Recent progress in the interfacial polymerization process for CO2 separation membrane fabrication

Zhijie Shang , Qiangqiang Song , Bin Han , Jing Ma , Dongyang Li , Cancan Zhang , Xin Li , Jinghe Yang , Junyong Zhu , Wenpeng Li , Jing Wang , Yatao Zhang

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (1) : 3

PDF (2032KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (1) : 3 DOI: 10.1007/s11705-024-2510-5
REVIEW ARTICLE

Recent progress in the interfacial polymerization process for CO2 separation membrane fabrication

Author information +
History +
PDF (2032KB)

Abstract

Nowadays, global warming caused by the increasing levels of CO2 has become a serious environmental problem. Membrane separation technology has demonstrated its promising potential in carbon capture due to its easy operation, energy-efficientness and high efficiency. Interfacial polymerization process, as a facile and well-established technique for preparing membranes with a thin selective layer, has been widely used for fabricating commercial reverse osmosis and nanofiltration membranes in water treatment domain. To push forward such an interfacial polymerization process in the research of CO2 separation membranes, herein we make a review on the regulation and research progress of the interfacial polymerization membranes for CO2 separation. First, a comprehensive and critical review of the progress in the monomers, nanoparticles and interfacial polymerization process optimization for preparing CO2 separation membrane is presented. In addition, the potential of molecular dynamics simulation and machine learning in accelerating the screen and design of interfacial polymerization membranes for CO2 separation are outlined. Finally, the possible challenges and development prospects of CO2 separation membranes by interfacial polymerization process are proposed. It is believed that this review can offer valuable insights and guidance for the future advancement of interfacial polymerization membranes for CO2 separation, thereby fostering its development.

Graphical abstract

Keywords

interfacial polymerization / CO2 separation / monomer / nanoparticle

Cite this article

Download citation ▾
Zhijie Shang, Qiangqiang Song, Bin Han, Jing Ma, Dongyang Li, Cancan Zhang, Xin Li, Jinghe Yang, Junyong Zhu, Wenpeng Li, Jing Wang, Yatao Zhang. Recent progress in the interfacial polymerization process for CO2 separation membrane fabrication. Front. Chem. Sci. Eng., 2025, 19(1): 3 DOI:10.1007/s11705-024-2510-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wilberforce T , Olabi A G , Sayed E T , Elsaid K , Abdelkareem M A . Progress in carbon capture technologies. Science of the Total Environment, 2020, 761: 143203

[2]

Qin Z , Ma Y , Wei J , Guo H , Wang B , Deng J , Yi C , Li N , Yi S , Deng Y . . Recent progress in ternary mixed matrix membranes for CO2 separation. Green Energy & Environment, 2023, 9(5): 831–858

[3]

Liu Z , Deng Z , Davis S , Ciais P . Monitoring global carbon emissions in 2022. Nature Reviews. Earth & Environment, 2023, 4(4): 205–206

[4]

Keith D W . Why capture CO2 from the atmosphere. Science, 2009, 325(5948): 1654–1655

[5]

Teong S P , Zhang Y . Direct capture and separation of CO2 from air. Green Energy & Environment, 2024, 9(3): 413–416

[6]

Haszeldine R S . Carbon capture and storage: how green can black be. Science, 2009, 325(5948): 1647–1652

[7]

Zhang Z , Wang T , Blunt M J , Anthony E J , Park A H A , Hughes R W , Webley P A , Yan J . Advances in carbon capture, utilization and storage. Applied Energy, 2020, 278: 115627

[8]

Eric H O , Sigurdur R G . 4. Carbon capture and storage (CCS). Geochemical Perspectives, 2023, 12(2): 240–310

[9]

Chen G , Wang T , Zhang G , Liu G , Jin W . Membrane materials targeting carbon capture and utilization. Advanced Membranes, 2022, 2: 100025

[10]

Sreedhar I , Vaidhiswaran R , Kamani B M , Venugopal A . Process and engineering trends in membrane based carbon capture. Renewable & Sustainable Energy Reviews, 2017, 68: 659–684

[11]

Fauzan N A B , Mannan H A , Nasir R , Mohshim D F B , Mukhtar H . Various techniques for preparation of thin-film composite mixed-matrix membranes for CO2 separation. Chemical Engineering & Technology, 2019, 42(12): 2608–2620

[12]

Baker R W , Freeman B , Kniep J , Huang Y I , Merkel T C . CO2 capture from cement plants and steel mills using membranes. Industrial & Engineering Chemistry Research, 2018, 57(47): 15963–15970

[13]

Yu M C , Bai L J , Moioli S , Tontiwachwuthikul P , Plisko T V , Bildyukevich A V , Feng Y N , Liu H . Hybrid CO2 capture processes consisting of membranes: a technical and techno-economic review. Advanced Membranes, 2023, 3: 100071

[14]

Golsefid H H , Alizadeh O , Dorosti F . Chemical vapor deposition technique to fabricate zeolitic imidazolate framework-8/polysulfone membrane for CO2/CH4 separation. Theoretical Foundations of Chemical Engineering, 2023, 56(6): 1116–1126

[15]

Koutsiantzi C , Kampylafka A , Zouboulis A , Mitrakas M , Kikkinides E S . Theoretical and experimental study of CO2 removal from biogas employing a hollow fiber polyimide membrane. Sustainable Chemistry and Pharmacy, 2023, 35: 101221

[16]

Isegawa M . Chemical modification of dimethylpolysiloxane for enhancement of CO2 binding enthalpy. Physical Chemistry Chemical Physics, 2023, 25(11): 7881–7892

[17]

Sahoo P C , Kumar M , Puri S K , Ramakumar S S V . Enzyme inspired complexes for industrial CO2 capture: opportunities and challenges. Journal of CO2 Utilization, 2018, 24: 419–429

[18]

Zhang M , Jing X , Zhao S , Shao P , Zhang Y , Yuan S , Li Y , Gu C , Wang X , Ye Y . . Electropolymerization of molecular-sieving polythiophene membranes for H2 separation. Angewandte Chemie International Edition, 2019, 58(26): 8768–8772

[19]

Lasseuguette E , Comesaña Gándara B . Polymer membranes for gas separation. Membranes (Basel), 2022, 12(2): 207

[20]

Park C Y , Kong C I , Kim E Y , Lee C H , Kim K S , Lee J H , Lee J , Moon S Y . High-flux CO2 separation using thin-film composite polyether block amide membranes fabricated by transient-filler treatment. Chemical Engineering Journal, 2022, 455: 140883

[21]

Guo H , Xu W , Wei J , Ma Y , Qin Z , Dai Z , Deng J , Deng L . Effects of porous supports in thin-film composite membranes on CO2 separation performances. Membranes, 2023, 13(3): 359

[22]

Ji C , Zhai Z , Jiang C , Hu P , Zhao S , Xue S , Yang Z , He T , Niu Q J . Recent advances in high-performance TFC membranes: a review of the functional interlayers. Desalination, 2021, 500: 114869

[23]

Ge C , Sheng M , Yuan Y , Shi F , Yang Y , Zhao S , Wang J , Wang Z . Recent advances of the interfacial polymerization process in gas separation membranes fabrication. Journal of Membrane Science, 2023, 683: 121854

[24]

Zhu T , Xia Q , Zuo J , Liu S , Yu X , Wang Y . Recent advances of thin film composite membranes for pervaporation applications: a comprehensive review. Advanced Membranes, 2021, 1: 100008

[25]

Jiang C , Zhang L , Li P , Sun H , Hou Y , Niu Q J . Ultrathin film composite membranes fabricated by novel in situ free interfacial polymerization for desalination. ACS Applied Materials & Interfaces, 2020, 12(22): 25304–25315

[26]

Chen Y , Niu Q J , Hou Y , Sun H . Effect of interfacial polymerization monomer design on the performance and structure of thin film composite nanofiltration and reverse osmosis membranes: a review. Separation and Purification Technology, 2023, 330: 125282

[27]

Yang Q , Lin Q , Sammarchi S , Li J , Li S , Wang D . Water vapor effects on CO2 separation of amine-containing facilitated transport membranes (AFTMs) module: mathematical modeling using tanks-in-series approach. Greenhouse Gases: Science and Technology, 2021, 11(1): 52–68

[28]

Zhao J , Wang Z , Wang J , Wang S . Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes prepared by interfacial polymerization. Journal of Membrane Science, 2006, 283(1-2): 346–356

[29]

Sridhar S , Smitha B , Mayor S , Prathab B , Aminabhavi T M . Gas permeation properties of polyamide membrane prepared by interfacial polymerization. Journal of Materials Science, 2007, 42(22): 9392–9401

[30]

Yu X , Wang Z , Wei Z , Yuan S , Zhao J , Wang J , Wang S . Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture. Journal of Membrane Science, 2010, 362(1-2): 265–278

[31]

Li S , Wang Z , Zhang C , Wang M , Yuan F , Wang J , Wang S . Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation. Journal of Membrane Science, 2013, 436: 121–131

[32]

Salih A A M , Yi C , Peng H , Yang B , Yin L , Wang W . Interfacially polymerized polyetheramine thin film composite membranes with PDMS inter-layer for CO2 separation. Journal of Membrane Science, 2014, 472: 110–118

[33]

He W , Wang Z , Li W , Li S , Bai Z , Wang J , Wang S . Cyclic tertiary amino group containing fixed carrier membranes for CO2 separation. Journal of Membrane Science, 2015, 476: 171–181

[34]

Jo E S , An X , Ingole P G , Choi W K , Park Y S , Lee H K . CO2/CH4 separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization. Chinese Journal of Chemical Engineering, 2017, 25(3): 278–287

[35]

Awad A , Aljundi I H . Interfacial polymerization of facilitated transport polyamide membrane prepared from PIP and IPC for gas separation applications. Korean Journal of Chemical Engineering, 2018, 35(8): 1700–1709

[36]

Xu X , Dong J , Xiao X , Zhao X , Zhang Q . Constructing thin and cross-linked polyimide membranes by interfacial reaction for efficient CO2 separation. ACS Sustainable Chemistry & Engineering, 2021, 9(16): 5546–5556

[37]

Li S , Wang Z , Yu X , Wang J , Wang S . High-performance membranes with multi-permselectivity for CO2 separation. Advanced Materials, 2012, 24(24): 3196–3200

[38]

Wang M , Wang Z , Li S , Zhang C , Wang J , Wang S . A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO2 separation from flue gas. Energy & Environmental Science, 2013, 6(2): 539–551

[39]

Andrew Lee S , Stevens G W , Kentish S E . Facilitated transport behavior of humidified gases through thin-film composite polyamide membranes for carbon dioxide capture. Journal of Membrane Science, 2013, 429: 349–354

[40]

Bonenfant D , Mimeault M , Hausler R . Determination of the structural features of distinct amines important for the absorption of CO2 and regeneration in aqueous solution. Industrial & Engineering Chemistry Research, 2003, 42(14): 3179–3184

[41]

Scholes C , Chen G , Lu H , Kentish S . Crosslinked PEG and PEBAX membranes for concurrent permeation of water and carbon dioxide. Membranes, 2015, 6(1): 1

[42]

Du N , Park H B , Dal Cin M M , Guiver M D . Advances in high permeability polymeric membrane materials for CO2 separations. Energy & Environmental Science, 2011, 9: 1863–1890

[43]

Ding X , Wang W , Cheng X , Fan X , Zhao H , Xin Q , Zhang Y . Composite membranes based on ether oxygen-rich polyimide with superior CO2/N2 separation properties prepared by interfacial polymerization. Journal of Membrane Science, 2024, 693: 122355

[44]

Park S , Patel R , Woo Y C . Polyester-based thin-film composite membranes for nanofiltration of saline water: a review. Desalination, 2023, 572: 117138

[45]

Rahman M M . Material design concepts and gas separation mechanism of CO2 selective polyether-based multiblock copolymers. Macromolecular Rapid Communications, 2023, 44(14): 2300114

[46]

YuanFWangZLiSWangJWangS. Formation-structure-performance correlation of thin film composite membranes prepared by interfacial polymerization for gas separation. Journal of Membrane Science, 2012, 421–422: 327–341

[47]

Yu S , Li S , Liu Y , Cui S , Shen X . High-performance microporous polymer membranes prepared by interfacial polymerization for gas separation. Journal of Membrane Science, 2019, 573: 425–438

[48]

Sun H , Bao S , Zhao H , Chen Y , Wang Y , Jiang C , Li P , Jason Niu Q . Polyarylate membrane with special circular microporous structure by interfacial polymerization for gas separation. Separation and Purification Technology, 2020, 251: 117370

[49]

Niu Y , Chen Y , Bao S , Sun H , Wang Y , Ge B , Li P , Hou Y . Fabrication of polyarylate thin-film nanocomposite membrane based on graphene quantum dots interlayer for enhanced gas separation performance. Separation and Purification Technology, 2022, 293: 121035

[50]

Ma C , Li Q , Wang Z , Gao M , Wang J , Cao X . High performance membranes containing rigid contortion units prepared by interfacial polymerization for CO2 separation. Journal of Membrane Science, 2022, 652: 120459

[51]

Li X , Jiao C , Zhang X , Li X , Song X , Zhang Z , Jiang H . Ultrathin polyamide membrane tailored by mono-(6-ethanediamine-6-deoxy)-β-cyclodextrin for CO2 separation. Journal of Membrane Science, 2023, 666: 121165

[52]

Li N , Wang Z , Wang J . Biomimetic hydroxypropyl-β-cyclodextrin (Hβ-CD)/polyamide (PA) membranes for CO2 separation. Journal of Membrane Science, 2023, 668: 121211

[53]

Li N , Wang Z , Wang J . Water-swollen carboxymethyl chitosan (CMC)/polyamide (PA) membranes with octopus-branched nanostructures for CO2 capture. Journal of Membrane Science, 2022, 642: 119946

[54]

Liu J , Hua D , Zhang Y , Japip S , Chung T S . Precise molecular sieving architectures with Janus pathways for both polar and nonpolar molecules. Advanced Materials, 2018, 30(11): 1705933

[55]

Zhang Z , Fan K , Liu Y , Xia S . A review on polyester and polyester-amide thin film composite nanofiltration membranes: synthesis, characteristics and applications. Science of the Total Environment, 2022, 858: 159922

[56]

Khdary N H , Almuarqab B T , El Enany G . Nanoparticle-embedded polymers and their applications: a review. Membranes, 2023, 13(5): 537

[57]

Wong K C , Goh P S , Taniguchi T , Ismail A F , Zahri K . The role of geometrically different carbon-based fillers on the formation and gas separation performance of nanocomposite membranes. Carbon, 2019, 149: 33–44

[58]

Yu X , Wang Z , Zhao J , Yuan F , Li S , Wang J , Wang S . An effective method to improve the performance of fixed carrier membrane via incorporation of CO2-selective adsorptive silica nanoparticles. Chinese Journal of Chemical Engineering, 2011, 19(5): 821–832

[59]

Wong K C , Goh P S , Ng B C , Ismail A F . Thin film nanocomposite embedded with polymethyl methacrylate modified multi-walled carbon nanotubes for CO2 removal. RSC Advances, 2015, 5(40): 31683–31690

[60]

Choi O , Karki S , Pawar R R , Hazarika S , Ingole P G . A new perspective of functionalized MWCNT incorporated thin film nanocomposite hollow fiber membranes for the separation of various gases. Journal of Environmental Chemical Engineering, 2021, 9(1): 104774

[61]

Awad A , Aljundi I H . Layer-by-layer assembly of carbide derived carbon-polyamide membrane for CO2 separation from natural gas. Energy, 2018, 157: 188–199

[62]

Wong K C , Goh P S , Suzaimi N D , Ng Z C , Ismail A F , Jiang X , Hu X , Taniguchi T . Tailoring the CO2-selectivity of interfacial polymerized thin film nanocomposite membrane via the barrier effect of functionalized boron nitride. Journal of Colloid and Interface Science, 2021, 603: 810–821

[63]

Li H , Ding X , Zhang Y , Liu J . Porous graphene nanosheets functionalized thin film nanocomposite membrane prepared by interfacial polymerization for CO2/N2 separation. Journal of Membrane Science, 2017, 543: 58–68

[64]

Zhang Y , Wang H , Zhang Y , Ding X , Liu J . Thin film composite membranes functionalized with montmorillonite and hydrotalcite nanosheets for CO2/N2 separation. Separation and Purification Technology, 2017, 189: 128–137

[65]

Choi O , Hossain I , Jeong I , Park C H , Kim Y , Kim T H . Modified graphene oxide-incorporated thin-film composite hollow fiber membranes through interface polymerization on hydrophilic substrate for CO2 separation. Membranes, 2021, 11(9): 650

[66]

Jiao C , Song X , Zhang X , Sun L , Jiang H . MOF-mediated interfacial polymerization to fabricate polyamide membranes with a homogeneous nanoscale striped turing structure for CO2/CH4 separation. ACS Applied Materials & Interfaces, 2021, 13(15): 18380–18388

[67]

Zhang X , Jiao C , Li X , Song X , Plisko T V , Bildyukevich A V , Jiang H . Zn ion-modulated polyamide membrane with enhanced facilitated transport effect for CO2 separation. Separation and Purification Technology, 2022, 292: 121051

[68]

Li N , Wang Z , Wang M , Gao M , Wu H , Zhao S , Wang J . Swelling-controlled positioning of nanofillers through a polyamide layer in thin-film nanocomposite membranes for CO2 separation. Journal of Membrane Science, 2021, 624: 119095

[69]

Yu S , Li S , Huang S , Zeng Z , Cui S , Liu Y . Covalently bonded zeolitic imidazolate frameworks and polymers with enhanced compatibility in thin film nanocomposite membranes for gas separation. Journal of Membrane Science, 2017, 540: 155–164

[70]

Xu H , Feng W , Sheng M , Yuan Y , Wang B , Wang J , Wang Z . Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO2 separation. Chinese Journal of Chemical Engineering, 2022, 43: 152–160

[71]

Bandyopadhyay P , Nguyen T T , Li X , Kim N H , Lee J H . Enhanced hydrogen gas barrier performance of diaminoalkane functionalized stitched graphene oxide/polyurethane composites. Composites. Part B, Engineering, 2017, 117: 101–110

[72]

Baniani A , Rivera M P , Marreiros J , Lively R P , Vasenkov S . Influence of polymer modification on intra-MOF self-diffusion in MOF-based mixed matrix membranes. Microporous and Mesoporous Materials, 2023, 359: 112648

[73]

Cui X , Kong G , Feng Y , Li L , Fan W , Pang J , Fan L , Wang R , Guo H , Kang Z . . Interfacial polymerization of MOF “monomers” to fabricate flexible and thin membranes for molecular separation with ultrafast water transport. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(32): 17528–17537

[74]

Qian Q , Asinger P A , Lee M J , Han G , Mizrahi Rodriguez K , Lin S , Benedetti F M , Wu A X , Chi W S , Smith Z P . MOF-based membranes for gas separations. Chemical Reviews, 2020, 120(16): 8161–8166

[75]

OksanaSSubhamOAnkitaDAndreasSFrederikHAlexanderK. Tiny windows in reticular nanomaterials for molecular sieving gas separation membranes. Advanced Functional Materials, 2023, 2306202

[76]

Aydin S , Altintas C , Keskin S . High-throughput screening of COF membranes and COF/polymer MMMs for helium separation and hydrogen purification. ACS Applied Materials & Interfaces, 2022, 14(18): 21738–21749

[77]

Wang B , Qiao Z , Xu J , Wang J , Liu X , Zhao S , Wang Z , Guiver M D . Unobstructed ultrathin gas transport channels in composite membranes by interfacial self-assembly. Advanced Materials, 2020, 32(22): 1907701

[78]

Yu S , Liu M , Z , Zhou Y , Gao C . Aromatic-cycloaliphatic polyamide thin-film composite membrane with improved chlorine resistance prepared from m-phenylenediamine-4-methyl and cyclohexane-1,3,5-tricarbonyl chloride. Journal of Membrane Science, 2009, 344(1-2): 155–164

[79]

Li X , Wang Z , Han X , Liu Y , Wang C , Yan F , Wang J . Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: a review. Journal of Membrane Science, 2021, 640: 119765

[80]

Peng L E , Yao Z , Yang Z , Guo H , Tang C Y . Dissecting the role of substrate on the morphology and separation properties of thin film composite polyamide membranes: seeing is believing. Environmental Science & Technology, 2020, 54(11): 6978–6986

[81]

Shi M , Wang Z , Zhao S , Wang J , Wang S . A support surface pore structure re-construction method to enhance the flux of TFC RO membrane. Journal of Membrane Science, 2017, 541: 39–52

[82]

Li Y , Guo Z , Li S , Van Der Bruggen B . Interfacially polymerized thin-film composite membranes for organic solvent nanofiltration. Advanced Materials Interfaces, 2021, 8(3): 2001671

[83]

Dai R , Li J , Wang Z . Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: a review. Advances in Colloid and Interface Science, 2020, 282: 102204

[84]

Wang Z , Liang S , Kang Y , Zhao W , Xia Y , Yang J , Wang H , Zhang X . Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Progress in Polymer Science, 2021, 122: 101450

[85]

Tan Z , Chen S , Peng X , Zhang L , Gao C . Polyamide membranes with nanoscale turing structures for water purification. Science, 2018, 360(6388): 518–521

[86]

Hu M , Fu W , Guan K , Gonzales R R , Song Q , Matsuoka A , Mai Z , Chiao Y H , Zhang P , Li Z . . Regulating interfacial polymerization via a multi-functional calcium carbonate based interlayer for a highly permselective nanofiltration membrane. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(16): 8836–8844

[87]

Gao S , Zhu Y , Gong Y , Wang Z , Fang W , Jin J . Ultrathin polyamide nanofiltration membrane fabricated on brush-painted single-walled carbon nanotube network support for ion sieving. ACS Nano, 2019, 13(5): 5278–5290

[88]

Yang Z , Zhou Z , Guo H , Yao Z , Ma X , Song X , Feng S , Tang C . Tannic acid/Fe3+ nanoscaffold for interfacial polymerization: toward enhanced nanofiltration performance. Environmental Science & Technology, 2018, 52(16): 9341–9349

[89]

Chen H Z , Thong Z , Li P , Chung T S . High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation. International Journal of Hydrogen Energy, 2014, 39(10): 5043–5053

[90]

Ma Y , Zhang W , Li H , Zhang C , Pan H , Zhang Y , Feng X , Tang K , Meng J . A microporous polymer TFC membrane with 2-D MOF nanosheets gutter layer for efficient H2 separation. Separation and Purification Technology, 2021, 261: 118283

[91]

He Y , Zhang Y , Liang F , Zhu Y , Jin J . Chlorine resistant polyamide desalination membrane prepared via organic-organic interfacial polymerization. Journal of Membrane Science, 2023, 672: 121444

[92]

Xin J , Fan H , Guo B , Yang H , Zhu C , Zhang C , Xu Z . Interfacial polymerization at unconventional interfaces: an emerging strategy to tailor thin-film composite membranes. Chemical Communications, 2023, 59(59): 13258–13271

[93]

Liu C , Yang J , Guo B , Agarwal S , Greiner A , Xu Z . Interfacial polymerization at the alkane/ionic liquid interface. Angewandte Chemie International Edition, 2021, 60(26): 14636–14643

[94]

Lei Z , Chen B , Koo Y , Macfarlane D R . Introduction: ionic liquids. Chemical Reviews, 2017, 117(10): 6633–6635

[95]

Ma K , Li X , Xia X , Chen Y , Luan Z , Chu H , Geng B , Yan M . Fluorinated solvent resistant nanofiltration membrane prepared by alkane/ionic liquid interfacial polymerization with excellent solvent resistance. Journal of Membrane Science, 2023, 673: 121486

[96]

Wang Y , Chang H , Jiang S , Chen J , Wang J , Liang H , Li G , Tang X . An efficient co-solvent tailoring interfacial polymerization for nanofiltration: enhanced selectivity and mechanism. Journal of Membrane Science, 2023, 677: 121615

[97]

Khorshidi B , Thundat T , Fleck B A , Sadrzadeh M . Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions. RSC Advances, 2015, 5(68): 54985–54997

[98]

Song X , Gan B , Qi S , Guo H , Tang C Y , Zhou Y , Gao C . Intrinsic nanoscale structure of thin film composite polyamide membranes: connectivity, defects, and structure-property correlation. Environmental Science & Technology, 2020, 54(6): 3559–3569

[99]

Yang J , Tao L , He J , Mccutcheon J R , Li Y . Machine learning enables interpretable discovery of innovative polymers for gas separation membranes. Science Advances, 2022, 8(29): eabn9545

[100]

Wang J , Tian K , Li D , Chen M , Feng X , Zhang Y , Wang Y , Van Der Bruggen B . Machine learning in gas separation membrane developing: ready for prime time. Separation and Purification Technology, 2023, 313: 123493

[101]

Wang J , Zhu J , Zhang Y , Liu J , Van Der Bruggen B . Nanoscale tailor-made membranes for precise and rapid molecular sieve separation. Nanoscale, 2017, 9(9): 2942–2957

[102]

Song X , Tueler J M , Guiga W , Fargues C , Rousseau B . Molecular simulation of a reverse osmosis polyamide membrane layer. In silico synthesis using different reactant concentration ratios. Journal of Membrane Science, 2021, 643: 120010

[103]

Waheed A , Baig U , Abdulazeez I , Hasan S W , Aljundi I H . Delineation of the diamine monomers effect on the desalination properties of polyamide thin film composite membranes: experimental and molecular dynamics simulation. Journal of Molecular Liquids, 2022, 363: 119778

[104]

Yin H , Xu M , Luo Z , Bi X , Li J , Zhang S , Wang X . Machine learning for membrane design and discovery. Green Energy & Environment, 2024, 9(1): 54–70

[105]

Wang M , Shi G M , Zhao D , Liu X , Jiang J . Machine learning-assisted design of thin-film composite membranes for solvent recovery. Environmental Science & Technology, 2023, 57(42): 15914–15924

[106]

Deng H , Luo Z , Imbrogno J , Swenson T M , Jiang Z , Wang X , Zhang S . Machine learning guided polyamide membrane with exceptional solute-solute selectivity and permeance. Environmental Science & Technology, 2023, 57(46): 17841–17850

[107]

Al Hamdani Y S , Nagy P R , Zen A , Barton D , Kállay M , Brandenburg J G , Tkatchenko A . Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nature Communications, 2021, 12(1): 3927

[108]

Li K , Kress J D , Mebane D S . The mechanism of CO2 adsorption under dry and humid conditions in mesoporous silica-supported amine sorbents. Journal of Physical Chemistry C, 2016, 120(41): 23683–23691

[109]

Li X , Sotto A , Li J , Van Der Bruggen B . Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles. Journal of Membrane Science, 2017, 524: 502–528

[110]

Xu H , Pate S G , O’Brien C P . Mathematical modeling of CO2 facilitated transport across polyvinylamine membranes with direct operando observation of amine carrier saturation. Chemical Engineering Journal, 2023, 460: 141728

[111]

Jomekian A , Behbahani R M , Mohammadi T , Kargari A . High speed spin coating in fabrication of Pebax 1657 based mixed matrix membrane filled with ultra-porous ZIF-8 particles for CO2/CH4 separation. Korean Journal of Chemical Engineering, 2017, 34(2): 440–453

[112]

Yang H C , Wu M B , Hou J , Darling S B , Xu Z K . Nanofilms directly formed on macro-porous substrates for molecular and ionic sieving. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(7): 2908–2913

[113]

Jasim D J , Mohammed T J , Harharah H N , Harharah R H , Amari A , Abid M F . Modeling and optimal operating conditions of hollow fiber membrane for CO2/CH4 separation. Membranes, 2023, 13(6): 557

[114]

Yu C , Cen X , Ao D , Qiao Z , Zhong C . Preparation of thin-film composite membranes with ultrahigh MOFs loading through polymer-template MOFs induction secondary interfacial polymerization. Applied Surface Science, 2022, 614: 156186

[115]

Qiao Z , Wang Z , Zhang C , Yuan S , Zhu Y , Wang J , Wang S . PVAm-PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(1): 215–228

[116]

He X , Lindbråthen A , Kim T J , Hägg M B . Pilot testing on fixed-site-carrier membranes for CO2 capture from flue gas. International Journal of Greenhouse Gas Control, 2017, 64: 323–332

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2032KB)

3788

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/