Recent progress in the interfacial polymerization process for CO2 separation membrane fabrication
Zhijie Shang, Qiangqiang Song, Bin Han, Jing Ma, Dongyang Li, Cancan Zhang, Xin Li, Jinghe Yang, Junyong Zhu, Wenpeng Li, Jing Wang, Yatao Zhang
Recent progress in the interfacial polymerization process for CO2 separation membrane fabrication
Nowadays, global warming caused by the increasing levels of CO2 has become a serious environmental problem. Membrane separation technology has demonstrated its promising potential in carbon capture due to its easy operation, energy-efficientness and high efficiency. Interfacial polymerization process, as a facile and well-established technique for preparing membranes with a thin selective layer, has been widely used for fabricating commercial reverse osmosis and nanofiltration membranes in water treatment domain. To push forward such an interfacial polymerization process in the research of CO2 separation membranes, herein we make a review on the regulation and research progress of the interfacial polymerization membranes for CO2 separation. First, a comprehensive and critical review of the progress in the monomers, nanoparticles and interfacial polymerization process optimization for preparing CO2 separation membrane is presented. In addition, the potential of molecular dynamics simulation and machine learning in accelerating the screen and design of interfacial polymerization membranes for CO2 separation are outlined. Finally, the possible challenges and development prospects of CO2 separation membranes by interfacial polymerization process are proposed. It is believed that this review can offer valuable insights and guidance for the future advancement of interfacial polymerization membranes for CO2 separation, thereby fostering its development.
interfacial polymerization / CO2 separation / monomer / nanoparticle
[1] |
Wilberforce T , Olabi A G , Sayed E T , Elsaid K , Abdelkareem M A . Progress in carbon capture technologies. Science of the Total Environment, 2020, 761: 143203
CrossRef
Google scholar
|
[2] |
Qin Z , Ma Y , Wei J , Guo H , Wang B , Deng J , Yi C , Li N , Yi S , Deng Y .
CrossRef
Google scholar
|
[3] |
Liu Z , Deng Z , Davis S , Ciais P . Monitoring global carbon emissions in 2022. Nature Reviews. Earth & Environment, 2023, 4(4): 205–206
CrossRef
Google scholar
|
[4] |
Keith D W . Why capture CO2 from the atmosphere. Science, 2009, 325(5948): 1654–1655
CrossRef
Google scholar
|
[5] |
Teong S P , Zhang Y . Direct capture and separation of CO2 from air. Green Energy & Environment, 2024, 9(3): 413–416
CrossRef
Google scholar
|
[6] |
Haszeldine R S . Carbon capture and storage: how green can black be. Science, 2009, 325(5948): 1647–1652
CrossRef
Google scholar
|
[7] |
Zhang Z , Wang T , Blunt M J , Anthony E J , Park A H A , Hughes R W , Webley P A , Yan J . Advances in carbon capture, utilization and storage. Applied Energy, 2020, 278: 115627
CrossRef
Google scholar
|
[8] |
Eric H O , Sigurdur R G . 4. Carbon capture and storage (CCS). Geochemical Perspectives, 2023, 12(2): 240–310
|
[9] |
Chen G , Wang T , Zhang G , Liu G , Jin W . Membrane materials targeting carbon capture and utilization. Advanced Membranes, 2022, 2: 100025
CrossRef
Google scholar
|
[10] |
Sreedhar I , Vaidhiswaran R , Kamani B M , Venugopal A . Process and engineering trends in membrane based carbon capture. Renewable & Sustainable Energy Reviews, 2017, 68: 659–684
CrossRef
Google scholar
|
[11] |
Fauzan N A B , Mannan H A , Nasir R , Mohshim D F B , Mukhtar H . Various techniques for preparation of thin-film composite mixed-matrix membranes for CO2 separation. Chemical Engineering & Technology, 2019, 42(12): 2608–2620
CrossRef
Google scholar
|
[12] |
Baker R W , Freeman B , Kniep J , Huang Y I , Merkel T C . CO2 capture from cement plants and steel mills using membranes. Industrial & Engineering Chemistry Research, 2018, 57(47): 15963–15970
CrossRef
Google scholar
|
[13] |
Yu M C , Bai L J , Moioli S , Tontiwachwuthikul P , Plisko T V , Bildyukevich A V , Feng Y N , Liu H . Hybrid CO2 capture processes consisting of membranes: a technical and techno-economic review. Advanced Membranes, 2023, 3: 100071
CrossRef
Google scholar
|
[14] |
Golsefid H H , Alizadeh O , Dorosti F . Chemical vapor deposition technique to fabricate zeolitic imidazolate framework-8/polysulfone membrane for CO2/CH4 separation. Theoretical Foundations of Chemical Engineering, 2023, 56(6): 1116–1126
CrossRef
Google scholar
|
[15] |
Koutsiantzi C , Kampylafka A , Zouboulis A , Mitrakas M , Kikkinides E S . Theoretical and experimental study of CO2 removal from biogas employing a hollow fiber polyimide membrane. Sustainable Chemistry and Pharmacy, 2023, 35: 101221
CrossRef
Google scholar
|
[16] |
Isegawa M . Chemical modification of dimethylpolysiloxane for enhancement of CO2 binding enthalpy. Physical Chemistry Chemical Physics, 2023, 25(11): 7881–7892
CrossRef
Google scholar
|
[17] |
Sahoo P C , Kumar M , Puri S K , Ramakumar S S V . Enzyme inspired complexes for industrial CO2 capture: opportunities and challenges. Journal of CO2 Utilization, 2018, 24: 419–429
|
[18] |
Zhang M , Jing X , Zhao S , Shao P , Zhang Y , Yuan S , Li Y , Gu C , Wang X , Ye Y .
CrossRef
Google scholar
|
[19] |
Lasseuguette E , Comesaña Gándara B . Polymer membranes for gas separation. Membranes (Basel), 2022, 12(2): 207
CrossRef
Google scholar
|
[20] |
Park C Y , Kong C I , Kim E Y , Lee C H , Kim K S , Lee J H , Lee J , Moon S Y . High-flux CO2 separation using thin-film composite polyether block amide membranes fabricated by transient-filler treatment. Chemical Engineering Journal, 2022, 455: 140883
CrossRef
Google scholar
|
[21] |
Guo H , Xu W , Wei J , Ma Y , Qin Z , Dai Z , Deng J , Deng L . Effects of porous supports in thin-film composite membranes on CO2 separation performances. Membranes, 2023, 13(3): 359
CrossRef
Google scholar
|
[22] |
Ji C , Zhai Z , Jiang C , Hu P , Zhao S , Xue S , Yang Z , He T , Niu Q J . Recent advances in high-performance TFC membranes: a review of the functional interlayers. Desalination, 2021, 500: 114869
CrossRef
Google scholar
|
[23] |
Ge C , Sheng M , Yuan Y , Shi F , Yang Y , Zhao S , Wang J , Wang Z . Recent advances of the interfacial polymerization process in gas separation membranes fabrication. Journal of Membrane Science, 2023, 683: 121854
CrossRef
Google scholar
|
[24] |
Zhu T , Xia Q , Zuo J , Liu S , Yu X , Wang Y . Recent advances of thin film composite membranes for pervaporation applications: a comprehensive review. Advanced Membranes, 2021, 1: 100008
CrossRef
Google scholar
|
[25] |
Jiang C , Zhang L , Li P , Sun H , Hou Y , Niu Q J . Ultrathin film composite membranes fabricated by novel in situ free interfacial polymerization for desalination. ACS Applied Materials & Interfaces, 2020, 12(22): 25304–25315
CrossRef
Google scholar
|
[26] |
Chen Y , Niu Q J , Hou Y , Sun H . Effect of interfacial polymerization monomer design on the performance and structure of thin film composite nanofiltration and reverse osmosis membranes: a review. Separation and Purification Technology, 2023, 330: 125282
CrossRef
Google scholar
|
[27] |
Yang Q , Lin Q , Sammarchi S , Li J , Li S , Wang D . Water vapor effects on CO2 separation of amine-containing facilitated transport membranes (AFTMs) module: mathematical modeling using tanks-in-series approach. Greenhouse Gases: Science and Technology, 2021, 11(1): 52–68
CrossRef
Google scholar
|
[28] |
Zhao J , Wang Z , Wang J , Wang S . Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes prepared by interfacial polymerization. Journal of Membrane Science, 2006, 283(1-2): 346–356
CrossRef
Google scholar
|
[29] |
Sridhar S , Smitha B , Mayor S , Prathab B , Aminabhavi T M . Gas permeation properties of polyamide membrane prepared by interfacial polymerization. Journal of Materials Science, 2007, 42(22): 9392–9401
CrossRef
Google scholar
|
[30] |
Yu X , Wang Z , Wei Z , Yuan S , Zhao J , Wang J , Wang S . Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture. Journal of Membrane Science, 2010, 362(1-2): 265–278
CrossRef
Google scholar
|
[31] |
Li S , Wang Z , Zhang C , Wang M , Yuan F , Wang J , Wang S . Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation. Journal of Membrane Science, 2013, 436: 121–131
CrossRef
Google scholar
|
[32] |
Salih A A M , Yi C , Peng H , Yang B , Yin L , Wang W . Interfacially polymerized polyetheramine thin film composite membranes with PDMS inter-layer for CO2 separation. Journal of Membrane Science, 2014, 472: 110–118
CrossRef
Google scholar
|
[33] |
He W , Wang Z , Li W , Li S , Bai Z , Wang J , Wang S . Cyclic tertiary amino group containing fixed carrier membranes for CO2 separation. Journal of Membrane Science, 2015, 476: 171–181
CrossRef
Google scholar
|
[34] |
Jo E S , An X , Ingole P G , Choi W K , Park Y S , Lee H K . CO2/CH4 separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization. Chinese Journal of Chemical Engineering, 2017, 25(3): 278–287
CrossRef
Google scholar
|
[35] |
Awad A , Aljundi I H . Interfacial polymerization of facilitated transport polyamide membrane prepared from PIP and IPC for gas separation applications. Korean Journal of Chemical Engineering, 2018, 35(8): 1700–1709
CrossRef
Google scholar
|
[36] |
Xu X , Dong J , Xiao X , Zhao X , Zhang Q . Constructing thin and cross-linked polyimide membranes by interfacial reaction for efficient CO2 separation. ACS Sustainable Chemistry & Engineering, 2021, 9(16): 5546–5556
CrossRef
Google scholar
|
[37] |
Li S , Wang Z , Yu X , Wang J , Wang S . High-performance membranes with multi-permselectivity for CO2 separation. Advanced Materials, 2012, 24(24): 3196–3200
CrossRef
Google scholar
|
[38] |
Wang M , Wang Z , Li S , Zhang C , Wang J , Wang S . A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO2 separation from flue gas. Energy & Environmental Science, 2013, 6(2): 539–551
CrossRef
Google scholar
|
[39] |
Andrew Lee S , Stevens G W , Kentish S E . Facilitated transport behavior of humidified gases through thin-film composite polyamide membranes for carbon dioxide capture. Journal of Membrane Science, 2013, 429: 349–354
CrossRef
Google scholar
|
[40] |
Bonenfant D , Mimeault M , Hausler R . Determination of the structural features of distinct amines important for the absorption of CO2 and regeneration in aqueous solution. Industrial & Engineering Chemistry Research, 2003, 42(14): 3179–3184
CrossRef
Google scholar
|
[41] |
Scholes C , Chen G , Lu H , Kentish S . Crosslinked PEG and PEBAX membranes for concurrent permeation of water and carbon dioxide. Membranes, 2015, 6(1): 1
CrossRef
Google scholar
|
[42] |
Du N , Park H B , Dal Cin M M , Guiver M D . Advances in high permeability polymeric membrane materials for CO2 separations. Energy & Environmental Science, 2011, 9: 1863–1890
|
[43] |
Ding X , Wang W , Cheng X , Fan X , Zhao H , Xin Q , Zhang Y . Composite membranes based on ether oxygen-rich polyimide with superior CO2/N2 separation properties prepared by interfacial polymerization. Journal of Membrane Science, 2024, 693: 122355
CrossRef
Google scholar
|
[44] |
Park S , Patel R , Woo Y C . Polyester-based thin-film composite membranes for nanofiltration of saline water: a review. Desalination, 2023, 572: 117138
CrossRef
Google scholar
|
[45] |
Rahman M M . Material design concepts and gas separation mechanism of CO2 selective polyether-based multiblock copolymers. Macromolecular Rapid Communications, 2023, 44(14): 2300114
CrossRef
Google scholar
|
[46] |
YuanFWangZLiSWangJWangS. Formation-structure-performance correlation of thin film composite membranes prepared by interfacial polymerization for gas separation. Journal of Membrane Science, 2012, 421–422: 327–341
|
[47] |
Yu S , Li S , Liu Y , Cui S , Shen X . High-performance microporous polymer membranes prepared by interfacial polymerization for gas separation. Journal of Membrane Science, 2019, 573: 425–438
CrossRef
Google scholar
|
[48] |
Sun H , Bao S , Zhao H , Chen Y , Wang Y , Jiang C , Li P , Jason Niu Q . Polyarylate membrane with special circular microporous structure by interfacial polymerization for gas separation. Separation and Purification Technology, 2020, 251: 117370
CrossRef
Google scholar
|
[49] |
Niu Y , Chen Y , Bao S , Sun H , Wang Y , Ge B , Li P , Hou Y . Fabrication of polyarylate thin-film nanocomposite membrane based on graphene quantum dots interlayer for enhanced gas separation performance. Separation and Purification Technology, 2022, 293: 121035
CrossRef
Google scholar
|
[50] |
Ma C , Li Q , Wang Z , Gao M , Wang J , Cao X . High performance membranes containing rigid contortion units prepared by interfacial polymerization for CO2 separation. Journal of Membrane Science, 2022, 652: 120459
CrossRef
Google scholar
|
[51] |
Li X , Jiao C , Zhang X , Li X , Song X , Zhang Z , Jiang H . Ultrathin polyamide membrane tailored by mono-(6-ethanediamine-6-deoxy)-β-cyclodextrin for CO2 separation. Journal of Membrane Science, 2023, 666: 121165
CrossRef
Google scholar
|
[52] |
Li N , Wang Z , Wang J . Biomimetic hydroxypropyl-β-cyclodextrin (Hβ-CD)/polyamide (PA) membranes for CO2 separation. Journal of Membrane Science, 2023, 668: 121211
CrossRef
Google scholar
|
[53] |
Li N , Wang Z , Wang J . Water-swollen carboxymethyl chitosan (CMC)/polyamide (PA) membranes with octopus-branched nanostructures for CO2 capture. Journal of Membrane Science, 2022, 642: 119946
CrossRef
Google scholar
|
[54] |
Liu J , Hua D , Zhang Y , Japip S , Chung T S . Precise molecular sieving architectures with Janus pathways for both polar and nonpolar molecules. Advanced Materials, 2018, 30(11): 1705933
CrossRef
Google scholar
|
[55] |
Zhang Z , Fan K , Liu Y , Xia S . A review on polyester and polyester-amide thin film composite nanofiltration membranes: synthesis, characteristics and applications. Science of the Total Environment, 2022, 858: 159922
CrossRef
Google scholar
|
[56] |
Khdary N H , Almuarqab B T , El Enany G . Nanoparticle-embedded polymers and their applications: a review. Membranes, 2023, 13(5): 537
CrossRef
Google scholar
|
[57] |
Wong K C , Goh P S , Taniguchi T , Ismail A F , Zahri K . The role of geometrically different carbon-based fillers on the formation and gas separation performance of nanocomposite membranes. Carbon, 2019, 149: 33–44
CrossRef
Google scholar
|
[58] |
Yu X , Wang Z , Zhao J , Yuan F , Li S , Wang J , Wang S . An effective method to improve the performance of fixed carrier membrane via incorporation of CO2-selective adsorptive silica nanoparticles. Chinese Journal of Chemical Engineering, 2011, 19(5): 821–832
CrossRef
Google scholar
|
[59] |
Wong K C , Goh P S , Ng B C , Ismail A F . Thin film nanocomposite embedded with polymethyl methacrylate modified multi-walled carbon nanotubes for CO2 removal. RSC Advances, 2015, 5(40): 31683–31690
CrossRef
Google scholar
|
[60] |
Choi O , Karki S , Pawar R R , Hazarika S , Ingole P G . A new perspective of functionalized MWCNT incorporated thin film nanocomposite hollow fiber membranes for the separation of various gases. Journal of Environmental Chemical Engineering, 2021, 9(1): 104774
CrossRef
Google scholar
|
[61] |
Awad A , Aljundi I H . Layer-by-layer assembly of carbide derived carbon-polyamide membrane for CO2 separation from natural gas. Energy, 2018, 157: 188–199
CrossRef
Google scholar
|
[62] |
Wong K C , Goh P S , Suzaimi N D , Ng Z C , Ismail A F , Jiang X , Hu X , Taniguchi T . Tailoring the CO2-selectivity of interfacial polymerized thin film nanocomposite membrane via the barrier effect of functionalized boron nitride. Journal of Colloid and Interface Science, 2021, 603: 810–821
CrossRef
Google scholar
|
[63] |
Li H , Ding X , Zhang Y , Liu J . Porous graphene nanosheets functionalized thin film nanocomposite membrane prepared by interfacial polymerization for CO2/N2 separation. Journal of Membrane Science, 2017, 543: 58–68
CrossRef
Google scholar
|
[64] |
Zhang Y , Wang H , Zhang Y , Ding X , Liu J . Thin film composite membranes functionalized with montmorillonite and hydrotalcite nanosheets for CO2/N2 separation. Separation and Purification Technology, 2017, 189: 128–137
CrossRef
Google scholar
|
[65] |
Choi O , Hossain I , Jeong I , Park C H , Kim Y , Kim T H . Modified graphene oxide-incorporated thin-film composite hollow fiber membranes through interface polymerization on hydrophilic substrate for CO2 separation. Membranes, 2021, 11(9): 650
CrossRef
Google scholar
|
[66] |
Jiao C , Song X , Zhang X , Sun L , Jiang H . MOF-mediated interfacial polymerization to fabricate polyamide membranes with a homogeneous nanoscale striped turing structure for CO2/CH4 separation. ACS Applied Materials & Interfaces, 2021, 13(15): 18380–18388
CrossRef
Google scholar
|
[67] |
Zhang X , Jiao C , Li X , Song X , Plisko T V , Bildyukevich A V , Jiang H . Zn ion-modulated polyamide membrane with enhanced facilitated transport effect for CO2 separation. Separation and Purification Technology, 2022, 292: 121051
CrossRef
Google scholar
|
[68] |
Li N , Wang Z , Wang M , Gao M , Wu H , Zhao S , Wang J . Swelling-controlled positioning of nanofillers through a polyamide layer in thin-film nanocomposite membranes for CO2 separation. Journal of Membrane Science, 2021, 624: 119095
CrossRef
Google scholar
|
[69] |
Yu S , Li S , Huang S , Zeng Z , Cui S , Liu Y . Covalently bonded zeolitic imidazolate frameworks and polymers with enhanced compatibility in thin film nanocomposite membranes for gas separation. Journal of Membrane Science, 2017, 540: 155–164
CrossRef
Google scholar
|
[70] |
Xu H , Feng W , Sheng M , Yuan Y , Wang B , Wang J , Wang Z . Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO2 separation. Chinese Journal of Chemical Engineering, 2022, 43: 152–160
CrossRef
Google scholar
|
[71] |
Bandyopadhyay P , Nguyen T T , Li X , Kim N H , Lee J H . Enhanced hydrogen gas barrier performance of diaminoalkane functionalized stitched graphene oxide/polyurethane composites. Composites. Part B, Engineering, 2017, 117: 101–110
CrossRef
Google scholar
|
[72] |
Baniani A , Rivera M P , Marreiros J , Lively R P , Vasenkov S . Influence of polymer modification on intra-MOF self-diffusion in MOF-based mixed matrix membranes. Microporous and Mesoporous Materials, 2023, 359: 112648
CrossRef
Google scholar
|
[73] |
Cui X , Kong G , Feng Y , Li L , Fan W , Pang J , Fan L , Wang R , Guo H , Kang Z .
CrossRef
Google scholar
|
[74] |
Qian Q , Asinger P A , Lee M J , Han G , Mizrahi Rodriguez K , Lin S , Benedetti F M , Wu A X , Chi W S , Smith Z P . MOF-based membranes for gas separations. Chemical Reviews, 2020, 120(16): 8161–8166
CrossRef
Google scholar
|
[75] |
OksanaSSubhamOAnkitaDAndreasSFrederikHAlexanderK. Tiny windows in reticular nanomaterials for molecular sieving gas separation membranes. Advanced Functional Materials, 2023, 2306202
|
[76] |
Aydin S , Altintas C , Keskin S . High-throughput screening of COF membranes and COF/polymer MMMs for helium separation and hydrogen purification. ACS Applied Materials & Interfaces, 2022, 14(18): 21738–21749
CrossRef
Google scholar
|
[77] |
Wang B , Qiao Z , Xu J , Wang J , Liu X , Zhao S , Wang Z , Guiver M D . Unobstructed ultrathin gas transport channels in composite membranes by interfacial self-assembly. Advanced Materials, 2020, 32(22): 1907701
CrossRef
Google scholar
|
[78] |
Yu S , Liu M , Lü Z , Zhou Y , Gao C . Aromatic-cycloaliphatic polyamide thin-film composite membrane with improved chlorine resistance prepared from m-phenylenediamine-4-methyl and cyclohexane-1,3,5-tricarbonyl chloride. Journal of Membrane Science, 2009, 344(1-2): 155–164
CrossRef
Google scholar
|
[79] |
Li X , Wang Z , Han X , Liu Y , Wang C , Yan F , Wang J . Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: a review. Journal of Membrane Science, 2021, 640: 119765
CrossRef
Google scholar
|
[80] |
Peng L E , Yao Z , Yang Z , Guo H , Tang C Y . Dissecting the role of substrate on the morphology and separation properties of thin film composite polyamide membranes: seeing is believing. Environmental Science & Technology, 2020, 54(11): 6978–6986
CrossRef
Google scholar
|
[81] |
Shi M , Wang Z , Zhao S , Wang J , Wang S . A support surface pore structure re-construction method to enhance the flux of TFC RO membrane. Journal of Membrane Science, 2017, 541: 39–52
CrossRef
Google scholar
|
[82] |
Li Y , Guo Z , Li S , Van Der Bruggen B . Interfacially polymerized thin-film composite membranes for organic solvent nanofiltration. Advanced Materials Interfaces, 2021, 8(3): 2001671
CrossRef
Google scholar
|
[83] |
Dai R , Li J , Wang Z . Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: a review. Advances in Colloid and Interface Science, 2020, 282: 102204
CrossRef
Google scholar
|
[84] |
Wang Z , Liang S , Kang Y , Zhao W , Xia Y , Yang J , Wang H , Zhang X . Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Progress in Polymer Science, 2021, 122: 101450
CrossRef
Google scholar
|
[85] |
Tan Z , Chen S , Peng X , Zhang L , Gao C . Polyamide membranes with nanoscale turing structures for water purification. Science, 2018, 360(6388): 518–521
CrossRef
Google scholar
|
[86] |
Hu M , Fu W , Guan K , Gonzales R R , Song Q , Matsuoka A , Mai Z , Chiao Y H , Zhang P , Li Z .
CrossRef
Google scholar
|
[87] |
Gao S , Zhu Y , Gong Y , Wang Z , Fang W , Jin J . Ultrathin polyamide nanofiltration membrane fabricated on brush-painted single-walled carbon nanotube network support for ion sieving. ACS Nano, 2019, 13(5): 5278–5290
CrossRef
Google scholar
|
[88] |
Yang Z , Zhou Z , Guo H , Yao Z , Ma X , Song X , Feng S , Tang C . Tannic acid/Fe3+ nanoscaffold for interfacial polymerization: toward enhanced nanofiltration performance. Environmental Science & Technology, 2018, 52(16): 9341–9349
CrossRef
Google scholar
|
[89] |
Chen H Z , Thong Z , Li P , Chung T S . High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation. International Journal of Hydrogen Energy, 2014, 39(10): 5043–5053
CrossRef
Google scholar
|
[90] |
Ma Y , Zhang W , Li H , Zhang C , Pan H , Zhang Y , Feng X , Tang K , Meng J . A microporous polymer TFC membrane with 2-D MOF nanosheets gutter layer for efficient H2 separation. Separation and Purification Technology, 2021, 261: 118283
CrossRef
Google scholar
|
[91] |
He Y , Zhang Y , Liang F , Zhu Y , Jin J . Chlorine resistant polyamide desalination membrane prepared via organic-organic interfacial polymerization. Journal of Membrane Science, 2023, 672: 121444
CrossRef
Google scholar
|
[92] |
Xin J , Fan H , Guo B , Yang H , Zhu C , Zhang C , Xu Z . Interfacial polymerization at unconventional interfaces: an emerging strategy to tailor thin-film composite membranes. Chemical Communications, 2023, 59(59): 13258–13271
CrossRef
Google scholar
|
[93] |
Liu C , Yang J , Guo B , Agarwal S , Greiner A , Xu Z . Interfacial polymerization at the alkane/ionic liquid interface. Angewandte Chemie International Edition, 2021, 60(26): 14636–14643
CrossRef
Google scholar
|
[94] |
Lei Z , Chen B , Koo Y , Macfarlane D R . Introduction: ionic liquids. Chemical Reviews, 2017, 117(10): 6633–6635
CrossRef
Google scholar
|
[95] |
Ma K , Li X , Xia X , Chen Y , Luan Z , Chu H , Geng B , Yan M . Fluorinated solvent resistant nanofiltration membrane prepared by alkane/ionic liquid interfacial polymerization with excellent solvent resistance. Journal of Membrane Science, 2023, 673: 121486
CrossRef
Google scholar
|
[96] |
Wang Y , Chang H , Jiang S , Chen J , Wang J , Liang H , Li G , Tang X . An efficient co-solvent tailoring interfacial polymerization for nanofiltration: enhanced selectivity and mechanism. Journal of Membrane Science, 2023, 677: 121615
CrossRef
Google scholar
|
[97] |
Khorshidi B , Thundat T , Fleck B A , Sadrzadeh M . Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions. RSC Advances, 2015, 5(68): 54985–54997
CrossRef
Google scholar
|
[98] |
Song X , Gan B , Qi S , Guo H , Tang C Y , Zhou Y , Gao C . Intrinsic nanoscale structure of thin film composite polyamide membranes: connectivity, defects, and structure-property correlation. Environmental Science & Technology, 2020, 54(6): 3559–3569
CrossRef
Google scholar
|
[99] |
Yang J , Tao L , He J , Mccutcheon J R , Li Y . Machine learning enables interpretable discovery of innovative polymers for gas separation membranes. Science Advances, 2022, 8(29): eabn9545
CrossRef
Google scholar
|
[100] |
Wang J , Tian K , Li D , Chen M , Feng X , Zhang Y , Wang Y , Van Der Bruggen B . Machine learning in gas separation membrane developing: ready for prime time. Separation and Purification Technology, 2023, 313: 123493
CrossRef
Google scholar
|
[101] |
Wang J , Zhu J , Zhang Y , Liu J , Van Der Bruggen B . Nanoscale tailor-made membranes for precise and rapid molecular sieve separation. Nanoscale, 2017, 9(9): 2942–2957
CrossRef
Google scholar
|
[102] |
Song X , Tueler J M , Guiga W , Fargues C , Rousseau B . Molecular simulation of a reverse osmosis polyamide membrane layer. In silico synthesis using different reactant concentration ratios. Journal of Membrane Science, 2021, 643: 120010
CrossRef
Google scholar
|
[103] |
Waheed A , Baig U , Abdulazeez I , Hasan S W , Aljundi I H . Delineation of the diamine monomers effect on the desalination properties of polyamide thin film composite membranes: experimental and molecular dynamics simulation. Journal of Molecular Liquids, 2022, 363: 119778
CrossRef
Google scholar
|
[104] |
Yin H , Xu M , Luo Z , Bi X , Li J , Zhang S , Wang X . Machine learning for membrane design and discovery. Green Energy & Environment, 2024, 9(1): 54–70
CrossRef
Google scholar
|
[105] |
Wang M , Shi G M , Zhao D , Liu X , Jiang J . Machine learning-assisted design of thin-film composite membranes for solvent recovery. Environmental Science & Technology, 2023, 57(42): 15914–15924
CrossRef
Google scholar
|
[106] |
Deng H , Luo Z , Imbrogno J , Swenson T M , Jiang Z , Wang X , Zhang S . Machine learning guided polyamide membrane with exceptional solute-solute selectivity and permeance. Environmental Science & Technology, 2023, 57(46): 17841–17850
CrossRef
Google scholar
|
[107] |
Al Hamdani Y S , Nagy P R , Zen A , Barton D , Kállay M , Brandenburg J G , Tkatchenko A . Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nature Communications, 2021, 12(1): 3927
CrossRef
Google scholar
|
[108] |
Li K , Kress J D , Mebane D S . The mechanism of CO2 adsorption under dry and humid conditions in mesoporous silica-supported amine sorbents. Journal of Physical Chemistry C, 2016, 120(41): 23683–23691
CrossRef
Google scholar
|
[109] |
Li X , Sotto A , Li J , Van Der Bruggen B . Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles. Journal of Membrane Science, 2017, 524: 502–528
CrossRef
Google scholar
|
[110] |
Xu H , Pate S G , O’Brien C P . Mathematical modeling of CO2 facilitated transport across polyvinylamine membranes with direct operando observation of amine carrier saturation. Chemical Engineering Journal, 2023, 460: 141728
CrossRef
Google scholar
|
[111] |
Jomekian A , Behbahani R M , Mohammadi T , Kargari A . High speed spin coating in fabrication of Pebax 1657 based mixed matrix membrane filled with ultra-porous ZIF-8 particles for CO2/CH4 separation. Korean Journal of Chemical Engineering, 2017, 34(2): 440–453
CrossRef
Google scholar
|
[112] |
Yang H C , Wu M B , Hou J , Darling S B , Xu Z K . Nanofilms directly formed on macro-porous substrates for molecular and ionic sieving. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(7): 2908–2913
CrossRef
Google scholar
|
[113] |
Jasim D J , Mohammed T J , Harharah H N , Harharah R H , Amari A , Abid M F . Modeling and optimal operating conditions of hollow fiber membrane for CO2/CH4 separation. Membranes, 2023, 13(6): 557
CrossRef
Google scholar
|
[114] |
Yu C , Cen X , Ao D , Qiao Z , Zhong C . Preparation of thin-film composite membranes with ultrahigh MOFs loading through polymer-template MOFs induction secondary interfacial polymerization. Applied Surface Science, 2022, 614: 156186
CrossRef
Google scholar
|
[115] |
Qiao Z , Wang Z , Zhang C , Yuan S , Zhu Y , Wang J , Wang S . PVAm-PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(1): 215–228
CrossRef
Google scholar
|
[116] |
He X , Lindbråthen A , Kim T J , Hägg M B . Pilot testing on fixed-site-carrier membranes for CO2 capture from flue gas. International Journal of Greenhouse Gas Control, 2017, 64: 323–332
CrossRef
Google scholar
|
/
〈 | 〉 |