Single-atom catalysis: a promising avenue for precisely controlling reaction pathways

Xiaobo Yang, Xuning Li, Yanqiang Huang

PDF(2854 KB)
PDF(2854 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (7) : 79. DOI: 10.1007/s11705-024-2434-0
REVIEW ARTICLE

Single-atom catalysis: a promising avenue for precisely controlling reaction pathways

Author information +
History +

Abstract

Single-atom catalysts (SACs), characterized by exceptionally high atom efficiency, have garnered significant attention across various catalytic reactions. Recent studies have showcased SACs with robust capabilities for precise catalysis, specifically targeting reactions along designated pathways. This review focuses on the advances in the precise activation and reconstruction of chemical bonds on SACs, including precise activation of C–O and C–H bonds and selective couplings involving C–C and C–N bonds. Our discussion begins with a thorough exploration of the factors that render SACs skilled in precise catalytic processes, encompassing the narrow d-band electronic state of single atom site resulting in the adsorption tendency, isolate site resulting in unique adsorption structure, and synergy effect of a single atom site with its neighbors. Subsequently, we elaborate on the applications of SACs in electrocatalysis and thermocatalysis including four prominent reactions, namely, electrochemical CO2 reduction, urea electrochemical synthesis, CO2 hydrogenation, and CH4 activation. Then the concept of rational design of SACs for precisely controlling reaction pathways is discussed from the aspects of pore structure design, support-metal strong interaction, and support hydrophilic/hydrophobic. Finally, we summarize the challenges encountered by SACs in the field of precise catalytic processes and outline prospects for their further development in this domain.

Graphical abstract

Keywords

single atom catalysts / selective oxidation / CO2RR / bond coupling

Cite this article

Download citation ▾
Xiaobo Yang, Xuning Li, Yanqiang Huang. Single-atom catalysis: a promising avenue for precisely controlling reaction pathways. Front. Chem. Sci. Eng., 2024, 18(7): 79 https://doi.org/10.1007/s11705-024-2434-0

References

[1]
Liu X , Dai L . Carbon-based metal-free catalysts. Nature Reviews. Materials, 2016, 1(11): 16064
CrossRef Google scholar
[2]
Meirer F , Weckhuysen B M . Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nature Reviews. Materials, 2018, 3(9): 324–340
CrossRef Google scholar
[3]
Mitchell S , Pérez Ramírez J . Atomically precise control in the design of low-nuclearity supported metal catalysts. Nature Reviews. Materials, 2021, 6(11): 969–985
CrossRef Google scholar
[4]
Zhao Z J , Liu S , Zha S , Cheng D , Studt F , Henkelman G , Gong J . Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nature Reviews. Materials, 2019, 4(12): 792–804
CrossRef Google scholar
[5]
Suryanto B H R , Matuszek K , Choi J , Hodgetts R Y , Du H L , Bakker J M , Kang C S M , Cherepanov P V , Simonov A N , MacFarlane D R . Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science, 2021, 372(6547): 1187–1191
CrossRef Google scholar
[6]
Chen G F , Yuan Y , Jiang H , Ren S Y , Ding L X , Ma L , Wu T , Lu J , Wang H . Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nature Energy, 2020, 5(8): 605–613
CrossRef Google scholar
[7]
Chang F , Tezsevin I , de Rijk J W , Meeldijk J D , Hofmann J P , Er S , Ngene P , de Jongh P E . Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis. Nature Catalysis, 2022, 5(3): 222–230
CrossRef Google scholar
[8]
Pan X , Jiao F , Miao D , Bao X . Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis. Chemical Reviews, 2021, 121(11): 6588–6609
CrossRef Google scholar
[9]
Rahmati M , Safdari M S , Fletcher T H , Argyle M D , Bartholomew C H . Chemical and thermal sintering of supported metals with emphasis on cobalt catalysts during Fischer-Tropsch synthesis. Chemical Reviews, 2020, 120(10): 4455–4533
CrossRef Google scholar
[10]
Rommens K T , Saeys M . Molecular views on Fischer-Tropsch synthesis. Chemical Reviews, 2023, 123(9): 5798–5858
CrossRef Google scholar
[11]
Service R F . Lithium-ion battery development takes nobel. Science, 2019, 366(6463): 292
CrossRef Google scholar
[12]
Degen F , Winter M , Bendig D , Tübke J . Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nature Energy, 2023, 8(11): 1284–1295
CrossRef Google scholar
[13]
Gent W E , Busse G M , House K Z . The predicted persistence of cobalt in lithium-ion batteries. Nature Energy, 2022, 7(12): 1132–1143
CrossRef Google scholar
[14]
Feng X , Ren D , He X , Ouyang M . Mitigating thermal runaway of lithium-ion batteries. Joule, 2020, 4(4): 743–770
CrossRef Google scholar
[15]
Harper G , Sommerville R , Kendrick E , Driscoll L , Slater P , Stolkin R , Walton A , Christensen P , Heidrich O , Lambert S . . Recycling lithium-ion batteries from electric vehicles. Nature, 2019, 575(7781): 75–86
CrossRef Google scholar
[16]
Chen L D . Cations play an essential role in CO2 reduction. Nature Catalysis, 2021, 4(8): 641–642
CrossRef Google scholar
[17]
Yan B , Li Y , Cao W , Zeng Z , Liu P , Ke Z , Yang G . Highly efficient and highly selective CO2 reduction to CO driven by laser. Joule, 2022, 6(12): 2735–2744
CrossRef Google scholar
[18]
Kang W , Lee C C , Jasniewski A J , Ribbe M W , Hu Y . Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase. Science, 2020, 368(6497): 1381–1385
CrossRef Google scholar
[19]
Weliwatte N S , Minteer S D . Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule, 2021, 5(10): 2564–2592
CrossRef Google scholar
[20]
Yu X , Han P , Wei Z , Huang L , Gu Z , Peng S , Ma J , Zheng G . Boron-doped graphene for electrocatalytic N2 reduction. Joule, 2018, 2(8): 1610–1622
CrossRef Google scholar
[21]
Qing G , Ghazfar R , Jackowski S T , Habibzadeh F , Ashtiani M M , Chen C P , Smith M R III , Hamann T W . Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chemical Reviews, 2020, 120(12): 5437–5516
CrossRef Google scholar
[22]
Tanifuji K , Ohki Y . Metal-sulfur compounds in N2 reduction and nitrogenase-related chemistry. Chemical Reviews, 2020, 120(12): 5194–5251
CrossRef Google scholar
[23]
Stephens I E L , Rossmeisl J , Chorkendorff I . Toward sustainable fuel cells. Science, 2016, 354(6318): 1378–1379
CrossRef Google scholar
[24]
Gittleman C S , Jia H , De Castro E S , Chisholm C R I , Kim Y S . Proton conductors for heavy-duty vehicle fuel cells. Joule, 2021, 5(7): 1660–1677
CrossRef Google scholar
[25]
Zhou Z , Zhang Y , Shen Y , Liu S , Zhang Y . Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chemical Society Reviews, 2018, 47(7): 2298–2321
CrossRef Google scholar
[26]
Feng Y , Long S , Tang X , Sun Y , Luque R , Zeng X , Lin L . Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chemical Society Reviews, 2021, 50(10): 6042–6093
CrossRef Google scholar
[27]
Sudarsanam P , Peeters E , Makshina E V , Parvulescu V I , Sels B F . Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 2019, 48(8): 2366–2421
CrossRef Google scholar
[28]
Fang R , Dhakshinamoorthy A , Li Y , Garcia H . Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020, 49(11): 3638–3687
CrossRef Google scholar
[29]
Rimer J D . Rational design of zeolite catalysts. Nature Catalysis, 2018, 1(7): 488–489
CrossRef Google scholar
[30]
Xu D , Zhang S N , Chen J S , Li X H . Design of the synergistic rectifying interfaces in Mott-Schottky catalysts. Chemical Reviews, 2023, 123(1): 1–30
CrossRef Google scholar
[31]
Durand D J , Fey N . Computational ligand descriptors for catalyst design. Chemical Reviews, 2019, 119(11): 6561–6594
CrossRef Google scholar
[32]
Motagamwala A H , Dumesic J A . Microkinetic modeling: a tool for rational catalyst design. Chemical Reviews, 2021, 121(2): 1049–1076
CrossRef Google scholar
[33]
Su D , Lam Z , Wang Y , Han F , Zhang M , Liu B , Chen H . Ultralong durability of ethanol oxidation reaction via morphological design. Joule, 2023, 7(11): 2568–2582
CrossRef Google scholar
[34]
Wang L , Meng S , Tang C , Zhan C , Geng S , Jiang K , Huang X , Bu L . PtNi/PtIn-skin fishbone-like nanowires boost alkaline hydrogen oxidation catalysis. ACS Nano, 2023, 17(18): 17779–17789
CrossRef Google scholar
[35]
Mehmood R , Fan W , Hu X , Li J , Liu P , Zhang Y , Zhou Z , Wang J , Liu M , Zhang F . Confirming high-valent iron as highly active species of water oxidation on the Fe, V-coupled bimetallic electrocatalyst: in situ analysis of X-ray absorption and mössbauer spectroscopy. Journal of the American Chemical Society, 2023, 145(22): 12206–12213
CrossRef Google scholar
[36]
Das S , Pérez Ramírez J , Gong J , Dewangan N , Hidajat K , Gates B C , Kawi S . Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chemical Society Reviews, 2020, 49(10): 2937–3004
CrossRef Google scholar
[37]
Rideal E K . Prof. Paul Sabatier, For. Mem.R.S. Nature, 1941, 148(3750): 309
[38]
Tan T H , Xie B , Ng Y H , Abdullah S F B , Tang H Y M , Bedford N , Taylor R A , Aguey Zinsou K F , Amal R , Scott J . Unlocking the potential of the formate pathway in the photo-assisted sabatier reaction. Nature Catalysis, 2020, 3(12): 1034–1043
CrossRef Google scholar
[39]
Hu S , Li W X . Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science, 2021, 374(6573): 1360–1365
CrossRef Google scholar
[40]
Zhou Y , Wei F , Qi H , Chai Y , Cao L , Lin J , Wan Q , Liu X , Xing Y , Lin S . . Peripheral-nitrogen effects on the Ru1 centre for highly efficient propane dehydrogenation. Nature Catalysis, 2022, 5(12): 1145–1156
CrossRef Google scholar
[41]
Qiao B , Wang A , Yang X , Allard L F , Jiang Z , Cui Y , Liu J , Li J , Zhang T . Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011, 3(8): 634–641
CrossRef Google scholar
[42]
Yang X F , Wang A , Qiao B , Li J , Liu J , Zhang T . Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts of Chemical Research, 2013, 46(8): 1740–1748
CrossRef Google scholar
[43]
Liu L , Corma A . Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chemical Reviews, 2018, 118(10): 4981–5079
CrossRef Google scholar
[44]
Zhang Y . Heterogeneous catalysis: single atoms on a roll. Nature Reviews Chemistry, 2018, 2(1): 0151
[45]
Wu X , Wang Q , Yang S , Zhang J , Cheng Y , Tang H , Ma L , Min X , Tang C , Jiang S P . . Sublayer-enhanced atomic sites of single atom catalysts through in situ atomization of metal oxide nanoparticles. Energy & Environmental Science, 2022, 15(3): 1183–1191
CrossRef Google scholar
[46]
Jiang D , Wan G , Halldin Stenlid J , García Vargas C E , Zhang J , Sun C , Li J , Abild Pedersen F , Tassone C J , Wang Y . Dynamic and reversible transformations of subnanometre-sized palladium on ceria for efficient methane removal. Nature Catalysis, 2023, 6(7): 618–627
CrossRef Google scholar
[47]
Agarwal N , Freakley S J , McVicker R U , Althahban S M , Dimitratos N , He Q , Morgan D J , Jenkins R L , Willock D J , Taylor S H . . Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science, 2017, 358(6360): 223–227
CrossRef Google scholar
[48]
Shoji S , Peng X , Yamaguchi A , Watanabe R , Fukuhara C , Cho Y , Yamamoto T , Matsumura S , Yu M W , Ishii S . . Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nature Catalysis, 2020, 3(2): 148–153
CrossRef Google scholar
[49]
Xu S , Carter E A . Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chemical Reviews, 2019, 119(11): 6631–6669
CrossRef Google scholar
[50]
Rizo R , Arán Ais R M , Padgett E , Muller D A , Lázaro M J , Solla Gullón J , Feliu J M , Pastor E , Abruña H D . Pt-richcore/Sn-richsubsurface/Ptskin nanocubes as highly active and stable electrocatalysts for the ethanol oxidation reaction. Journal of the American Chemical Society, 2018, 140(10): 3791–3797
CrossRef Google scholar
[51]
Yang X , Liang Z , Chen S , Ma M , Wang Q , Tong X , Zhang Q , Ye J , Gu L , Yang N . A phosphorus-doped Ag@Pd catalyst for enhanced C–C bond cleavage during ethanol electrooxidation. Small, 2020, 16(47): 2004727
CrossRef Google scholar
[52]
Vijay S , Ju W , Brückner S , Tsang S C , Strasser P , Chan K . Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nature Catalysis, 2021, 4(12): 1024–1031
CrossRef Google scholar
[53]
Tang Y , Li Y , Fung V , Jiang D E , Huang W , Zhang S , Iwasawa Y , Sakata T , Nguyen L , Zhang X . . Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nature Communications, 2018, 9(1): 1231
CrossRef Google scholar
[54]
Xie P , Ding J , Yao Z , Pu T , Zhang P , Huang Z , Wang C , Zhang J , Zecher Freeman N , Zong H . . Oxo dicopper anchored on carbon nitride for selective oxidation of methane. Nature Communications, 2022, 13(1): 1375
CrossRef Google scholar
[55]
Wang Z , Liu S , Zhao X , Wang M , Zhang L , Qian T , Xiong J , Yang C , Yan C . Interfacial defect engineering triggered by single atom doping for highly efficient electrocatalytic nitrate reduction to ammonia. ACS Materials Letters, 2023, 5(4): 1018–1026
CrossRef Google scholar
[56]
Ding J , Teng Z , Su X , Kato K , Liu Y , Xiao T , Liu W , Liu L , Zhang Q , Ren X . . Asymmetrically coordinated cobalt single atom on carbon nitride for highly selective photocatalytic oxidation of CH4 to CH3OH. Chem, 2023, 9(4): 1017–1035
CrossRef Google scholar
[57]
Ding J , Wei Z , Li F , Zhang J , Zhang Q , Zhou J , Wang W , Liu Y , Zhang Z , Su X . . Atomic high-spin cobalt(II) center for highly selective electrochemical CO reduction to CH3OH. Nature Communications, 2023, 14(1): 6550
CrossRef Google scholar
[58]
Wang Q , Wang H , Cao H , Tung C W , Liu W , Hung S F , Wang W , Zhu C , Zhang Z , Cai W . . Atomic metal-non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells. Nature Catalysis, 2023, 6(10): 916–926
CrossRef Google scholar
[59]
Wang Y , Mao J , Meng X , Yu L , Deng D , Bao X . Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chemical Reviews, 2019, 119(3): 1806–1854
CrossRef Google scholar
[60]
NørskovJ KStoltzeP. Theoretical aspects of surface reactions. Surface Science, 1987, 189–190: 91–105
[61]
Greiner M T , Jones T E , Beeg S , Zwiener L , Scherzer M , Girgsdies F , Piccinin S , Armbrüster M , Knop Gericke A , Schlögl R . Free-atom-like d states in single-atom alloy catalysts. Nature Chemistry, 2018, 10(10): 1008–1015
CrossRef Google scholar
[62]
Rosen A S , Vijay S , Persson K A . Free-atom-like d states beyond the dilute limit of single-atom alloys. Chemical Science, 2023, 14(6): 1503–1511
CrossRef Google scholar
[63]
Spivey T D , Holewinski A . Selective interactions between free-atom-like d-states in single-atom alloy catalysts and near-frontier molecular orbitals. Journal of the American Chemical Society, 2021, 143(31): 11897–11902
CrossRef Google scholar
[64]
Darby M T , Réocreux R , Sykes E C H , Michaelides A , Stamatakis M . Elucidating the stability and reactivity of surface intermediates on single-atom alloy catalysts. ACS Catalysis, 2018, 8(6): 5038–5050
CrossRef Google scholar
[65]
Yu S , Cheng X , Wang Y , Xiao B , Xing Y , Ren J , Lu Y , Li H , Zhuang C , Chen G . High activity and selectivity of single palladium atom for oxygen hydrogenation to H2O2. Nature Communications, 2022, 13(1): 4737
CrossRef Google scholar
[66]
Li W , Wu G , Hu W , Dang J , Wang C , Weng X , da Silva I , Manuel P , Yang S , Guan N . . Direct propylene epoxidation with molecular oxygen over cobalt-containing zeolites. Journal of the American Chemical Society, 2022, 144(9): 4260–4268
CrossRef Google scholar
[67]
Qiao B , Liu J , Wang Y G , Lin Q , Liu X , Wang A , Li J , Zhang T , Liu J . Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catalysis, 2015, 5(11): 6249–6254
CrossRef Google scholar
[68]
Ma W , Mao J , He C T , Shao L , Liu J , Wang M , Yu P , Mao L . Highly selective generation of singlet oxygen from dioxygen with atomically dispersed catalysts. Chemical Science (Cambridge), 2022, 13(19): 5606–5615
CrossRef Google scholar
[69]
Shang Q , Tang N , Qi H , Chen S , Xu G , Wu C , Pan X , Wang X , Cong Y . Cong Y. A palladium single-atom catalyst toward efficient activation of molecular oxygen for cinnamyl alcohol oxidation. Chinese Journal of Catalysis, 2020, 41(12): 1812–1817
CrossRef Google scholar
[70]
Li Z , Chen Y , Ji S , Tang Y , Chen W , Li A , Zhao J , Xiong Y , Wu Y , Gong Y . . Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nature Chemistry, 2020, 12(8): 764–772
CrossRef Google scholar
[71]
Xiong Y , Dong J , Huang Z Q , Xin P , Chen W , Wang Y , Li Z , Jin Z , Xing W , Zhuang Z . . Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nature Nanotechnology, 2020, 15(5): 390–397
CrossRef Google scholar
[72]
Li W , Madan S E , Réocreux R , Stamatakis M . Elucidating the reactivity of oxygenates on single-atom alloy catalysts. ACS Catalysis, 2023, 13(24): 15851–15868
CrossRef Google scholar
[73]
Ni W , Meibom J L , Hassan N U , Chang M , Chu Y C , Krammer A , Sun S , Zheng Y , Bai L , Ma W . . Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation. Nature Catalysis, 2023, 6(9): 773–783
CrossRef Google scholar
[74]
Meng G , Lan W , Zhang L , Wang S , Zhang T , Zhang S , Xu M , Wang Y , Zhang J , Yue F . . Synergy of single atoms and lewis acid sites for efficient and selective lignin disassembly into monolignol derivatives. Journal of the American Chemical Society, 2023, 145(23): 12884–12893
CrossRef Google scholar
[75]
Dong C , Gao Z , Li Y , Peng M , Wang M , Xu Y , Li C , Xu M , Deng Y , Qin X . . Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nature Catalysis, 2022, 5(6): 485–493
CrossRef Google scholar
[76]
Fu N , Liang X , Wang X , Gan T , Ye C , Li Z , Liu J C , Li Y . Controllable conversion of platinum nanoparticles to single atoms in Pt/CeO2 by laser ablation for efficient CO oxidation. Journal of the American Chemical Society, 2023, 145(17): 9540–9547
CrossRef Google scholar
[77]
Fang Y , Zhang Q , Zhang H , Li X , Chen W , Xu J , Shen H , Yang J , Pan C , Zhu Y . . Dual activation of molecular oxygen and surface lattice oxygen in single atom Cu1/TiO2 catalyst for CO oxidation. Angewandte Chemie International Edition, 2022, 61(48): e202212273
CrossRef Google scholar
[78]
Niu H , Zhang Z , Wang X , Wan X , Shao C , Guo Y . Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Advanced Functional Materials, 2021, 31(11): 2008533
CrossRef Google scholar
[79]
Leverett J , Tran Phu T , Yuwono J A , Kumar P , Kim C , Zhai Q , Han C , Qu J , Cairney J , Simonov A N . . Tuning the coordination structure of Cu-N-C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3 to urea. Advanced Energy Materials, 2022, 12(32): 2201500
CrossRef Google scholar
[80]
Yang W , Polo Garzon F , Zhou H , Huang Z , Chi M , Meyer H III , Yu X , Li Y , Wu Z . Boosting the activity of Pd single atoms by tuning their local environment on ceria for methane combustion. Angewandte Chemie International Edition, 2023, 62(5): e202217323
CrossRef Google scholar
[81]
Jia G , Sun M , Wang Y , Shi Y , Zhang L , Cui X , Huang B , Yu J C . Asymmetric coupled dual-atom sites for selective photoreduction of carbon dioxide to acetic acid. Advanced Functional Materials, 2022, 32(41): 2206817
CrossRef Google scholar
[82]
Chu C , Huang D , Gupta S , Weon S , Niu J , Stavitski E , Muhich C , Kim J H . Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nature Communications, 2021, 12(1): 5179
CrossRef Google scholar
[83]
Liu P , Huang X , Mance D , Copéret C . Atomically dispersed iridium on MgO(111) nanosheets catalyses benzene-ethylene coupling towards styrene. Nature Catalysis, 2021, 4(11): 968–975
CrossRef Google scholar
[84]
Ro I , Qi J , Lee S , Xu M , Yan X , Xie Z , Zakem G , Morales A , Chen J G , Pan X . . Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts. Nature, 2022, 609(7926): 287–292
CrossRef Google scholar
[85]
Liu W , Feng H , Yang Y , Niu Y , Wang L , Yin P , Hong S , Zhang B , Zhang X , Wei M . Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nature Communications, 2022, 13(1): 3188
CrossRef Google scholar
[86]
Cao H , Zhang Z , Chen J W , Wang Y G . Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catalysis, 2022, 12(11): 6606–6617
CrossRef Google scholar
[87]
Li J , Zeng H , Dong X , Ding Y , Hu S , Zhang R , Dai Y , Cui P , Xiao Z , Zhao D . . Selective CO2 electrolysis to CO using isolated antimony alloyed copper. Nature Communications, 2023, 14(1): 340
CrossRef Google scholar
[88]
Zhang M , Zhang Z , Zhao Z , Huang H , Anjum D H , Wang D , He J , Huang K W . He J h, Huang K W. Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu-Sn catalysts: elucidating the roles of Cu and Sn. ACS Catalysis, 2021, 11(17): 11103–11108
CrossRef Google scholar
[89]
Yang H B , Hung S F , Liu S , Yuan K , Miao S , Zhang L , Huang X , Wang H Y , Cai W , Chen R . . Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nature Energy, 2018, 3(2): 140–147
CrossRef Google scholar
[90]
Deng Y , Zhao J , Wang S , Chen R , Ding J , Tsai H J , Zeng W J , Hung S F , Xu W , Wang J . . Operando spectroscopic analysis of axial oxygen-coordinated single-Sn-atom sites for electrochemical CO2 reduction. Journal of the American Chemical Society, 2023, 145(13): 7242–7251
CrossRef Google scholar
[91]
Ding J , Bin Yang H , Ma X L , Liu S , Liu W , Mao Q , Huang Y , Li J , Zhang T , Liu B . A tin-based tandem electrocatalyst for CO2 reduction to ethanol with 80% selectivity. Nature Energy, 2023, 8(12): 1386–1394
CrossRef Google scholar
[92]
Zheng X , De Luna P , García de Arquer F P , Zhang B , Becknell N , Ross M B , Li Y , Banis M N , Li Y , Liu M . . Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule, 2017, 1(4): 794–805
CrossRef Google scholar
[93]
Li W , Li L , Xia Q , Hong S , Wang L , Yao Z , Wu T S , Soo Y L , Zhang H , Lo T W B . . Lowering C–C coupling barriers for efficient electrochemical CO2 reduction to C2H4 by jointly engineering single Bi atoms and oxygen vacancies on CuO. Applied Catalysis B: Environmental, 2022, 318: 121823
CrossRef Google scholar
[94]
Cao Y , Chen S , Bo S , Fan W , Li J , Jia C , Zhou Z , Liu Q , Zheng L , Zhang F . Single atom Bi decorated copper alloy enables C–C coupling for electrocatalytic reduction of CO2 into C2+ products**. Angewandte Chemie International Edition, 2023, 62(30): e202303048
CrossRef Google scholar
[95]
Jiang M , Zhu M , Wang M , He Y , Luo X , Wu C , Zhang L , Jin Z . Review on electrocatalytic coreduction of carbon dioxide and nitrogenous species for urea synthesis. ACS Nano, 2023, 17(4): 3209–3224
CrossRef Google scholar
[96]
Zhang X , Zhu X , Bo S , Chen C , Qiu M , Wei X , He N , Xie C , Chen W , Zheng J . . Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst. Nature Communications, 2022, 13(1): 5337
CrossRef Google scholar
[97]
LiuYTuXWeiXWangDZhangXChenWChenCWangS. C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis? Angewandte Chemie International Edition, 2023, 62(19): e202300387
[98]
Li J , Zhang Y , Kuruvinashetti K , Kornienko N . Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nature Reviews. Chemistry, 2022, 6(5): 303–319
CrossRef Google scholar
[99]
Liu J , Smith S C , Gu Y , Kou L . C–N coupling enabled by N–N bond breaking for electrochemical urea production. Advanced Functional Materials, 2023, 33(47): 2305894
CrossRef Google scholar
[100]
Zhang X , Zhu X , Bo S , Chen C , Cheng K , Zheng J , Li S , Tu X , Chen W , Xie C . . Electrocatalytic urea synthesis with 63.5% faradaic efficiency and 100% N-selectivity via one-step C–N coupling. Angewandte Chemie International Edition, 2023, 62(33): e202305447
CrossRef Google scholar
[101]
Chen L , Allec S I , Nguyen M T , Kovarik L , Hoffman A S , Hong J , Meira D , Shi H , Bare S R , Glezakou V A . . Dynamic evolution of palladium single atoms on anatase titania support determines the reverse water-gas shift activity. Journal of the American Chemical Society, 2023, 145(19): 10847–10860
CrossRef Google scholar
[102]
Millet M M , Algara Siller G , Wrabetz S , Mazheika A , Girgsdies F , Teschner D , Seitz F , Tarasov A , Levchenko S V , Schlögl R . . Ni single atom catalysts for CO2 activation. Journal of the American Chemical Society, 2019, 141(6): 2451–2461
CrossRef Google scholar
[103]
Du P , Qi R , Zhang Y , Gu Q , Xu X , Tan Y , Liu X , Wang A , Zhu B , Yang B . . Single-atom-driven dynamic carburization over Pd1-FeOx catalyst boosting CO2 conversion. Chem, 2022, 8(12): 3252–3262
CrossRef Google scholar
[104]
Yang B , Wang Y , Gao B , Zhang L , Guo L . Size-dependent active site and its catalytic mechanism for CO2 hydrogenation reactivity and selectivity over Re/TiO2. ACS Catalysis, 2023, 13(15): 10364–10374
CrossRef Google scholar
[105]
Wang D , Yuan Z , Wu X , Xiong W , Ding J , Zhang Z , Huang W . Ni single atoms confined in nitrogen-doped carbon nanotubes for active and selective hydrogenation of CO2 to CO. ACS Catalysis, 2023, 13(10): 7132–7138
CrossRef Google scholar
[106]
Shao X , Yang X , Xu J , Liu S , Miao S , Liu X , Su X , Duan H , Huang Y , Zhang T . Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem, 2019, 5(3): 693–705
CrossRef Google scholar
[107]
Yang T , Mao X , Zhang Y , Wu X , Wang L , Chu M , Pao C W , Yang S , Xu Y , Huang X . Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nature Communications, 2021, 12(1): 6022
CrossRef Google scholar
[108]
Chen Y , Li H , Zhao W , Zhang W , Li J , Li W , Zheng X , Yan W , Zhang W , Zhu J . . Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity. Nature Communications, 2019, 10(1): 1885
CrossRef Google scholar
[109]
Ye X , Yang C , Pan X , Ma J , Zhang Y , Ren Y , Liu X , Li L , Huang Y . Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst. Journal of the American Chemical Society, 2020, 142(45): 19001–19005
CrossRef Google scholar
[110]
Zheng K , Li Y , Liu B , Jiang F , Xu Y , Liu X . Ti-doped CeO2 stabilized single-atom rhodium catalyst for selective and stable CO2 hydrogenation to ethanol. Angewandte Chemie International Edition, 2022, 61(44): e202210991
CrossRef Google scholar
[111]
Gani T Z H , Kulik H J . Understanding and breaking scaling relations in single-site catalysis: methane to methanol conversion by Fe(IV)=O. ACS Catalysis, 2018, 8(2): 975–986
CrossRef Google scholar
[112]
Schwach P , Pan X , Bao X . Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chemical Reviews, 2017, 117(13): 8497–8520
CrossRef Google scholar
[113]
Tang X , Wang L , Yang B , Fei C , Yao T , Liu W , Lou Y , Dai Q , Cai Y , Cao X M . . Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Applied Catalysis B: Environmental, 2021, 285: 119827
CrossRef Google scholar
[114]
Yang J , Huang Y , Qi H , Zeng C , Jiang Q , Cui Y , Su Y , Du X , Pan X , Liu X . . Modulating the strong metal-support interactian of single-atom catalysts via vicinal structure decoration. Nature Communications, 2022, 13(1): 4244
[115]
Fang G , Wei F , Lin J , Zhou Y , Sun L , Shang X , Lin S , Wang X . Retrofitting Zr-Oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity. Journal of the American Chemical Society, 2023, 145(24): 13169–13180
CrossRef Google scholar
[116]
Grundner S , Markovits M A C , Li G , Tromp M , Pidko E A , Hensen E J M , Jentys A , Sanchez Sanchez M , Lercher J A . Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nature Communications, 2015, 6(1): 7546
CrossRef Google scholar
[117]
Yu B , Cheng L , Dai S , Jiang Y , Yang B , Li H , Zhao Y , Xu J , Zhang Y , Pan C . . Silver and copper dual single atoms boosting direct oxidation of methane to methanol via synergistic catalysis. Advanced Science, 2023, 10(26): 2302143
CrossRef Google scholar
[118]
Shen X , Wu D , Fu X Z , Luo J L . Highly selective conversion of methane to ethanol over CuFe2O4-carbon nanotube catalysts at low temperature. Chinese Chemical Letters, 2022, 33(1): 390–393
CrossRef Google scholar
[119]
Wang Z , Liu Y , Zhang H , Zhou X . Cubic platinum nanoparticles capped with Cs2[closo-B12H12] as an effective oxidation catalyst for converting methane to ethanol. Journal of Colloid and Interface Science, 2020, 566: 135–142
CrossRef Google scholar
[120]
Zhou Y , Zhang L , Wang W . Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nature Communications, 2019, 10(1): 506
CrossRef Google scholar
[121]
Su J , Musgrave C B III , Song Y , Huang L , Liu Y , Li G , Xin Y , Xiong P , Li M M J , Wu H . . Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nature Catalysis, 2023, 6(9): 818–828
CrossRef Google scholar
[122]
Zhou S , Ma W , Anjum U , Kosari M , Xi S , Kozlov S M , Zeng H C . Strained few-layer MoS2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO2 hydrogenation to methanol. Nature Communications, 2023, 14(1): 5872
CrossRef Google scholar
[123]
Shamzhy M , Opanasenko M , Concepción P , Martínez A . New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149
CrossRef Google scholar
[124]
Deng X , Qin B , Liu R , Qin X , Dai W , Wu G , Guan N , Ma D , Li L . Zeolite-eencaged isolated platinum ions enable heterolytic dihydrogen activation and selective hydrogenations. Journal of the American Chemical Society, 2021, 143(49): 20898–20906
CrossRef Google scholar
[125]
Han B , Guo Y , Huang Y , Xi W , Xu J , Luo J , Qi H , Ren Y , Liu X , Qiao B . . Strong metal-support interactions between Pt single atoms and TiO2. Angewandte Chemie International Edition, 2020, 59(29): 11824–11829
CrossRef Google scholar
[126]
Yang J , Li W , Wang D , Li Y . Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Advanced Materials, 2020, 32(49): 2003300
CrossRef Google scholar
[127]
Wakerley D , Lamaison S , Ozanam F , Menguy N , Mercier D , Marcus P , Fontecave M , Mougel V . Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nature Materials, 2019, 18(11): 1222–1227
CrossRef Google scholar
[128]
Li X , Cao C S , Hung S F , Lu Y R , Cai W , Rykov A I , Miao S , Xi S , Yang H , Hu Z . . Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material. Chem, 2020, 6(12): 3440–3454
CrossRef Google scholar
[129]
Ren X , Zhao J , Li X , Shao J , Pan B , Salamé A , Boutin E , Groizard T , Wang S , Ding J . . In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol. Nature Communications, 2023, 14(1): 3401
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0600200), the National Key Research and Development Program of China (Grant No. 2021YFA1500502), the NSFC Center for Single-Atom Catalysis (Grant No. 22388102), the National Natural Science Foundation of China (Grant Nos. 22102176, U19A2015 and 21925803), CAS Project for Young Scientists in Basic Research (Grant Nos.YSBR-051, YSBR-022). The authors gratefully acknowledge the support of Photon Science Center for Carbon Neutrality.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(2854 KB)

Accesses

Citations

Detail

Sections
Recommended

/