PDF
(2854KB)
Abstract
Single-atom catalysts (SACs), characterized by exceptionally high atom efficiency, have garnered significant attention across various catalytic reactions. Recent studies have showcased SACs with robust capabilities for precise catalysis, specifically targeting reactions along designated pathways. This review focuses on the advances in the precise activation and reconstruction of chemical bonds on SACs, including precise activation of C–O and C–H bonds and selective couplings involving C–C and C–N bonds. Our discussion begins with a thorough exploration of the factors that render SACs skilled in precise catalytic processes, encompassing the narrow d-band electronic state of single atom site resulting in the adsorption tendency, isolate site resulting in unique adsorption structure, and synergy effect of a single atom site with its neighbors. Subsequently, we elaborate on the applications of SACs in electrocatalysis and thermocatalysis including four prominent reactions, namely, electrochemical CO2 reduction, urea electrochemical synthesis, CO2 hydrogenation, and CH4 activation. Then the concept of rational design of SACs for precisely controlling reaction pathways is discussed from the aspects of pore structure design, support-metal strong interaction, and support hydrophilic/hydrophobic. Finally, we summarize the challenges encountered by SACs in the field of precise catalytic processes and outline prospects for their further development in this domain.
Graphical abstract
Keywords
single atom catalysts
/
selective oxidation
/
CO2RR
/
bond coupling
Cite this article
Download citation ▾
Xiaobo Yang, Xuning Li, Yanqiang Huang.
Single-atom catalysis: a promising avenue for precisely controlling reaction pathways.
Front. Chem. Sci. Eng., 2024, 18(7): 79 DOI:10.1007/s11705-024-2434-0
| [1] |
Liu X , Dai L . Carbon-based metal-free catalysts. Nature Reviews. Materials, 2016, 1(11): 16064
|
| [2] |
Meirer F , Weckhuysen B M . Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nature Reviews. Materials, 2018, 3(9): 324–340
|
| [3] |
Mitchell S , Pérez Ramírez J . Atomically precise control in the design of low-nuclearity supported metal catalysts. Nature Reviews. Materials, 2021, 6(11): 969–985
|
| [4] |
Zhao Z J , Liu S , Zha S , Cheng D , Studt F , Henkelman G , Gong J . Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nature Reviews. Materials, 2019, 4(12): 792–804
|
| [5] |
Suryanto B H R , Matuszek K , Choi J , Hodgetts R Y , Du H L , Bakker J M , Kang C S M , Cherepanov P V , Simonov A N , MacFarlane D R . Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science, 2021, 372(6547): 1187–1191
|
| [6] |
Chen G F , Yuan Y , Jiang H , Ren S Y , Ding L X , Ma L , Wu T , Lu J , Wang H . Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nature Energy, 2020, 5(8): 605–613
|
| [7] |
Chang F , Tezsevin I , de Rijk J W , Meeldijk J D , Hofmann J P , Er S , Ngene P , de Jongh P E . Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis. Nature Catalysis, 2022, 5(3): 222–230
|
| [8] |
Pan X , Jiao F , Miao D , Bao X . Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis. Chemical Reviews, 2021, 121(11): 6588–6609
|
| [9] |
Rahmati M , Safdari M S , Fletcher T H , Argyle M D , Bartholomew C H . Chemical and thermal sintering of supported metals with emphasis on cobalt catalysts during Fischer-Tropsch synthesis. Chemical Reviews, 2020, 120(10): 4455–4533
|
| [10] |
Rommens K T , Saeys M . Molecular views on Fischer-Tropsch synthesis. Chemical Reviews, 2023, 123(9): 5798–5858
|
| [11] |
Service R F . Lithium-ion battery development takes nobel. Science, 2019, 366(6463): 292
|
| [12] |
Degen F , Winter M , Bendig D , Tübke J . Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nature Energy, 2023, 8(11): 1284–1295
|
| [13] |
Gent W E , Busse G M , House K Z . The predicted persistence of cobalt in lithium-ion batteries. Nature Energy, 2022, 7(12): 1132–1143
|
| [14] |
Feng X , Ren D , He X , Ouyang M . Mitigating thermal runaway of lithium-ion batteries. Joule, 2020, 4(4): 743–770
|
| [15] |
Harper G , Sommerville R , Kendrick E , Driscoll L , Slater P , Stolkin R , Walton A , Christensen P , Heidrich O , Lambert S . . Recycling lithium-ion batteries from electric vehicles. Nature, 2019, 575(7781): 75–86
|
| [16] |
Chen L D . Cations play an essential role in CO2 reduction. Nature Catalysis, 2021, 4(8): 641–642
|
| [17] |
Yan B , Li Y , Cao W , Zeng Z , Liu P , Ke Z , Yang G . Highly efficient and highly selective CO2 reduction to CO driven by laser. Joule, 2022, 6(12): 2735–2744
|
| [18] |
Kang W , Lee C C , Jasniewski A J , Ribbe M W , Hu Y . Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase. Science, 2020, 368(6497): 1381–1385
|
| [19] |
Weliwatte N S , Minteer S D . Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule, 2021, 5(10): 2564–2592
|
| [20] |
Yu X , Han P , Wei Z , Huang L , Gu Z , Peng S , Ma J , Zheng G . Boron-doped graphene for electrocatalytic N2 reduction. Joule, 2018, 2(8): 1610–1622
|
| [21] |
Qing G , Ghazfar R , Jackowski S T , Habibzadeh F , Ashtiani M M , Chen C P , Smith M R III , Hamann T W . Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chemical Reviews, 2020, 120(12): 5437–5516
|
| [22] |
Tanifuji K , Ohki Y . Metal-sulfur compounds in N2 reduction and nitrogenase-related chemistry. Chemical Reviews, 2020, 120(12): 5194–5251
|
| [23] |
Stephens I E L , Rossmeisl J , Chorkendorff I . Toward sustainable fuel cells. Science, 2016, 354(6318): 1378–1379
|
| [24] |
Gittleman C S , Jia H , De Castro E S , Chisholm C R I , Kim Y S . Proton conductors for heavy-duty vehicle fuel cells. Joule, 2021, 5(7): 1660–1677
|
| [25] |
Zhou Z , Zhang Y , Shen Y , Liu S , Zhang Y . Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chemical Society Reviews, 2018, 47(7): 2298–2321
|
| [26] |
Feng Y , Long S , Tang X , Sun Y , Luque R , Zeng X , Lin L . Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chemical Society Reviews, 2021, 50(10): 6042–6093
|
| [27] |
Sudarsanam P , Peeters E , Makshina E V , Parvulescu V I , Sels B F . Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 2019, 48(8): 2366–2421
|
| [28] |
Fang R , Dhakshinamoorthy A , Li Y , Garcia H . Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020, 49(11): 3638–3687
|
| [29] |
Rimer J D . Rational design of zeolite catalysts. Nature Catalysis, 2018, 1(7): 488–489
|
| [30] |
Xu D , Zhang S N , Chen J S , Li X H . Design of the synergistic rectifying interfaces in Mott-Schottky catalysts. Chemical Reviews, 2023, 123(1): 1–30
|
| [31] |
Durand D J , Fey N . Computational ligand descriptors for catalyst design. Chemical Reviews, 2019, 119(11): 6561–6594
|
| [32] |
Motagamwala A H , Dumesic J A . Microkinetic modeling: a tool for rational catalyst design. Chemical Reviews, 2021, 121(2): 1049–1076
|
| [33] |
Su D , Lam Z , Wang Y , Han F , Zhang M , Liu B , Chen H . Ultralong durability of ethanol oxidation reaction via morphological design. Joule, 2023, 7(11): 2568–2582
|
| [34] |
Wang L , Meng S , Tang C , Zhan C , Geng S , Jiang K , Huang X , Bu L . PtNi/PtIn-skin fishbone-like nanowires boost alkaline hydrogen oxidation catalysis. ACS Nano, 2023, 17(18): 17779–17789
|
| [35] |
Mehmood R , Fan W , Hu X , Li J , Liu P , Zhang Y , Zhou Z , Wang J , Liu M , Zhang F . Confirming high-valent iron as highly active species of water oxidation on the Fe, V-coupled bimetallic electrocatalyst: in situ analysis of X-ray absorption and mössbauer spectroscopy. Journal of the American Chemical Society, 2023, 145(22): 12206–12213
|
| [36] |
Das S , Pérez Ramírez J , Gong J , Dewangan N , Hidajat K , Gates B C , Kawi S . Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chemical Society Reviews, 2020, 49(10): 2937–3004
|
| [37] |
Rideal E K . Prof. Paul Sabatier, For. Mem.R.S. Nature, 1941, 148(3750): 309
|
| [38] |
Tan T H , Xie B , Ng Y H , Abdullah S F B , Tang H Y M , Bedford N , Taylor R A , Aguey Zinsou K F , Amal R , Scott J . Unlocking the potential of the formate pathway in the photo-assisted sabatier reaction. Nature Catalysis, 2020, 3(12): 1034–1043
|
| [39] |
Hu S , Li W X . Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science, 2021, 374(6573): 1360–1365
|
| [40] |
Zhou Y , Wei F , Qi H , Chai Y , Cao L , Lin J , Wan Q , Liu X , Xing Y , Lin S . . Peripheral-nitrogen effects on the Ru1 centre for highly efficient propane dehydrogenation. Nature Catalysis, 2022, 5(12): 1145–1156
|
| [41] |
Qiao B , Wang A , Yang X , Allard L F , Jiang Z , Cui Y , Liu J , Li J , Zhang T . Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011, 3(8): 634–641
|
| [42] |
Yang X F , Wang A , Qiao B , Li J , Liu J , Zhang T . Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts of Chemical Research, 2013, 46(8): 1740–1748
|
| [43] |
Liu L , Corma A . Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chemical Reviews, 2018, 118(10): 4981–5079
|
| [44] |
Zhang Y . Heterogeneous catalysis: single atoms on a roll. Nature Reviews Chemistry, 2018, 2(1): 0151
|
| [45] |
Wu X , Wang Q , Yang S , Zhang J , Cheng Y , Tang H , Ma L , Min X , Tang C , Jiang S P . . Sublayer-enhanced atomic sites of single atom catalysts through in situ atomization of metal oxide nanoparticles. Energy & Environmental Science, 2022, 15(3): 1183–1191
|
| [46] |
Jiang D , Wan G , Halldin Stenlid J , García Vargas C E , Zhang J , Sun C , Li J , Abild Pedersen F , Tassone C J , Wang Y . Dynamic and reversible transformations of subnanometre-sized palladium on ceria for efficient methane removal. Nature Catalysis, 2023, 6(7): 618–627
|
| [47] |
Agarwal N , Freakley S J , McVicker R U , Althahban S M , Dimitratos N , He Q , Morgan D J , Jenkins R L , Willock D J , Taylor S H . . Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science, 2017, 358(6360): 223–227
|
| [48] |
Shoji S , Peng X , Yamaguchi A , Watanabe R , Fukuhara C , Cho Y , Yamamoto T , Matsumura S , Yu M W , Ishii S . . Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nature Catalysis, 2020, 3(2): 148–153
|
| [49] |
Xu S , Carter E A . Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chemical Reviews, 2019, 119(11): 6631–6669
|
| [50] |
Rizo R , Arán Ais R M , Padgett E , Muller D A , Lázaro M J , Solla Gullón J , Feliu J M , Pastor E , Abruña H D . Pt-richcore/Sn-richsubsurface/Ptskin nanocubes as highly active and stable electrocatalysts for the ethanol oxidation reaction. Journal of the American Chemical Society, 2018, 140(10): 3791–3797
|
| [51] |
Yang X , Liang Z , Chen S , Ma M , Wang Q , Tong X , Zhang Q , Ye J , Gu L , Yang N . A phosphorus-doped Ag@Pd catalyst for enhanced C–C bond cleavage during ethanol electrooxidation. Small, 2020, 16(47): 2004727
|
| [52] |
Vijay S , Ju W , Brückner S , Tsang S C , Strasser P , Chan K . Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nature Catalysis, 2021, 4(12): 1024–1031
|
| [53] |
Tang Y , Li Y , Fung V , Jiang D E , Huang W , Zhang S , Iwasawa Y , Sakata T , Nguyen L , Zhang X . . Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nature Communications, 2018, 9(1): 1231
|
| [54] |
Xie P , Ding J , Yao Z , Pu T , Zhang P , Huang Z , Wang C , Zhang J , Zecher Freeman N , Zong H . . Oxo dicopper anchored on carbon nitride for selective oxidation of methane. Nature Communications, 2022, 13(1): 1375
|
| [55] |
Wang Z , Liu S , Zhao X , Wang M , Zhang L , Qian T , Xiong J , Yang C , Yan C . Interfacial defect engineering triggered by single atom doping for highly efficient electrocatalytic nitrate reduction to ammonia. ACS Materials Letters, 2023, 5(4): 1018–1026
|
| [56] |
Ding J , Teng Z , Su X , Kato K , Liu Y , Xiao T , Liu W , Liu L , Zhang Q , Ren X . . Asymmetrically coordinated cobalt single atom on carbon nitride for highly selective photocatalytic oxidation of CH4 to CH3OH. Chem, 2023, 9(4): 1017–1035
|
| [57] |
Ding J , Wei Z , Li F , Zhang J , Zhang Q , Zhou J , Wang W , Liu Y , Zhang Z , Su X . . Atomic high-spin cobalt(II) center for highly selective electrochemical CO reduction to CH3OH. Nature Communications, 2023, 14(1): 6550
|
| [58] |
Wang Q , Wang H , Cao H , Tung C W , Liu W , Hung S F , Wang W , Zhu C , Zhang Z , Cai W . . Atomic metal-non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells. Nature Catalysis, 2023, 6(10): 916–926
|
| [59] |
Wang Y , Mao J , Meng X , Yu L , Deng D , Bao X . Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chemical Reviews, 2019, 119(3): 1806–1854
|
| [60] |
NørskovJ KStoltzeP. Theoretical aspects of surface reactions. Surface Science, 1987, 189–190: 91–105
|
| [61] |
Greiner M T , Jones T E , Beeg S , Zwiener L , Scherzer M , Girgsdies F , Piccinin S , Armbrüster M , Knop Gericke A , Schlögl R . Free-atom-like d states in single-atom alloy catalysts. Nature Chemistry, 2018, 10(10): 1008–1015
|
| [62] |
Rosen A S , Vijay S , Persson K A . Free-atom-like d states beyond the dilute limit of single-atom alloys. Chemical Science, 2023, 14(6): 1503–1511
|
| [63] |
Spivey T D , Holewinski A . Selective interactions between free-atom-like d-states in single-atom alloy catalysts and near-frontier molecular orbitals. Journal of the American Chemical Society, 2021, 143(31): 11897–11902
|
| [64] |
Darby M T , Réocreux R , Sykes E C H , Michaelides A , Stamatakis M . Elucidating the stability and reactivity of surface intermediates on single-atom alloy catalysts. ACS Catalysis, 2018, 8(6): 5038–5050
|
| [65] |
Yu S , Cheng X , Wang Y , Xiao B , Xing Y , Ren J , Lu Y , Li H , Zhuang C , Chen G . High activity and selectivity of single palladium atom for oxygen hydrogenation to H2O2. Nature Communications, 2022, 13(1): 4737
|
| [66] |
Li W , Wu G , Hu W , Dang J , Wang C , Weng X , da Silva I , Manuel P , Yang S , Guan N . . Direct propylene epoxidation with molecular oxygen over cobalt-containing zeolites. Journal of the American Chemical Society, 2022, 144(9): 4260–4268
|
| [67] |
Qiao B , Liu J , Wang Y G , Lin Q , Liu X , Wang A , Li J , Zhang T , Liu J . Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catalysis, 2015, 5(11): 6249–6254
|
| [68] |
Ma W , Mao J , He C T , Shao L , Liu J , Wang M , Yu P , Mao L . Highly selective generation of singlet oxygen from dioxygen with atomically dispersed catalysts. Chemical Science (Cambridge), 2022, 13(19): 5606–5615
|
| [69] |
Shang Q , Tang N , Qi H , Chen S , Xu G , Wu C , Pan X , Wang X , Cong Y . Cong Y. A palladium single-atom catalyst toward efficient activation of molecular oxygen for cinnamyl alcohol oxidation. Chinese Journal of Catalysis, 2020, 41(12): 1812–1817
|
| [70] |
Li Z , Chen Y , Ji S , Tang Y , Chen W , Li A , Zhao J , Xiong Y , Wu Y , Gong Y . . Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nature Chemistry, 2020, 12(8): 764–772
|
| [71] |
Xiong Y , Dong J , Huang Z Q , Xin P , Chen W , Wang Y , Li Z , Jin Z , Xing W , Zhuang Z . . Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nature Nanotechnology, 2020, 15(5): 390–397
|
| [72] |
Li W , Madan S E , Réocreux R , Stamatakis M . Elucidating the reactivity of oxygenates on single-atom alloy catalysts. ACS Catalysis, 2023, 13(24): 15851–15868
|
| [73] |
Ni W , Meibom J L , Hassan N U , Chang M , Chu Y C , Krammer A , Sun S , Zheng Y , Bai L , Ma W . . Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation. Nature Catalysis, 2023, 6(9): 773–783
|
| [74] |
Meng G , Lan W , Zhang L , Wang S , Zhang T , Zhang S , Xu M , Wang Y , Zhang J , Yue F . . Synergy of single atoms and lewis acid sites for efficient and selective lignin disassembly into monolignol derivatives. Journal of the American Chemical Society, 2023, 145(23): 12884–12893
|
| [75] |
Dong C , Gao Z , Li Y , Peng M , Wang M , Xu Y , Li C , Xu M , Deng Y , Qin X . . Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nature Catalysis, 2022, 5(6): 485–493
|
| [76] |
Fu N , Liang X , Wang X , Gan T , Ye C , Li Z , Liu J C , Li Y . Controllable conversion of platinum nanoparticles to single atoms in Pt/CeO2 by laser ablation for efficient CO oxidation. Journal of the American Chemical Society, 2023, 145(17): 9540–9547
|
| [77] |
Fang Y , Zhang Q , Zhang H , Li X , Chen W , Xu J , Shen H , Yang J , Pan C , Zhu Y . . Dual activation of molecular oxygen and surface lattice oxygen in single atom Cu1/TiO2 catalyst for CO oxidation. Angewandte Chemie International Edition, 2022, 61(48): e202212273
|
| [78] |
Niu H , Zhang Z , Wang X , Wan X , Shao C , Guo Y . Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Advanced Functional Materials, 2021, 31(11): 2008533
|
| [79] |
Leverett J , Tran Phu T , Yuwono J A , Kumar P , Kim C , Zhai Q , Han C , Qu J , Cairney J , Simonov A N . . Tuning the coordination structure of Cu-N-C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3– to urea. Advanced Energy Materials, 2022, 12(32): 2201500
|
| [80] |
Yang W , Polo Garzon F , Zhou H , Huang Z , Chi M , Meyer H III , Yu X , Li Y , Wu Z . Boosting the activity of Pd single atoms by tuning their local environment on ceria for methane combustion. Angewandte Chemie International Edition, 2023, 62(5): e202217323
|
| [81] |
Jia G , Sun M , Wang Y , Shi Y , Zhang L , Cui X , Huang B , Yu J C . Asymmetric coupled dual-atom sites for selective photoreduction of carbon dioxide to acetic acid. Advanced Functional Materials, 2022, 32(41): 2206817
|
| [82] |
Chu C , Huang D , Gupta S , Weon S , Niu J , Stavitski E , Muhich C , Kim J H . Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nature Communications, 2021, 12(1): 5179
|
| [83] |
Liu P , Huang X , Mance D , Copéret C . Atomically dispersed iridium on MgO(111) nanosheets catalyses benzene-ethylene coupling towards styrene. Nature Catalysis, 2021, 4(11): 968–975
|
| [84] |
Ro I , Qi J , Lee S , Xu M , Yan X , Xie Z , Zakem G , Morales A , Chen J G , Pan X . . Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts. Nature, 2022, 609(7926): 287–292
|
| [85] |
Liu W , Feng H , Yang Y , Niu Y , Wang L , Yin P , Hong S , Zhang B , Zhang X , Wei M . Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nature Communications, 2022, 13(1): 3188
|
| [86] |
Cao H , Zhang Z , Chen J W , Wang Y G . Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catalysis, 2022, 12(11): 6606–6617
|
| [87] |
Li J , Zeng H , Dong X , Ding Y , Hu S , Zhang R , Dai Y , Cui P , Xiao Z , Zhao D . . Selective CO2 electrolysis to CO using isolated antimony alloyed copper. Nature Communications, 2023, 14(1): 340
|
| [88] |
Zhang M , Zhang Z , Zhao Z , Huang H , Anjum D H , Wang D , He J , Huang K W . He J h, Huang K W. Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu-Sn catalysts: elucidating the roles of Cu and Sn. ACS Catalysis, 2021, 11(17): 11103–11108
|
| [89] |
Yang H B , Hung S F , Liu S , Yuan K , Miao S , Zhang L , Huang X , Wang H Y , Cai W , Chen R . . Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nature Energy, 2018, 3(2): 140–147
|
| [90] |
Deng Y , Zhao J , Wang S , Chen R , Ding J , Tsai H J , Zeng W J , Hung S F , Xu W , Wang J . . Operando spectroscopic analysis of axial oxygen-coordinated single-Sn-atom sites for electrochemical CO2 reduction. Journal of the American Chemical Society, 2023, 145(13): 7242–7251
|
| [91] |
Ding J , Bin Yang H , Ma X L , Liu S , Liu W , Mao Q , Huang Y , Li J , Zhang T , Liu B . A tin-based tandem electrocatalyst for CO2 reduction to ethanol with 80% selectivity. Nature Energy, 2023, 8(12): 1386–1394
|
| [92] |
Zheng X , De Luna P , García de Arquer F P , Zhang B , Becknell N , Ross M B , Li Y , Banis M N , Li Y , Liu M . . Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule, 2017, 1(4): 794–805
|
| [93] |
Li W , Li L , Xia Q , Hong S , Wang L , Yao Z , Wu T S , Soo Y L , Zhang H , Lo T W B . . Lowering C–C coupling barriers for efficient electrochemical CO2 reduction to C2H4 by jointly engineering single Bi atoms and oxygen vacancies on CuO. Applied Catalysis B: Environmental, 2022, 318: 121823
|
| [94] |
Cao Y , Chen S , Bo S , Fan W , Li J , Jia C , Zhou Z , Liu Q , Zheng L , Zhang F . Single atom Bi decorated copper alloy enables C–C coupling for electrocatalytic reduction of CO2 into C2+ products**. Angewandte Chemie International Edition, 2023, 62(30): e202303048
|
| [95] |
Jiang M , Zhu M , Wang M , He Y , Luo X , Wu C , Zhang L , Jin Z . Review on electrocatalytic coreduction of carbon dioxide and nitrogenous species for urea synthesis. ACS Nano, 2023, 17(4): 3209–3224
|
| [96] |
Zhang X , Zhu X , Bo S , Chen C , Qiu M , Wei X , He N , Xie C , Chen W , Zheng J . . Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst. Nature Communications, 2022, 13(1): 5337
|
| [97] |
LiuYTuXWeiXWangDZhangXChenWChenCWangS. C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis? Angewandte Chemie International Edition, 2023, 62(19): e202300387
|
| [98] |
Li J , Zhang Y , Kuruvinashetti K , Kornienko N . Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nature Reviews. Chemistry, 2022, 6(5): 303–319
|
| [99] |
Liu J , Smith S C , Gu Y , Kou L . C–N coupling enabled by N–N bond breaking for electrochemical urea production. Advanced Functional Materials, 2023, 33(47): 2305894
|
| [100] |
Zhang X , Zhu X , Bo S , Chen C , Cheng K , Zheng J , Li S , Tu X , Chen W , Xie C . . Electrocatalytic urea synthesis with 63.5% faradaic efficiency and 100% N-selectivity via one-step C–N coupling. Angewandte Chemie International Edition, 2023, 62(33): e202305447
|
| [101] |
Chen L , Allec S I , Nguyen M T , Kovarik L , Hoffman A S , Hong J , Meira D , Shi H , Bare S R , Glezakou V A . . Dynamic evolution of palladium single atoms on anatase titania support determines the reverse water-gas shift activity. Journal of the American Chemical Society, 2023, 145(19): 10847–10860
|
| [102] |
Millet M M , Algara Siller G , Wrabetz S , Mazheika A , Girgsdies F , Teschner D , Seitz F , Tarasov A , Levchenko S V , Schlögl R . . Ni single atom catalysts for CO2 activation. Journal of the American Chemical Society, 2019, 141(6): 2451–2461
|
| [103] |
Du P , Qi R , Zhang Y , Gu Q , Xu X , Tan Y , Liu X , Wang A , Zhu B , Yang B . . Single-atom-driven dynamic carburization over Pd1-FeOx catalyst boosting CO2 conversion. Chem, 2022, 8(12): 3252–3262
|
| [104] |
Yang B , Wang Y , Gao B , Zhang L , Guo L . Size-dependent active site and its catalytic mechanism for CO2 hydrogenation reactivity and selectivity over Re/TiO2. ACS Catalysis, 2023, 13(15): 10364–10374
|
| [105] |
Wang D , Yuan Z , Wu X , Xiong W , Ding J , Zhang Z , Huang W . Ni single atoms confined in nitrogen-doped carbon nanotubes for active and selective hydrogenation of CO2 to CO. ACS Catalysis, 2023, 13(10): 7132–7138
|
| [106] |
Shao X , Yang X , Xu J , Liu S , Miao S , Liu X , Su X , Duan H , Huang Y , Zhang T . Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem, 2019, 5(3): 693–705
|
| [107] |
Yang T , Mao X , Zhang Y , Wu X , Wang L , Chu M , Pao C W , Yang S , Xu Y , Huang X . Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nature Communications, 2021, 12(1): 6022
|
| [108] |
Chen Y , Li H , Zhao W , Zhang W , Li J , Li W , Zheng X , Yan W , Zhang W , Zhu J . . Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity. Nature Communications, 2019, 10(1): 1885
|
| [109] |
Ye X , Yang C , Pan X , Ma J , Zhang Y , Ren Y , Liu X , Li L , Huang Y . Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst. Journal of the American Chemical Society, 2020, 142(45): 19001–19005
|
| [110] |
Zheng K , Li Y , Liu B , Jiang F , Xu Y , Liu X . Ti-doped CeO2 stabilized single-atom rhodium catalyst for selective and stable CO2 hydrogenation to ethanol. Angewandte Chemie International Edition, 2022, 61(44): e202210991
|
| [111] |
Gani T Z H , Kulik H J . Understanding and breaking scaling relations in single-site catalysis: methane to methanol conversion by Fe(IV)=O. ACS Catalysis, 2018, 8(2): 975–986
|
| [112] |
Schwach P , Pan X , Bao X . Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chemical Reviews, 2017, 117(13): 8497–8520
|
| [113] |
Tang X , Wang L , Yang B , Fei C , Yao T , Liu W , Lou Y , Dai Q , Cai Y , Cao X M . . Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Applied Catalysis B: Environmental, 2021, 285: 119827
|
| [114] |
Yang J , Huang Y , Qi H , Zeng C , Jiang Q , Cui Y , Su Y , Du X , Pan X , Liu X . . Modulating the strong metal-support interactian of single-atom catalysts via vicinal structure decoration. Nature Communications, 2022, 13(1): 4244
|
| [115] |
Fang G , Wei F , Lin J , Zhou Y , Sun L , Shang X , Lin S , Wang X . Retrofitting Zr-Oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity. Journal of the American Chemical Society, 2023, 145(24): 13169–13180
|
| [116] |
Grundner S , Markovits M A C , Li G , Tromp M , Pidko E A , Hensen E J M , Jentys A , Sanchez Sanchez M , Lercher J A . Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nature Communications, 2015, 6(1): 7546
|
| [117] |
Yu B , Cheng L , Dai S , Jiang Y , Yang B , Li H , Zhao Y , Xu J , Zhang Y , Pan C . . Silver and copper dual single atoms boosting direct oxidation of methane to methanol via synergistic catalysis. Advanced Science, 2023, 10(26): 2302143
|
| [118] |
Shen X , Wu D , Fu X Z , Luo J L . Highly selective conversion of methane to ethanol over CuFe2O4-carbon nanotube catalysts at low temperature. Chinese Chemical Letters, 2022, 33(1): 390–393
|
| [119] |
Wang Z , Liu Y , Zhang H , Zhou X . Cubic platinum nanoparticles capped with Cs2[closo-B12H12] as an effective oxidation catalyst for converting methane to ethanol. Journal of Colloid and Interface Science, 2020, 566: 135–142
|
| [120] |
Zhou Y , Zhang L , Wang W . Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nature Communications, 2019, 10(1): 506
|
| [121] |
Su J , Musgrave C B III , Song Y , Huang L , Liu Y , Li G , Xin Y , Xiong P , Li M M J , Wu H . . Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nature Catalysis, 2023, 6(9): 818–828
|
| [122] |
Zhou S , Ma W , Anjum U , Kosari M , Xi S , Kozlov S M , Zeng H C . Strained few-layer MoS2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO2 hydrogenation to methanol. Nature Communications, 2023, 14(1): 5872
|
| [123] |
Shamzhy M , Opanasenko M , Concepción P , Martínez A . New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149
|
| [124] |
Deng X , Qin B , Liu R , Qin X , Dai W , Wu G , Guan N , Ma D , Li L . Zeolite-eencaged isolated platinum ions enable heterolytic dihydrogen activation and selective hydrogenations. Journal of the American Chemical Society, 2021, 143(49): 20898–20906
|
| [125] |
Han B , Guo Y , Huang Y , Xi W , Xu J , Luo J , Qi H , Ren Y , Liu X , Qiao B . . Strong metal-support interactions between Pt single atoms and TiO2. Angewandte Chemie International Edition, 2020, 59(29): 11824–11829
|
| [126] |
Yang J , Li W , Wang D , Li Y . Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Advanced Materials, 2020, 32(49): 2003300
|
| [127] |
Wakerley D , Lamaison S , Ozanam F , Menguy N , Mercier D , Marcus P , Fontecave M , Mougel V . Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nature Materials, 2019, 18(11): 1222–1227
|
| [128] |
Li X , Cao C S , Hung S F , Lu Y R , Cai W , Rykov A I , Miao S , Xi S , Yang H , Hu Z . . Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material. Chem, 2020, 6(12): 3440–3454
|
| [129] |
Ren X , Zhao J , Li X , Shao J , Pan B , Salamé A , Boutin E , Groizard T , Wang S , Ding J . . In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol. Nature Communications, 2023, 14(1): 3401
|
RIGHTS & PERMISSIONS
Higher Education Press