Rational design of practical layered transition metal oxide cathode materials for sodium-ion batteries
Yan Wang, Ning Ding, Rui Zhang, Guanhua Jin, Dan Sun, Yougen Tang, Haiyan Wang
Rational design of practical layered transition metal oxide cathode materials for sodium-ion batteries
Sodium-ion batteries (SIBs), which serve as alternatives or supplements to lithium-ion batteries, have been developed rapidly in recent years. Designing advanced high-performance layered NaxTMO2 cathode materials is beneficial for accelerating the commercialization of SIBs. Herein, the recent research progress on scalable synthesis methods, challenges on the path to commercialization and practical material design strategies for layered NaxTMO2 cathode materials is summarized. Co-precipitation method and solid-phase method are commonly used to synthesize NaxTMO2 on mass production and show their own advantages and disadvantages in terms of manufacturing cost, operative difficulty, sample quality and so on. To overcome drawbacks of layered NaxTMO2 cathode materials and meet the requirements for practical application, a detailed and deep understanding of development trends of layered NaxTMO2 cathode materials is also provided, including high specific energy materials, high-entropy oxides, single crystal materials, wide operation temperature materials and high air stability materials. This work can provide useful guidance in developing practical layered NaxTMO2 cathode materials for commercial SIBs.
sodium-ion batteries / layered oxide / industrialization / development prospect
[1] |
Zhao L , Zhang T , Li W , Li T , Zhang L , Zhang X , Wang Z . Engineering of sodium-ion batteries: opportunities and challenges. Engineering, 2023, 24: 172–183
CrossRef
Google scholar
|
[2] |
Arbizzani C , Lacarbonara G . From Volta’s pile to lithium ion battery: 200 years of energy. Pure and Applied Chemistry, 2023, 95(11): 1131–1139
CrossRef
Google scholar
|
[3] |
Zuo W , Innocenti A , Zarrabeitia M , Bresser D , Yang Y , Passerini S . Layered oxide cathodes for sodium-ion batteries: storage mechanism, electrochemistry, and techno-economics. Accounts of Chemical Research, 2023, 56(3): 284–296
CrossRef
Google scholar
|
[4] |
Yabuuchi N , Kubota K , Dahbi M , Komaba S . Research development on sodium-ion batteries. Chemical Reviews, 2014, 114(23): 11636–11682
CrossRef
Google scholar
|
[5] |
Robinson J , Finegan D , Heenan T , Smith K , Kendrick E , Brett D , Shearing P . Microstructural analysis of the effects of thermal runaway on Li-ion and Na-ion battery electrodes. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(1): 011010–011019
CrossRef
Google scholar
|
[6] |
Gupta P , Pushpakanth S , Haider M , Basu S . Understanding the design of cathode materials for Na-ion batteries. ACS Omega, 2022, 7(7): 5605–5614
CrossRef
Google scholar
|
[7] |
Wang W , Gang Y , Hu Z , Yan Z , Li W , Li Y , Gu Q , Wang Z , Chou S , Liu H .
CrossRef
Google scholar
|
[8] |
Zhu L , Wang H , Sun D , Tang Y , Wang H . A comprehensive review on the fabrication, modification and applications of Na3V2(PO4)2F3 cathodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(41): 21387–21407
CrossRef
Google scholar
|
[9] |
Zhu L , Wang M , Xiang S , Sun D , Tang Y , Wang H . A medium-entropy phosphate cathode with multielectron redox reaction for advanced sodium-ion batteries. Advanced Energy Materials, 2023, 13(36): 2302046
CrossRef
Google scholar
|
[10] |
Zhang R , Chen H , Yue H . Room-temperature synthesis of layered open framework cathode for sodium-ion batteries. Chinese Chemical Letters, 2023, 34(5): 107580
CrossRef
Google scholar
|
[11] |
Zhang Q , Fu L , Luan J , Huang X , Tang Y , Xie H , Wang H . Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. Journal of Power Sources, 2018, 395: 305–313
CrossRef
Google scholar
|
[12] |
Bauer A , Song J , Vail S , Pan W , Barker J , Lu Y . The scale-up and commercialization of nonaqueous Na-ion battery technologies. Advanced Energy Materials, 2018, 8(17): 1702869
CrossRef
Google scholar
|
[13] |
Wang C , Wang G , Wang E , Wu T , Yu H . Synthesis and modification of lithium-ion battery cathode materials. Chemical Industry and Engineering Progress, 2021, 40(9): 4998–5011
|
[14] |
Chen S , Wu C , Shen L , Zhu C , Huang Y , Xi K , Maier J , Yu Y . Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Advanced Materials, 2017, 29(48): 1700431
CrossRef
Google scholar
|
[15] |
HuYLuYChenL. Sodium-ion Battery Science and Technology. Beijing: Science Press, 2020, 448–450 (in Chinese)
|
[16] |
Ma A , Yin Z , Wang J , Wang Z , Guo H , Yan G . Al-doped NaNi1/3Mn1/3Fe1/3O2 for high performance of sodium ion batteries. Ionics, 2020, 26(4): 1797–1804
CrossRef
Google scholar
|
[17] |
Luo X , Huang Q , Feng Y , Zhang C , Liang C , Zhou L , Wei W . Constructing a composite structure by a gradient Mg2+ doping strategy for high-performance sodium-ion batteries. ACS Applied Materials & Interfaces, 2022, 14(46): 51846–51854
CrossRef
Google scholar
|
[18] |
Zhang R , Wang Y , Liu R , Sun D , Tang Y , Xie Z , Wang H . A multifunctional cathode sodiation additive for high-performance sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(48): 25546–25555
CrossRef
Google scholar
|
[19] |
Chen J , Li X , Mi L , Chen W . Emerging presodiation strategies for long-life sodium-ion batteries. Energy Lab, 2023, 1(3): 230008
CrossRef
Google scholar
|
[20] |
LiangXHwangJ YSunY K. Practical cathodes for sodium-ion batteries: who will take the crown? Advanced Energy Materials, 2023, 13(37): 2301975
|
[21] |
Liu Z , Wu J , Zeng J , Li F , Peng C , Xue D , Zhu M , Liu J . Co-free layered oxide cathode material with stable anionic redox reaction for sodium-ion batteries. Advanced Energy Materials, 2023, 13(29): 2301471
CrossRef
Google scholar
|
[22] |
Yuan X , Guo Y , Gan L , Yang X , He W , Zhang X , Yin Y , Xin S , Yao H , Huang Z .
CrossRef
Google scholar
|
[23] |
Rudola A , Rennie A , Heap R , Meysami S , Lowbridge A , Mazzali F , Sayers R , Wright C , Barker J . Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(13): 8279–8302
CrossRef
Google scholar
|
[24] |
Mu L , Xu S , Li Y , Hu Y , Li H , Chen L , Huang X . Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Advanced Materials, 2015, 27(43): 6928–6933
CrossRef
Google scholar
|
[25] |
Kong L , Liu H , Zhu Y , Li J , Su Y , Li H , Hu H , Liu Y , Yang M , Jian Z .
|
[26] |
Zhu X , Xu S , Wang X , Liu M , Cheng Y , Wang P . Sodium composite oxide cathode materials: phase regulation, electrochemical performance and reaction mechanism. Batteries & Supercaps, 2023, 6(3): e202200473
CrossRef
Google scholar
|
[27] |
Xiao J , Zhang F , Tang K , Li X , Wang D , Wang Y , Liu H , Wu M , Wang G . Rational design of a P2-type spherical layered oxide cathode for high-performance sodium-ion batteries. ACS Central Science, 2019, 5(12): 1937–1945
CrossRef
Google scholar
|
[28] |
Li Z , Gao R , Zhang J , Zhang X , Hu Z , Liu X . New insights into designing high-rate performance cathode materials for sodium ion batteries by enlarging the slab-spacing of the Na-ion diffusion layer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(9): 3453–3461
CrossRef
Google scholar
|
[29] |
Zhang S , Guo Y , Zhou Y , Zhang X , Niu Y , Wang E , Huang L , An P , Zhang J , Yang X .
CrossRef
Google scholar
|
[30] |
Kim S , Hong J , Kang Y . Spray-assisted synthesis of layered P2-type Na0.67Mn0.67Cu0.33O2 powders and their superior electrochemical properties for Na-ion battery cathode. Applied Surface Science, 2023, 611: 155673
CrossRef
Google scholar
|
[31] |
Luo X , Huang Q , Feng Y , Zhou L , Wei W . Designing layered Na3Ni2SbO6 cathodes with hierarchical and hollow nanostructure for sodium-ion batteries. ChemElectroChem, 2022, 9(20): e202200821
CrossRef
Google scholar
|
[32] |
Feng Z , Rajagopalan R , Zhang S , Sun D , Tang Y , Ren Y , Wang H . A three in one strategy to achieve zirconium doping, boron doping, and interfacial coating for stable LiNi0.8Co0.1Mn0.1O2 cathode. Advanced Science, 2021, 8(2): 2001809
CrossRef
Google scholar
|
[33] |
Leng M , Bi J , Wang W , Liu R , Xia C . Synthesis and characterization of Ru doped NaNi0.5Mn0.3Ti0.2O2 cathode material with improved electrochemical performance for sodium-ion batteries. Ionics, 2019, 25(3): 1105–1115
CrossRef
Google scholar
|
[34] |
Wang H , Liao X , Yang Y , Yan X , He Y , Ma Z . Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. Journal of the Electrochemical Society, 2016, 163(3): A565–A570
CrossRef
Google scholar
|
[35] |
Xu L , Zhou F , Kong J , Zhou H , Zhang Q , Wang Q , Yan G . Influence of precursor phase on the structure and electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 cathode materials. Solid State Ionics, 2018, 324: 49–58
CrossRef
Google scholar
|
[36] |
Wu Z , Zhou Y , Zeng J , Hai C , Sun Y , Ren X , Shen Y , Li X . Investigating the effect of pH on the growth of coprecipitated Ni0.8Co0.1Mn0.1(OH)2 agglomerates as precursors of cathode materials for Li-ion batteries. Ceramics International, 2023, 49(10): 15851–15864
CrossRef
Google scholar
|
[37] |
Wu Z , Zhou Y , Hai C , Zeng J , Sun Y , Ren X , Shen Y , Li X , Zhang G . Analysis of the growth mechanism of hierarchical structure Ni0.8Co0.1Mn0.1(OH)2 agglomerates as precursors of LiNi0.8Co0.1Mn0.1O2 in the presence of aqueous ammonia. Applied Surface Science, 2023, 619: 156379
CrossRef
Google scholar
|
[38] |
Xu L , Zhou F , Kong J , Zhou H , Zhang Q . Effect of testing temperature on the electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 and its Ti3C2(OH)2 modification as cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 804: 353–363
CrossRef
Google scholar
|
[39] |
Lee M , Kang Y , Myung S , Sun Y . Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochimica Acta, 2004, 50(4): 939–948
CrossRef
Google scholar
|
[40] |
Zhang S , Deng C , Fu B , Yang S , Ma L . Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method. Powder Technology, 2010, 198(3): 373–380
CrossRef
Google scholar
|
[41] |
Wang T , Liu Z H , Fan L , Han Y , Tang X . Synthesis optimization of Li1+x[Mn0.45Co0.40Ni0.15]O2 with different spherical sizes via co-precipitation. Powder Technology, 2008, 187(2): 124–129
CrossRef
Google scholar
|
[42] |
Mhaske V , Jilkar S , Yadav M . Minireview on layered transition metal oxides synthesis using coprecipitation for sodium ion batteries cathode material: advances and perspectives. Energy & Fuels, 2023, 37(21): 16221–16244
CrossRef
Google scholar
|
[43] |
Hua W , Liu W , Chen M , Indris S , Zheng Z , Guo X , Bruns M , Wu T , Chen Y , Zhong B .
CrossRef
Google scholar
|
[44] |
Araño K , Armstrong B , Boeding E , Yang G , Meyer H III , Wang E , Korkosz R , Browning K , Malkowski T , Key B .
CrossRef
Google scholar
|
[45] |
Fleischmann S , Mancini M , Axmann P , Golla-Schindler U , Kaiser U , Wohlfahrt-Mehrens M . Insights into the impact of impurities and non-stoichiometric effects on the electrochemical performance of Li2MnSiO4. ChemSusChem, 2016, 9(20): 2982–2993
CrossRef
Google scholar
|
[46] |
WangWChouWDingQ. Nickel Cobalt Manganese Based Cathode Materials for Li-ion Batteries Technology Production and Application. Beijing: Chemical Industry Press, 2015, 3 (in Chinese)
|
[47] |
Yuan T , Li S , Sun Y , Wang J , Chen A , Zheng Q , Zhang Y , Chen L , Nam G , Che H .
CrossRef
Google scholar
|
[48] |
Yu L , Dong H , Chang Y , Cheng Z , Xu K , Feng Y , Si D , Zhu X , Liu M , Xiao B .
CrossRef
Google scholar
|
[49] |
Wang Y , Tang K , Li X , Yu R , Zhang X , Huang Y , Chen G , Jamil S , Cao S , Xie X .
CrossRef
Google scholar
|
[50] |
Mohan I , Raj A , Shubham K , Lata D , Mandal S , Kumar S . Potential of potassium and sodium-ion batteries as the future of energy storage: recent progress in anodic materials. Journal of Energy Storage, 2022, 55: 105625
CrossRef
Google scholar
|
[51] |
Chayambuka K , Mulder G , Danilov D , Notten P . From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Advanced Energy Materials, 2020, 10(38): 2001310
CrossRef
Google scholar
|
[52] |
Ryu M , Hong Y , Lee S , Park J . Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication. Nature Communications, 2023, 14(1): 1316
CrossRef
Google scholar
|
[53] |
Deng J , Luo W , Lu X , Yao Q , Wang Z , Liu H , Zhou H , Dou S . High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode. Advanced Energy Materials, 2018, 8(5): 1701610
CrossRef
Google scholar
|
[54] |
Li Y , Yang Z , Xu S , Mu L , Gu L , Hu Y , Li H , Chen L . Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Advanced Science, 2015, 2(6): 1500031
CrossRef
Google scholar
|
[55] |
Zhao C , Ding F , Lu Y , Chen L , Hu Y . High-entropy layered oxide cathodes for sodium-ion batteries. Angewandte Chemie International Edition, 2020, 59(1): 264–269
CrossRef
Google scholar
|
[56] |
Liu Y , Han K , Peng D , Kong L , Su Y , Li H , Hu H , Li J , Wang H , Fu Z .
CrossRef
Google scholar
|
[57] |
Feng J , Chernova N , Omenya F , Tong L , Rastogi A , Stanley W . Effect of electrode charge balance on the energy storage performance of hybrid supercapacitor cells based on LiFePO4 as Li-ion battery electrode and activated carbon. Journal of Solid State Electrochemistry, 2018, 22(4): 1063–1078
CrossRef
Google scholar
|
[58] |
Schmidt A , Smith A , Ehrenberg H . Power capability and cyclic aging of commercial, high power lithium ion battery cells with respect to different cell designs. Journal of Power Sources, 2019, 425: 27–38
CrossRef
Google scholar
|
[59] |
Sathiya M , Hemalatha K , Ramesha K , Tarascon J , Prakash A . Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chemistry of Materials, 2012, 24(10): 1846–1853
CrossRef
Google scholar
|
[60] |
Sun Y , Guo S , Zhou H . Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy & Environmental Science, 2019, 12(3): 825–840
CrossRef
Google scholar
|
[61] |
Zuo W , Liu X , Qiu J , Zhang D , Xiao Z , Xie J , Ren F , Wang J , Li Y , Ortiz F .
CrossRef
Google scholar
|
[62] |
Fu F , Liu X , Fu X , Chen H , Huang L , Fan J , Le J , Wang Q , Yang W , Ren Y .
CrossRef
Google scholar
|
[63] |
Deng C , Skinner P , Liu Y , Sun M , Tong W , Ma C , Lau M , Hunt R , Barnes P , Xu J .
CrossRef
Google scholar
|
[64] |
Yang C , Peng X , Yu J , Li S , Zhang H . Engineering crystal-facet modulation to obtain stable Mn-based P2-layered oxide cathodes for sodium-ion batteries. Journal of Colloid and Interface Science, 2023, 629: 1061–1067
CrossRef
Google scholar
|
[65] |
Sun Y . Direction for commercialization of O3-type layered cathodes for sodium-ion batteries. ACS Energy Letters, 2020, 5(4): 1278–1280
CrossRef
Google scholar
|
[66] |
Yan P , Zheng J , Gu M , Xiao J , Zhang J , Wang C . Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nature Communications, 2017, 8(1): 14101
CrossRef
Google scholar
|
[67] |
RyuHParkKYoonCSunY. Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chemistry of Materials, 2018, 30(3): 1155–1163
|
[68] |
Anderson J , Schieber M . Order-disorder transitions in heat-treated rock-salt lithium ferrite. Journal of Physics and Chemistry of Solids, 1964, 25(9): 961–968
CrossRef
Google scholar
|
[69] |
Liu Z , Peng C , Wu J , Yang T , Zeng J , Li F , Kucernak A , Xue D , Liu Q , Zhu M .
CrossRef
Google scholar
|
[70] |
Kim S , Seo D , Ma X , Ceder G , Kang K . Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Advanced Energy Materials, 2012, 2(7): 710–721
CrossRef
Google scholar
|
[71] |
Yao H , Wang P , Wang Y , Yu X , Yin Y , Guo Y . Excellent comprehensive performance of Na-based layered oxide benefiting from the synergetic contributions of multimetal ions. Advanced Energy Materials, 2017, 7(15): 1700189
CrossRef
Google scholar
|
[72] |
Yazami R , Ozawa Y , Gabrisch H , Fultz B . Mechanism of electrochemical performance decay in LiCoO2 aged at high voltage. Electrochimica Acta, 2004, 50(2-3): 385–390
CrossRef
Google scholar
|
[73] |
Saadoune I , Maazaz A , Ménétrier M , Delmas C . On the NaxNi0.6Co0.4O2 system: physical and electrochemical studies. Journal of Solid State Chemistry, 1996, 122(1): 111–117
CrossRef
Google scholar
|
[74] |
Zhang W , Yuan C , Zhu J , Jin T , Shen C , Xie K . Air instability of Ni-rich layered oxides—a roadblock to large scale application. Advanced Energy Materials, 2023, 13(2): 2202993
CrossRef
Google scholar
|
[75] |
Wang P , You Y , Yin Y , Guo Y . Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Advanced Energy Materials, 2018, 8(8): 1701912
CrossRef
Google scholar
|
[76] |
Han M H , Sharma N , Gonzalo E , Pramudita J C , Brand H E , Amo J , Rojo T . Moisture exposed layered oxide electrodes as Na-ion battery cathodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(48): 18963–18975
CrossRef
Google scholar
|
[77] |
Xu W , Dang R , Zhou L , Yang Y , Lin T , Guo Q , Xie F , Hu Z , Ding F , Liu Y .
CrossRef
Google scholar
|
[78] |
Yao H R , Wang P F , Gong Y , Zhang J , Yu X , Gu L , Ou Yang C , Yin Y , Hu E , Yang X .
CrossRef
Google scholar
|
[79] |
Zhang Y , Zhang R , Huang Y . Air-stable NaxTMO2 cathodes for sodium storage. Frontiers in Chemistry, 2019, 7: 335
CrossRef
Google scholar
|
[80] |
Huang Z , Gu Z , Heng Y , Ang E , Geng H , Wu X . Advanced layered oxide cathodes for sodium/potassium-ion batteries: development, challenges and prospects. Chemical Engineering Journal, 2023, 452: 139438
CrossRef
Google scholar
|
[81] |
Lu Z , Dahn J R . Intercalation of water in P2, T2 and O2 structure Az[CoxNi1/3–xMn2/3]O2. Chemistry of Materials, 2001, 13(4): 1252–1257
CrossRef
Google scholar
|
[82] |
Duffort V , Talaie E , Black R , Nazar L . Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: insertion of carbonate anions. Chemistry of Materials, 2015, 27(7): 2515–2524
CrossRef
Google scholar
|
[83] |
Ross G , Watts J , Hill M , Morrissey P . Surface modification of poly(vinylidene fluoride) by alkaline treatment1. The degradation mechanism. Polymer, 2000, 41(5): 1685–1696
CrossRef
Google scholar
|
[84] |
Ross G , Watts J , Hill M , Morrissey P . Surface modification of poly(vinylidene fluoride) by alkaline treatment. Part 2. Process modification by the use of phase transfer catalysts. Polymer, 2001, 42(2): 403–413
CrossRef
Google scholar
|
[85] |
Buchholz D , Chagas L , Vaalma C , Wu L , Passerini S . Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(33): 13415–13421
CrossRef
Google scholar
|
[86] |
Zhou T , Wang H , Wang Y , Jiao P , Hao Z , Zhang K , Xu J , Liu J , He Y , Zhang Y .
CrossRef
Google scholar
|
[87] |
Feng J , Chen Z , Zhou W , Hao Z . Origin and characterization of the oxygen loss phenomenon in the layered oxide cathodes of Li-ion batteries. Materials Horizons, 2023, 10(11): 4686–4709
CrossRef
Google scholar
|
[88] |
Venkatachalam P , Karra C , Duru K , Maram P , Madhavan A , Kalluri S . Perspective-challenges and benchmarking in scale-up of Ni-rich cathodes for sodium-ion batteries. Journal of the Electrochemical Society, 2022, 169(7): 070536
CrossRef
Google scholar
|
[89] |
Yang C , Xin S , Mai L , You Y . Materials design for high-safety sodium-ion battery. Advanced Energy Materials, 2021, 11(2): 2000974
CrossRef
Google scholar
|
[90] |
Zheng X , Cai Z , Sun J , He J , Rao W , Wang J , Zhang Y , Gao Q , Han B , Xia K .
CrossRef
Google scholar
|
[91] |
Li X , Liang L , Su M , Wang L , Zhang Y , Sun J , Liu Y , Hou L , Yuan C . Multi-level modifications enabling chemomechanically stable Ni-rich O3-layered cathode toward wide-temperature-tolerance quasi-solid-state Na-ion batteries. Advanced Energy Materials, 2023, 13(9): 2203701
CrossRef
Google scholar
|
[92] |
Ding F , Zhao C , Zhou D , Meng Q , Xiao D , Zhang Q , Niu Y , Li Y , Rong X , Lu Y .
CrossRef
Google scholar
|
[93] |
Chu S , Zhong Y , Liao K , Shao Z . Layered Co/Ni-free oxides for sodium-ion battery cathode materials. Current Opinion in Green and Sustainable Chemistry, 2019, 17: 29–34
CrossRef
Google scholar
|
[94] |
Liu G , Xu W , Wu J , Li Y , Chen L , Li S , Ren Q , Wang J . Unlocking high-rate O3 layered oxide cathode for Na-ion batteries via ion migration path modulation. Journal of Energy Chemistry, 2023, 83: 53–61
CrossRef
Google scholar
|
[95] |
Wei T T , Liu X , Yang S J , Wang P F , Yi T F . Regulating the electrochemical activity of Fe-Mn-Cu-based layer oxides as cathode materials for high-performance Na-ion battery. Journal of Energy Chemistry, 2023, 80: 603–613
CrossRef
Google scholar
|
[96] |
Wan G , Dou W , Zhu H , Zhang W , Liu T , Wang L , Lu J . Empowering higher energy sodium-ion battery cathode by oxygen chemistry. Interdisciplinary Materials, 2023, 2(3): 416–422
CrossRef
Google scholar
|
[97] |
Wu X , Guo J , Wang D , Zhong G , McDonald M , Yang Y . P2-type Na0.66Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries. Journal of Power Sources, 2015, 281: 18–26
CrossRef
Google scholar
|
[98] |
Shen Q , Liu Y , Zhao X , Jin J , Song X , Wang Y , Qu X , Jiao L . Unexpectedly high cycling stability induced by a high charge cut-off voltage of layered sodium oxide cathodes. Advanced Energy Materials, 2023, 13(6): 2203216
CrossRef
Google scholar
|
[99] |
Han Y , Lei Y , Ni J , Zhang Y , Geng Z , Ming P , Zhang C , Tian X , Shi J , Guo Y .
CrossRef
Google scholar
|
[100] |
Hu J , Li L , Bi Y , Tao J , Lochala J , Liu D , Wu B , Cao X , Chae S , Wang C .
CrossRef
Google scholar
|
[101] |
Sun J , Sheng C , Cao X , Wang P , He P , Yang H , Chang Z , Yue X , Zhou H . Restraining oxygen release and suppressing structure distortion in single-crystal Li-rich layered cathode materials. Advanced Functional Materials, 2022, 32(10): 2110295
CrossRef
Google scholar
|
[102] |
Darga J , Manthiram A . Facile synthesis of O3-type NaNi0.5Mn0.5O2 single crystals with improved performance in sodium-ion batteries. ACS Applied Materials & Interfaces, 2022, 14(47): 52729–52737
CrossRef
Google scholar
|
[103] |
Deng Z , Manthiram A . Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. Journal of Physical Chemistry C, 2011, 115(14): 7097–7103
CrossRef
Google scholar
|
[104] |
Langdon J , Manthiram A . A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Storage Materials, 2021, 37: 143–160
CrossRef
Google scholar
|
[105] |
Kimijima T , Zettsu N , Teshima K . Growth manner of octahedral-shaped Li(Ni1/3Co1/3Mn1/3)O2 single crystals in molten Na2SO4. Crystal Growth & Design, 2016, 16(5): 2618–2623
CrossRef
Google scholar
|
[106] |
Gupta S , Mao Y . Recent developments on molten salt synthesis of inorganic nanomaterials: a review. Journal of Physical Chemistry C, 2021, 125(12): 6508–6533
CrossRef
Google scholar
|
[107] |
Li J , Cameron A , Li H , Glazier S , Xiong D , Chatzidakis M , Allen J , Botton G , Dahn J . Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. Journal of the Electrochemical Society, 2017, 164(7): A1534–A1544
CrossRef
Google scholar
|
[108] |
Fan X , Liu Y , Ou X , Zhang J , Zhang B , Wang D , Hu G . Unravelling the influence of quasi single-crystalline architecture on high-voltage and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode for lithium-ion batteries. Chemical Engineering Journal, 2020, 393: 124709
CrossRef
Google scholar
|
[109] |
He X , Wang J , Qiu B , Paillard E , Ma C , Cao X , Liu H , Stan M , Liu H , Gallash T .
CrossRef
Google scholar
|
[110] |
Su D , Wang C , Ahn H , Wang G . Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chemistry, 2013, 19(33): 10884–10889
CrossRef
Google scholar
|
[111] |
Pamidi V , Trivedi S , Behara S , Fichtner M , Reddy M . Micron-sized single-crystal cathodes for sodium-ion batteries. iScience, 2022, 25(5): 104205
CrossRef
Google scholar
|
[112] |
Hu G , Zhang S , Du K , Peng Z , Zeng J , Fang Z , Li L , Zhang Y , Huang J , Guan D .
CrossRef
Google scholar
|
[113] |
Zhang S , Hu G , Du K , Peng Z , Li L , Zhang Y , Cao Y . Enhanced cycle performance and synthesis of LiNi0.6Co0.2Mn0.2O2 single-crystal through the assist of Bi ion. Electrochimica Acta, 2023, 470: 143280
CrossRef
Google scholar
|
[114] |
Hu J , Wang H , Xiao B , Liu P , Huang T , Li Y , Ren X , Zhang Q , Liu J , Ouyang X .
CrossRef
Google scholar
|
[115] |
Ni L , Zhang S , Di A , Deng W , Zou G , Hou H , Ji X . Challenges and strategies towards single-crystalline Ni-rich layered cathodes. Advanced Energy Materials, 2022, 12(31): 2201510
CrossRef
Google scholar
|
[116] |
Zhang L , Huang J , Song M , Lu C , Wu W , Wu X . Single-crystal growth of P2-type layered oxides with increased exposure of {010} planes for high-performance sodium-ion batteries. ACS Applied Materials & Interfaces, 2023, 15(40): 47037–47048
CrossRef
Google scholar
|
[117] |
Huang H , Zhang L , Tian H , Yan J , Tong J , Liu X , Zhang H , Huang H , Hao S , Gao J .
CrossRef
Google scholar
|
[118] |
Li L , Hu G , Cao Y , Gong D , Fu Q , Peng Z , Du K . Effect of grain size of single crystalline cathode material of LiNi0.65Co0.07Mn0.28O2 on its electrochemical performance. Electrochimica Acta, 2022, 435: 141386
CrossRef
Google scholar
|
[119] |
Sarkar A , Breitung B , Hahn H . High entropy oxides: the role of entropy, enthalpy and synergy. Scripta Materialia, 2020, 187: 43–48
CrossRef
Google scholar
|
[120] |
Rost C , Sachet E , Borman T , Moballegh A , Dickey E , Hou D , Jones J , Curtarolo S , Maria J . Entropy-stabilized oxides. Nature Communications, 2015, 6(1): 8485
CrossRef
Google scholar
|
[121] |
Aamlid S , Oudah M , Rottler J , Hallas A . Understanding the role of entropy in high entropy oxides. Journal of the American Chemical Society, 2023, 145(11): 5991–6006
CrossRef
Google scholar
|
[122] |
Zhang R , Wang C , Zou P , Lin R , Ma L , Yin L , Li T , Xu W , Jia H , Li Q .
CrossRef
Google scholar
|
[123] |
Lin C , Liu H , Kang J , Yang C , Li C , Chen H , Huang S , Ni C , Chuang Y , Chen B .
CrossRef
Google scholar
|
[124] |
Tian K , He H , Li X , Wang D , Wang Z , Zheng R , Sun H , Liu Y , Wang Q . Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(28): 14943–14953
CrossRef
Google scholar
|
[125] |
Wang H , Gao X , Zhang S , Mei Y , Ni L , Gao J , Liu H , Hong N , Zhang B , Zhu F .
CrossRef
Google scholar
|
[126] |
Tripathi A , Rudola A , Gajjela S , Xi S , Balaya P . Developing an O3 type layered oxide cathode and its application in 18650 commercial type Na-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(45): 25944–25960
CrossRef
Google scholar
|
[127] |
Mukai K , Inoue T , Kato Y , Shirai S . Superior low-temperature power and cycle performances of Na-ion battery over Li-ion battery. ACS Omega, 2017, 2(3): 864–872
CrossRef
Google scholar
|
[128] |
Zhou J , Liu J , Li Y , Zhao Z , Zhou P , Wu X , Tang X , Zhou J . Reaching the initial coulombic efficiency and structural stability limit of P2/O3 biphasic layered cathode for sodium-ion batteries. Journal of Colloid and Interface Science, 2023, 638: 758–767
CrossRef
Google scholar
|
[129] |
Shi Q , Qi R , Feng X , Wang J , Li Y , Yao Z , Wang X , Li Q , Lu X , Zhang J .
CrossRef
Google scholar
|
[130] |
Peng B , Zhou Z , Xu J , Ahmad N , Zeng S , Cheng M , Ma L , Li Y , Zhang G . Crystal facet design in layered oxide cathode enables low-temperature sodium-ion batteries. ACS Materials Letters, 2023, 5(8): 2233–2242
CrossRef
Google scholar
|
[131] |
Li Y , Shi Q , Yin X , Wang J , Wang J , Zhao Y , Zhang J . Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage. Chemical Engineering Journal, 2020, 402: 126181
CrossRef
Google scholar
|
[132] |
Deng Z , Liu Y , Wang L , Fu N , Li Y , Luo Y , Wang J , Xiao X , Wang X , Yang X .
CrossRef
Google scholar
|
[133] |
Xie Y , Xu G , Che H , Wang H , Yang K , Yang X , Guo F , Ren Y , Chen Z , Amine K .
CrossRef
Google scholar
|
[134] |
Hwang S , Lee Y , Jo E , Chung K Y , Choi W , Kim S M , Chang W Y . Investigation of thermal stability of P2-NaxCoO2 cathode materials for sodium ion batteries using real-time electron microscopy. ACS Applied Materials & Interfaces, 2017, 9(22): 18883–18888
CrossRef
Google scholar
|
[135] |
Li J , Hu H , Wang J , Xiao Y . Surface chemistry engineering of layered oxide cathodes for sodium-ion batteries. Carbon Neutralization, 2022, 1(2): 96–116
CrossRef
Google scholar
|
[136] |
Jiao J , Wu K , Dang R , Li N , Deng X , Liu X , Hu Z , Xiao X . A collaborative strategy with ionic conductive Na2SiO3 coating and Si doping of P2-Na0.67Fe0.5Mn0.5O2 cathode: an effective solution to capacity attenuation. Electrochimica Acta, 2021, 384: 138362
CrossRef
Google scholar
|
[137] |
Zhang K , Xu Z , Li G , Luo R , Ma C , Wang Y , Zhou Y , Xia Y . Regulating phase transition and oxygen redox to achieve stable high-voltage O3-type cathode materials for sodium-ion batteries. Advanced Energy Materials, 2023, 13(45): 2302793
CrossRef
Google scholar
|
[138] |
Zhang L , Deshmukh J , Hijazi H , Ye Z , Johnson M , George M , Dahn J , Metzger M . Impact of calcium on air stability of Na[Ni1/3Fe1/3Mn1/3]O2 positive electrode material for sodium-ion batteries. Journal of the Electrochemical Society, 2023, 170(7): 070514
CrossRef
Google scholar
|
[139] |
Wan G , Peng B , Zhao L , Wang F , Yu L , Liu R , Zhang G . Dual-strategy modification on P2Na0.67Ni0.33Mn0.67O2 realizes stable high-voltage cathode and high energy density full cell for sodium-ion batteries. SusMat, 2023, 3(1): 58–71
CrossRef
Google scholar
|
[140] |
Chen X , Zheng S , Liu P , Sun Z , Zhu K , Li H , Liu Y , Jiao L . Fluorine substitution promotes air-stability of P’2-type layered cathodes for sodium-ion batteries. Small, 2023, 19(4): 2205789
CrossRef
Google scholar
|
[141] |
Le D , Zhou Z , Li J , Fu H , Wu F , Li Y , Zheng J , He Z . Air-stable manganese based cathode material enabled by organic protection layer for Na-ion batteries. Ceramics International, 2023, 49(10): 15451–15458
CrossRef
Google scholar
|
[142] |
Zhang R , Liang J , Zeng C , Chen J , Ma Y , Zhai T , Li H . Air degradation and rehealing of high-voltage Na0.7Ni0.35Sn0.65O2 cathode for sodium ion batteries. Science China Materials, 2023, 66(1): 88–96
CrossRef
Google scholar
|
[143] |
Xu C , Cai H , Chen Q , Kong X , Pan H , Hu Y . Origin of air-stability for transition metal oxide cathodes in sodium-ion batteries. ACS Applied Materials & Interfaces, 2022, 14(4): 5338–5345
CrossRef
Google scholar
|
/
〈 | 〉 |