guaiacol, indicated the comprehensive and sustainable utilization of biomass resources.
Ammonia is a vital component in the fertilizer and chemical industries, as well as serving as a significant carrier of renewable hydrogen energy. Compared with the industry’s principal technique, the Haber-Bosch method, for ammonia synthesis, electro/photocatalytic ammonia synthesis is increasingly recognized as a viable and eco-friendly alternative. This method enables distributed small-scale deployment and can be powered by sustainable renewable energy sources. However, the efficiency of electro/photocatalytic nitrogen reduction reaction is hindered by the challenges in activating the N≡N bond and nitrogen’s low solubility, thereby limiting its large-scale industrial applications. In this review, recent advancements in electro/photocatalytic nitrogen reduction are summarized, encompassing the complex reaction mechanisms, as well as the effective strategies for developing electro/photocatalytic catalysts and advanced reaction systems. Furthermore, the energy efficiency and economic analysis of electro/photocatalytic nitrogen fixation are deeply discussed. Finally, some unsolved challenges and potential opportunities are discussed for the future development of electro/photocatalytic ammonia synthesis.
A novel, cheap and highly efficient Ni-Co/Mo2C/Co6Mo6C2@C nanocomposite has been successfully constructed through simple one-step carbonization method in a nitrogen atmosphere. Polyethyleneimine in the precursor can effectively anchor molybdenum-based Keggin-type polyoxometallate and NiCo-layered double hydroxide through electrostatic and coordination interactions, which avoids the aggregation of catalyst particles during the pyrolysis process. After optimization, the obtained Ni-Co/Mo2C/Co6Mo6C2@C possesses small size (3–8 nm), large specific surface area and hierarchical pore structure. More importantly, Ni-Co/Mo2C/Co6Mo6C2@C presents remarkable hydrogen evolution reaction activity with low overpotentials in 0.5 mol·L–1 H2SO4 (102.3 mV) and 1 mol·L–1 KOH (95 mV) to afford the current density of 10 mA·cm–2, as well as small Tafel slopes of 82.49 and 99.92 mV·dec–1, respectively. Simultaneously, this catalyst also shows outstanding stability for 12 h without a significant change in current density. The excellent catalytic performance of Ni-Co/Mo2C/Co6Mo6C2@C can put down to the synergistic effect between multiple components and the small size of the catalyst. This work provides unique insights into the preparation of efficient transition metal-based catalysts for HER.
Primary, secondary and tertiary amino-functionalized zirconia (ZrO2−NH2, ZrO2−NH and ZrO2−N) was synthesized by the postgrafting method for the adsorption removal of typical metallic ions, phosphate and total oxidizable carbon from a real H2O2 solution. ZrO2−NH2, ZrO2−NH and ZrO2−N exhibited similar pore sizes and sequentially increased zeta potentials. The adsorption results of single and binary simulated solutions showed that the removal efficiency increased in the order of Fe3+ > Al3+ > Ca2+ > Na+. There is competitive adsorption between metallic ions, and Fe3+ has an advantage over the other metals, with a removal efficiency of 90.7%. The coexisting phosphate could promote the adsorption of metallic ions, while total oxidizable carbon had no effect on adsorption. The adsorption results of the real H2O2 solution showed that ZrO2−NH2 exhibited the best adsorption affinity for metallic ions, as did phosphate and total oxidizable carbon, with a total adsorption capacity of 120.9 mg·g–1. Density functional theory calculations revealed that the adsorption process of metallic ions involves electron transfer from N atoms to metals and the formation of N-metal bonds.
Single-atom catalysts (SACs), characterized by exceptionally high atom efficiency, have garnered significant attention across various catalytic reactions. Recent studies have showcased SACs with robust capabilities for precise catalysis, specifically targeting reactions along designated pathways. This review focuses on the advances in the precise activation and reconstruction of chemical bonds on SACs, including precise activation of C–O and C–H bonds and selective couplings involving C–C and C–N bonds. Our discussion begins with a thorough exploration of the factors that render SACs skilled in precise catalytic processes, encompassing the narrow d-band electronic state of single atom site resulting in the adsorption tendency, isolate site resulting in unique adsorption structure, and synergy effect of a single atom site with its neighbors. Subsequently, we elaborate on the applications of SACs in electrocatalysis and thermocatalysis including four prominent reactions, namely, electrochemical CO2 reduction, urea electrochemical synthesis, CO2 hydrogenation, and CH4 activation. Then the concept of rational design of SACs for precisely controlling reaction pathways is discussed from the aspects of pore structure design, support-metal strong interaction, and support hydrophilic/hydrophobic. Finally, we summarize the challenges encountered by SACs in the field of precise catalytic processes and outline prospects for their further development in this domain.
Triboelectric nanogenerators (TENGs) are among the most promising available energy harvesting methods. Cellulose-based TENGs are flexible, renewable, and degradable. However, the flammability of cellulose prevents it from being used in open-flame environments. In this study, the lattice of cellulose was adjusted by the hydroxyl ionization of cellulose molecules, and Na+ was introduced to enhance the flame retardancy of cellulose nanofibers (CNFs). The experimental results showed that the amount of hydrogen bonding between cellulose molecules increased with the introduction of Na+ and that the limiting oxygen index reached 36.4%. The lattice spacing of cellulose increased from 0.276 to 0.286 nm, and the change in lattice structure exposed more hydroxyl groups, which changed the polarity of cellulose. The surface potential of the fibers increased from 239 to 323 mV, the maximum open-circuit voltage was 25 V·cm–2, the short-circuit current was 2.10 μA, and the output power density was 4.56 μW·cm–2. Compared with those of CNFs, the output voltage, current, and transferred charge increased by 96.8%, 517%, and 23%, respectively, and showed good stability and reliability during cyclic exposure. This study provides a valuable strategy for improving the performance of cellulose-based TENGs.
The trend of employing machine learning methods has been increasing to develop promising biocatalysts. Leveraging the experimental findings and simulation data, these methods facilitate enzyme engineering and even the design of new-to-nature enzymes. This review focuses on the application of machine learning methods in the engineering of polyethylene terephthalate (PET) hydrolases, enzymes that have the potential to help address plastic pollution. We introduce an overview of machine learning workflows, useful methods and tools for protein design and engineering, and discuss the recent progress of machine learning-aided PET hydrolase engineering and de novo design of PET hydrolases. Finally, as machine learning in enzyme engineering is still evolving, we foresee that advancements in computational power and quality data resources will considerably increase the use of data-driven approaches in enzyme engineering in the coming decades.
Reactant gas and liquid water transport phenomena in the flow channels are complex and critical to the performance and durability of polymer electrolyte membrane fuel cells. The polymer membrane needs water at an optimum level for proton conductivity. Water management involves the prevention of dehydration, waterlogging, and the cell’s subsequent performance decline and degradation. This process requires the study and understanding of internal two-phase flows. Different experimental visualization techniques are used to study two-phase flows in polymer electrolyte membrane fuel cells. However, the experiments have limitations in in situ measurements; they are also expensive and time exhaustive. In contrast, numerical modeling is cheaper and faster, providing insights into the complex multiscale processes occurring across the components of the polymer electrolyte membrane fuel cells.
This paper introduces the recent design of flow channels. It reviews the numerical modeling techniques adopted for the transport phenomena therein: the two-fluid, multiphase mixture, volume of fluid, lattice Boltzmann, and pressure drop models. Furthermore, this work describes, compares, and analyses the models’ approaches and reviews the representative results of some selected aspects. Finally, the paper summarizes the modeling perspectives, emphasizing future directions with some recommendations.
Sodium-ion batteries (SIBs), which serve as alternatives or supplements to lithium-ion batteries, have been developed rapidly in recent years. Designing advanced high-performance layered NaxTMO2 cathode materials is beneficial for accelerating the commercialization of SIBs. Herein, the recent research progress on scalable synthesis methods, challenges on the path to commercialization and practical material design strategies for layered NaxTMO2 cathode materials is summarized. Co-precipitation method and solid-phase method are commonly used to synthesize NaxTMO2 on mass production and show their own advantages and disadvantages in terms of manufacturing cost, operative difficulty, sample quality and so on. To overcome drawbacks of layered NaxTMO2 cathode materials and meet the requirements for practical application, a detailed and deep understanding of development trends of layered NaxTMO2 cathode materials is also provided, including high specific energy materials, high-entropy oxides, single crystal materials, wide operation temperature materials and high air stability materials. This work can provide useful guidance in developing practical layered NaxTMO2 cathode materials for commercial SIBs.
With the advancement of social process, the resource problem is becoming more prominent, biomass materials come into being, and it is becoming more and more important to explore and prepare efficient and multifunctional biomass materials to alleviate the problems of energy storage and water pollution. In this paper, nitrogen-doped hierarchical porous carbon materials (NRRC) were produced by one-step carbonization of withered rose as raw material and melamine as nitrogen source with KOH-activated porosification. The resulting nitrogen-doped porous carbon material had the most abundant pores and the best microspherical graded pore structure, with a specific surface area of up to 1393 m2·g–1, a pore volume of 0.68 cm3·g–1, and a nitrogen-doped content of 5.52%. Electrochemical tests showed that the maximum specific capacitance of NRRC in the three-electrode system was 346.4 F·g–1 (0.5 A·g–1), which was combined with favorable capacitance retention performance and cycling stability. The NRRC//NRRC symmetric supercapacitors were further assembled, and the maximum energy density of a single device was 23.88 Wh·kg–1, which still maintains excellent capacitance retention and cyclic charging/discharging stability. For example, the capacitance retention rate was always close to 96.27% with almost negligible capacitance loss after 10000 consecutive charge/discharge cycles (current density: 10 A·g–1). Regardless of the three-electrode or two-electrode system, the super capacitive performance of NRRC porous carbon materials was comparable to the electrochemical performance of many reported biomass porous carbon materials, which showed better energy storage advantages and practical application potential. In addition, NRRC porous carbon materials had excellent water purification ability. The dye adsorption test confirmed that NRRC had a high adsorption capacity (491.47 mg·g–1) for methylene blue. This undoubtedly also showed a potential and promising avenue for high value-added utilization of this material.
Graphene oxide is a promising adsorption material. However, it has been difficult to recycle and separate graphene oxide in the solution. To alleviate this problem, graphene oxide was thermally reduced to produce porous hydrogel which was then functionalized with polydopamine. The functional groups act as not only adsorption sites but also nucleation sites for in situ crystallization of cobalt-doped zeolitic-imidazolate-framework-8 nano-adsorbents. The effects of cobalt-doping contents on the physicochemical and adsorption properties of the resulting aerogel were also evaluated by varying the cobalt concentration. For instance, the reduced graphene oxide-polydopamine/50cobalt-zeolitic-imidazolate-framework-8 aerogel exhibited a high surface area of 900 m2·g–1 and maintained the structure in water after ten days. The as-synthesized aerogels showed an ultrahigh adsorption capacity of 1217 ± 24.35 mg·g–1 with a removal efficiency of > 99% of lead, as well as excellent adsorption performance toward other heavy metals, such as copper and cadmium with adsorption capacity of 1163 ± 34.91 and 1059 ± 31.77 mg·g–1, respectively. More importantly, the lead adsorption stabilized at 1023 ± 20.5 mg·g–1 with a removal efficiency of > 80% after seven cycles, indicating their potential in heavy metal removal from industrial wastewater.
With regard to green chemistry and sustainable development, the fixation of CO2 into epoxides to form cyclic carbonates is an attractive and promising pathway for CO2 utilization. Metal oxides, renowned as promising eco-friendly catalysts for industrial production, are often undervalued in terms of their impact on the CO2 addition reaction. In this work, we successfully developed ZnO nanoplates with (002) surfaces and ZnO nanorods with (100) surfaces via morphology-oriented regulation to explore the effect of crystal faces on CO2 cycloaddition. The quantitative data obtained from electron paramagnetic resonance spectroscopy indicated that the concentration of oxygen vacancies on the ZnO nanoplate surfaces was more than twice that on the ZnO nanorod surfaces. Density functional theory calculations suggested that the (002) surfaces have lower adsorption energies for CO2 and epichlorohydrin than the (100) surfaces. As a result, the yield of cyclochloropropene carbonate on the ZnO nanoplates (64.7%) was much greater than that on the ZnO nanorods (42.3%). Further evaluation of the reused catalysts revealed that the decrease in the oxygen vacancy concentration was the primary factor contributing to the decrease in catalytic performance. Based on these findings, a possible catalytic mechanism for CO2 cycloaddition with epichlorohydrin was proposed. This work provides a new idea for the controllable preparation of high-performance ZnO catalysts for the synthesis of cyclic carbonates from CO2 and epoxides.