Single-atom catalysis: a promising avenue for precisely controlling reaction pathways
Xiaobo Yang, Xuning Li, Yanqiang Huang
Single-atom catalysis: a promising avenue for precisely controlling reaction pathways
Single-atom catalysts (SACs), characterized by exceptionally high atom efficiency, have garnered significant attention across various catalytic reactions. Recent studies have showcased SACs with robust capabilities for precise catalysis, specifically targeting reactions along designated pathways. This review focuses on the advances in the precise activation and reconstruction of chemical bonds on SACs, including precise activation of C–O and C–H bonds and selective couplings involving C–C and C–N bonds. Our discussion begins with a thorough exploration of the factors that render SACs skilled in precise catalytic processes, encompassing the narrow d-band electronic state of single atom site resulting in the adsorption tendency, isolate site resulting in unique adsorption structure, and synergy effect of a single atom site with its neighbors. Subsequently, we elaborate on the applications of SACs in electrocatalysis and thermocatalysis including four prominent reactions, namely, electrochemical CO2 reduction, urea electrochemical synthesis, CO2 hydrogenation, and CH4 activation. Then the concept of rational design of SACs for precisely controlling reaction pathways is discussed from the aspects of pore structure design, support-metal strong interaction, and support hydrophilic/hydrophobic. Finally, we summarize the challenges encountered by SACs in the field of precise catalytic processes and outline prospects for their further development in this domain.
single atom catalysts / selective oxidation / CO2RR / bond coupling
[1] |
Liu X , Dai L . Carbon-based metal-free catalysts. Nature Reviews. Materials, 2016, 1(11): 16064
CrossRef
Google scholar
|
[2] |
Meirer F , Weckhuysen B M . Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nature Reviews. Materials, 2018, 3(9): 324–340
CrossRef
Google scholar
|
[3] |
Mitchell S , Pérez Ramírez J . Atomically precise control in the design of low-nuclearity supported metal catalysts. Nature Reviews. Materials, 2021, 6(11): 969–985
CrossRef
Google scholar
|
[4] |
Zhao Z J , Liu S , Zha S , Cheng D , Studt F , Henkelman G , Gong J . Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nature Reviews. Materials, 2019, 4(12): 792–804
CrossRef
Google scholar
|
[5] |
Suryanto B H R , Matuszek K , Choi J , Hodgetts R Y , Du H L , Bakker J M , Kang C S M , Cherepanov P V , Simonov A N , MacFarlane D R . Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science, 2021, 372(6547): 1187–1191
CrossRef
Google scholar
|
[6] |
Chen G F , Yuan Y , Jiang H , Ren S Y , Ding L X , Ma L , Wu T , Lu J , Wang H . Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nature Energy, 2020, 5(8): 605–613
CrossRef
Google scholar
|
[7] |
Chang F , Tezsevin I , de Rijk J W , Meeldijk J D , Hofmann J P , Er S , Ngene P , de Jongh P E . Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis. Nature Catalysis, 2022, 5(3): 222–230
CrossRef
Google scholar
|
[8] |
Pan X , Jiao F , Miao D , Bao X . Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis. Chemical Reviews, 2021, 121(11): 6588–6609
CrossRef
Google scholar
|
[9] |
Rahmati M , Safdari M S , Fletcher T H , Argyle M D , Bartholomew C H . Chemical and thermal sintering of supported metals with emphasis on cobalt catalysts during Fischer-Tropsch synthesis. Chemical Reviews, 2020, 120(10): 4455–4533
CrossRef
Google scholar
|
[10] |
Rommens K T , Saeys M . Molecular views on Fischer-Tropsch synthesis. Chemical Reviews, 2023, 123(9): 5798–5858
CrossRef
Google scholar
|
[11] |
Service R F . Lithium-ion battery development takes nobel. Science, 2019, 366(6463): 292
CrossRef
Google scholar
|
[12] |
Degen F , Winter M , Bendig D , Tübke J . Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nature Energy, 2023, 8(11): 1284–1295
CrossRef
Google scholar
|
[13] |
Gent W E , Busse G M , House K Z . The predicted persistence of cobalt in lithium-ion batteries. Nature Energy, 2022, 7(12): 1132–1143
CrossRef
Google scholar
|
[14] |
Feng X , Ren D , He X , Ouyang M . Mitigating thermal runaway of lithium-ion batteries. Joule, 2020, 4(4): 743–770
CrossRef
Google scholar
|
[15] |
Harper G , Sommerville R , Kendrick E , Driscoll L , Slater P , Stolkin R , Walton A , Christensen P , Heidrich O , Lambert S .
CrossRef
Google scholar
|
[16] |
Chen L D . Cations play an essential role in CO2 reduction. Nature Catalysis, 2021, 4(8): 641–642
CrossRef
Google scholar
|
[17] |
Yan B , Li Y , Cao W , Zeng Z , Liu P , Ke Z , Yang G . Highly efficient and highly selective CO2 reduction to CO driven by laser. Joule, 2022, 6(12): 2735–2744
CrossRef
Google scholar
|
[18] |
Kang W , Lee C C , Jasniewski A J , Ribbe M W , Hu Y . Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase. Science, 2020, 368(6497): 1381–1385
CrossRef
Google scholar
|
[19] |
Weliwatte N S , Minteer S D . Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule, 2021, 5(10): 2564–2592
CrossRef
Google scholar
|
[20] |
Yu X , Han P , Wei Z , Huang L , Gu Z , Peng S , Ma J , Zheng G . Boron-doped graphene for electrocatalytic N2 reduction. Joule, 2018, 2(8): 1610–1622
CrossRef
Google scholar
|
[21] |
Qing G , Ghazfar R , Jackowski S T , Habibzadeh F , Ashtiani M M , Chen C P , Smith M R III , Hamann T W . Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chemical Reviews, 2020, 120(12): 5437–5516
CrossRef
Google scholar
|
[22] |
Tanifuji K , Ohki Y . Metal-sulfur compounds in N2 reduction and nitrogenase-related chemistry. Chemical Reviews, 2020, 120(12): 5194–5251
CrossRef
Google scholar
|
[23] |
Stephens I E L , Rossmeisl J , Chorkendorff I . Toward sustainable fuel cells. Science, 2016, 354(6318): 1378–1379
CrossRef
Google scholar
|
[24] |
Gittleman C S , Jia H , De Castro E S , Chisholm C R I , Kim Y S . Proton conductors for heavy-duty vehicle fuel cells. Joule, 2021, 5(7): 1660–1677
CrossRef
Google scholar
|
[25] |
Zhou Z , Zhang Y , Shen Y , Liu S , Zhang Y . Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chemical Society Reviews, 2018, 47(7): 2298–2321
CrossRef
Google scholar
|
[26] |
Feng Y , Long S , Tang X , Sun Y , Luque R , Zeng X , Lin L . Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chemical Society Reviews, 2021, 50(10): 6042–6093
CrossRef
Google scholar
|
[27] |
Sudarsanam P , Peeters E , Makshina E V , Parvulescu V I , Sels B F . Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 2019, 48(8): 2366–2421
CrossRef
Google scholar
|
[28] |
Fang R , Dhakshinamoorthy A , Li Y , Garcia H . Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020, 49(11): 3638–3687
CrossRef
Google scholar
|
[29] |
Rimer J D . Rational design of zeolite catalysts. Nature Catalysis, 2018, 1(7): 488–489
CrossRef
Google scholar
|
[30] |
Xu D , Zhang S N , Chen J S , Li X H . Design of the synergistic rectifying interfaces in Mott-Schottky catalysts. Chemical Reviews, 2023, 123(1): 1–30
CrossRef
Google scholar
|
[31] |
Durand D J , Fey N . Computational ligand descriptors for catalyst design. Chemical Reviews, 2019, 119(11): 6561–6594
CrossRef
Google scholar
|
[32] |
Motagamwala A H , Dumesic J A . Microkinetic modeling: a tool for rational catalyst design. Chemical Reviews, 2021, 121(2): 1049–1076
CrossRef
Google scholar
|
[33] |
Su D , Lam Z , Wang Y , Han F , Zhang M , Liu B , Chen H . Ultralong durability of ethanol oxidation reaction via morphological design. Joule, 2023, 7(11): 2568–2582
CrossRef
Google scholar
|
[34] |
Wang L , Meng S , Tang C , Zhan C , Geng S , Jiang K , Huang X , Bu L . PtNi/PtIn-skin fishbone-like nanowires boost alkaline hydrogen oxidation catalysis. ACS Nano, 2023, 17(18): 17779–17789
CrossRef
Google scholar
|
[35] |
Mehmood R , Fan W , Hu X , Li J , Liu P , Zhang Y , Zhou Z , Wang J , Liu M , Zhang F . Confirming high-valent iron as highly active species of water oxidation on the Fe, V-coupled bimetallic electrocatalyst: in situ analysis of X-ray absorption and mössbauer spectroscopy. Journal of the American Chemical Society, 2023, 145(22): 12206–12213
CrossRef
Google scholar
|
[36] |
Das S , Pérez Ramírez J , Gong J , Dewangan N , Hidajat K , Gates B C , Kawi S . Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chemical Society Reviews, 2020, 49(10): 2937–3004
CrossRef
Google scholar
|
[37] |
Rideal E K . Prof. Paul Sabatier, For. Mem.R.S. Nature, 1941, 148(3750): 309
|
[38] |
Tan T H , Xie B , Ng Y H , Abdullah S F B , Tang H Y M , Bedford N , Taylor R A , Aguey Zinsou K F , Amal R , Scott J . Unlocking the potential of the formate pathway in the photo-assisted sabatier reaction. Nature Catalysis, 2020, 3(12): 1034–1043
CrossRef
Google scholar
|
[39] |
Hu S , Li W X . Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science, 2021, 374(6573): 1360–1365
CrossRef
Google scholar
|
[40] |
Zhou Y , Wei F , Qi H , Chai Y , Cao L , Lin J , Wan Q , Liu X , Xing Y , Lin S .
CrossRef
Google scholar
|
[41] |
Qiao B , Wang A , Yang X , Allard L F , Jiang Z , Cui Y , Liu J , Li J , Zhang T . Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011, 3(8): 634–641
CrossRef
Google scholar
|
[42] |
Yang X F , Wang A , Qiao B , Li J , Liu J , Zhang T . Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts of Chemical Research, 2013, 46(8): 1740–1748
CrossRef
Google scholar
|
[43] |
Liu L , Corma A . Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chemical Reviews, 2018, 118(10): 4981–5079
CrossRef
Google scholar
|
[44] |
Zhang Y . Heterogeneous catalysis: single atoms on a roll. Nature Reviews Chemistry, 2018, 2(1): 0151
|
[45] |
Wu X , Wang Q , Yang S , Zhang J , Cheng Y , Tang H , Ma L , Min X , Tang C , Jiang S P .
CrossRef
Google scholar
|
[46] |
Jiang D , Wan G , Halldin Stenlid J , García Vargas C E , Zhang J , Sun C , Li J , Abild Pedersen F , Tassone C J , Wang Y . Dynamic and reversible transformations of subnanometre-sized palladium on ceria for efficient methane removal. Nature Catalysis, 2023, 6(7): 618–627
CrossRef
Google scholar
|
[47] |
Agarwal N , Freakley S J , McVicker R U , Althahban S M , Dimitratos N , He Q , Morgan D J , Jenkins R L , Willock D J , Taylor S H .
CrossRef
Google scholar
|
[48] |
Shoji S , Peng X , Yamaguchi A , Watanabe R , Fukuhara C , Cho Y , Yamamoto T , Matsumura S , Yu M W , Ishii S .
CrossRef
Google scholar
|
[49] |
Xu S , Carter E A . Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chemical Reviews, 2019, 119(11): 6631–6669
CrossRef
Google scholar
|
[50] |
Rizo R , Arán Ais R M , Padgett E , Muller D A , Lázaro M J , Solla Gullón J , Feliu J M , Pastor E , Abruña H D . Pt-richcore/Sn-richsubsurface/Ptskin nanocubes as highly active and stable electrocatalysts for the ethanol oxidation reaction. Journal of the American Chemical Society, 2018, 140(10): 3791–3797
CrossRef
Google scholar
|
[51] |
Yang X , Liang Z , Chen S , Ma M , Wang Q , Tong X , Zhang Q , Ye J , Gu L , Yang N . A phosphorus-doped Ag@Pd catalyst for enhanced C–C bond cleavage during ethanol electrooxidation. Small, 2020, 16(47): 2004727
CrossRef
Google scholar
|
[52] |
Vijay S , Ju W , Brückner S , Tsang S C , Strasser P , Chan K . Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nature Catalysis, 2021, 4(12): 1024–1031
CrossRef
Google scholar
|
[53] |
Tang Y , Li Y , Fung V , Jiang D E , Huang W , Zhang S , Iwasawa Y , Sakata T , Nguyen L , Zhang X .
CrossRef
Google scholar
|
[54] |
Xie P , Ding J , Yao Z , Pu T , Zhang P , Huang Z , Wang C , Zhang J , Zecher Freeman N , Zong H .
CrossRef
Google scholar
|
[55] |
Wang Z , Liu S , Zhao X , Wang M , Zhang L , Qian T , Xiong J , Yang C , Yan C . Interfacial defect engineering triggered by single atom doping for highly efficient electrocatalytic nitrate reduction to ammonia. ACS Materials Letters, 2023, 5(4): 1018–1026
CrossRef
Google scholar
|
[56] |
Ding J , Teng Z , Su X , Kato K , Liu Y , Xiao T , Liu W , Liu L , Zhang Q , Ren X .
CrossRef
Google scholar
|
[57] |
Ding J , Wei Z , Li F , Zhang J , Zhang Q , Zhou J , Wang W , Liu Y , Zhang Z , Su X .
CrossRef
Google scholar
|
[58] |
Wang Q , Wang H , Cao H , Tung C W , Liu W , Hung S F , Wang W , Zhu C , Zhang Z , Cai W .
CrossRef
Google scholar
|
[59] |
Wang Y , Mao J , Meng X , Yu L , Deng D , Bao X . Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chemical Reviews, 2019, 119(3): 1806–1854
CrossRef
Google scholar
|
[60] |
NørskovJ KStoltzeP. Theoretical aspects of surface reactions. Surface Science, 1987, 189–190: 91–105
|
[61] |
Greiner M T , Jones T E , Beeg S , Zwiener L , Scherzer M , Girgsdies F , Piccinin S , Armbrüster M , Knop Gericke A , Schlögl R . Free-atom-like d states in single-atom alloy catalysts. Nature Chemistry, 2018, 10(10): 1008–1015
CrossRef
Google scholar
|
[62] |
Rosen A S , Vijay S , Persson K A . Free-atom-like d states beyond the dilute limit of single-atom alloys. Chemical Science, 2023, 14(6): 1503–1511
CrossRef
Google scholar
|
[63] |
Spivey T D , Holewinski A . Selective interactions between free-atom-like d-states in single-atom alloy catalysts and near-frontier molecular orbitals. Journal of the American Chemical Society, 2021, 143(31): 11897–11902
CrossRef
Google scholar
|
[64] |
Darby M T , Réocreux R , Sykes E C H , Michaelides A , Stamatakis M . Elucidating the stability and reactivity of surface intermediates on single-atom alloy catalysts. ACS Catalysis, 2018, 8(6): 5038–5050
CrossRef
Google scholar
|
[65] |
Yu S , Cheng X , Wang Y , Xiao B , Xing Y , Ren J , Lu Y , Li H , Zhuang C , Chen G . High activity and selectivity of single palladium atom for oxygen hydrogenation to H2O2. Nature Communications, 2022, 13(1): 4737
CrossRef
Google scholar
|
[66] |
Li W , Wu G , Hu W , Dang J , Wang C , Weng X , da Silva I , Manuel P , Yang S , Guan N .
CrossRef
Google scholar
|
[67] |
Qiao B , Liu J , Wang Y G , Lin Q , Liu X , Wang A , Li J , Zhang T , Liu J . Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catalysis, 2015, 5(11): 6249–6254
CrossRef
Google scholar
|
[68] |
Ma W , Mao J , He C T , Shao L , Liu J , Wang M , Yu P , Mao L . Highly selective generation of singlet oxygen from dioxygen with atomically dispersed catalysts. Chemical Science (Cambridge), 2022, 13(19): 5606–5615
CrossRef
Google scholar
|
[69] |
Shang Q , Tang N , Qi H , Chen S , Xu G , Wu C , Pan X , Wang X , Cong Y . Cong Y. A palladium single-atom catalyst toward efficient activation of molecular oxygen for cinnamyl alcohol oxidation. Chinese Journal of Catalysis, 2020, 41(12): 1812–1817
CrossRef
Google scholar
|
[70] |
Li Z , Chen Y , Ji S , Tang Y , Chen W , Li A , Zhao J , Xiong Y , Wu Y , Gong Y .
CrossRef
Google scholar
|
[71] |
Xiong Y , Dong J , Huang Z Q , Xin P , Chen W , Wang Y , Li Z , Jin Z , Xing W , Zhuang Z .
CrossRef
Google scholar
|
[72] |
Li W , Madan S E , Réocreux R , Stamatakis M . Elucidating the reactivity of oxygenates on single-atom alloy catalysts. ACS Catalysis, 2023, 13(24): 15851–15868
CrossRef
Google scholar
|
[73] |
Ni W , Meibom J L , Hassan N U , Chang M , Chu Y C , Krammer A , Sun S , Zheng Y , Bai L , Ma W .
CrossRef
Google scholar
|
[74] |
Meng G , Lan W , Zhang L , Wang S , Zhang T , Zhang S , Xu M , Wang Y , Zhang J , Yue F .
CrossRef
Google scholar
|
[75] |
Dong C , Gao Z , Li Y , Peng M , Wang M , Xu Y , Li C , Xu M , Deng Y , Qin X .
CrossRef
Google scholar
|
[76] |
Fu N , Liang X , Wang X , Gan T , Ye C , Li Z , Liu J C , Li Y . Controllable conversion of platinum nanoparticles to single atoms in Pt/CeO2 by laser ablation for efficient CO oxidation. Journal of the American Chemical Society, 2023, 145(17): 9540–9547
CrossRef
Google scholar
|
[77] |
Fang Y , Zhang Q , Zhang H , Li X , Chen W , Xu J , Shen H , Yang J , Pan C , Zhu Y .
CrossRef
Google scholar
|
[78] |
Niu H , Zhang Z , Wang X , Wan X , Shao C , Guo Y . Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Advanced Functional Materials, 2021, 31(11): 2008533
CrossRef
Google scholar
|
[79] |
Leverett J , Tran Phu T , Yuwono J A , Kumar P , Kim C , Zhai Q , Han C , Qu J , Cairney J , Simonov A N .
CrossRef
Google scholar
|
[80] |
Yang W , Polo Garzon F , Zhou H , Huang Z , Chi M , Meyer H III , Yu X , Li Y , Wu Z . Boosting the activity of Pd single atoms by tuning their local environment on ceria for methane combustion. Angewandte Chemie International Edition, 2023, 62(5): e202217323
CrossRef
Google scholar
|
[81] |
Jia G , Sun M , Wang Y , Shi Y , Zhang L , Cui X , Huang B , Yu J C . Asymmetric coupled dual-atom sites for selective photoreduction of carbon dioxide to acetic acid. Advanced Functional Materials, 2022, 32(41): 2206817
CrossRef
Google scholar
|
[82] |
Chu C , Huang D , Gupta S , Weon S , Niu J , Stavitski E , Muhich C , Kim J H . Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nature Communications, 2021, 12(1): 5179
CrossRef
Google scholar
|
[83] |
Liu P , Huang X , Mance D , Copéret C . Atomically dispersed iridium on MgO(111) nanosheets catalyses benzene-ethylene coupling towards styrene. Nature Catalysis, 2021, 4(11): 968–975
CrossRef
Google scholar
|
[84] |
Ro I , Qi J , Lee S , Xu M , Yan X , Xie Z , Zakem G , Morales A , Chen J G , Pan X .
CrossRef
Google scholar
|
[85] |
Liu W , Feng H , Yang Y , Niu Y , Wang L , Yin P , Hong S , Zhang B , Zhang X , Wei M . Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nature Communications, 2022, 13(1): 3188
CrossRef
Google scholar
|
[86] |
Cao H , Zhang Z , Chen J W , Wang Y G . Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catalysis, 2022, 12(11): 6606–6617
CrossRef
Google scholar
|
[87] |
Li J , Zeng H , Dong X , Ding Y , Hu S , Zhang R , Dai Y , Cui P , Xiao Z , Zhao D .
CrossRef
Google scholar
|
[88] |
Zhang M , Zhang Z , Zhao Z , Huang H , Anjum D H , Wang D , He J , Huang K W . He J h, Huang K W. Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu-Sn catalysts: elucidating the roles of Cu and Sn. ACS Catalysis, 2021, 11(17): 11103–11108
CrossRef
Google scholar
|
[89] |
Yang H B , Hung S F , Liu S , Yuan K , Miao S , Zhang L , Huang X , Wang H Y , Cai W , Chen R .
CrossRef
Google scholar
|
[90] |
Deng Y , Zhao J , Wang S , Chen R , Ding J , Tsai H J , Zeng W J , Hung S F , Xu W , Wang J .
CrossRef
Google scholar
|
[91] |
Ding J , Bin Yang H , Ma X L , Liu S , Liu W , Mao Q , Huang Y , Li J , Zhang T , Liu B . A tin-based tandem electrocatalyst for CO2 reduction to ethanol with 80% selectivity. Nature Energy, 2023, 8(12): 1386–1394
CrossRef
Google scholar
|
[92] |
Zheng X , De Luna P , García de Arquer F P , Zhang B , Becknell N , Ross M B , Li Y , Banis M N , Li Y , Liu M .
CrossRef
Google scholar
|
[93] |
Li W , Li L , Xia Q , Hong S , Wang L , Yao Z , Wu T S , Soo Y L , Zhang H , Lo T W B .
CrossRef
Google scholar
|
[94] |
Cao Y , Chen S , Bo S , Fan W , Li J , Jia C , Zhou Z , Liu Q , Zheng L , Zhang F . Single atom Bi decorated copper alloy enables C–C coupling for electrocatalytic reduction of CO2 into C2+ products**. Angewandte Chemie International Edition, 2023, 62(30): e202303048
CrossRef
Google scholar
|
[95] |
Jiang M , Zhu M , Wang M , He Y , Luo X , Wu C , Zhang L , Jin Z . Review on electrocatalytic coreduction of carbon dioxide and nitrogenous species for urea synthesis. ACS Nano, 2023, 17(4): 3209–3224
CrossRef
Google scholar
|
[96] |
Zhang X , Zhu X , Bo S , Chen C , Qiu M , Wei X , He N , Xie C , Chen W , Zheng J .
CrossRef
Google scholar
|
[97] |
LiuYTuXWeiXWangDZhangXChenWChenCWangS. C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis? Angewandte Chemie International Edition, 2023, 62(19): e202300387
|
[98] |
Li J , Zhang Y , Kuruvinashetti K , Kornienko N . Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nature Reviews. Chemistry, 2022, 6(5): 303–319
CrossRef
Google scholar
|
[99] |
Liu J , Smith S C , Gu Y , Kou L . C–N coupling enabled by N–N bond breaking for electrochemical urea production. Advanced Functional Materials, 2023, 33(47): 2305894
CrossRef
Google scholar
|
[100] |
Zhang X , Zhu X , Bo S , Chen C , Cheng K , Zheng J , Li S , Tu X , Chen W , Xie C .
CrossRef
Google scholar
|
[101] |
Chen L , Allec S I , Nguyen M T , Kovarik L , Hoffman A S , Hong J , Meira D , Shi H , Bare S R , Glezakou V A .
CrossRef
Google scholar
|
[102] |
Millet M M , Algara Siller G , Wrabetz S , Mazheika A , Girgsdies F , Teschner D , Seitz F , Tarasov A , Levchenko S V , Schlögl R .
CrossRef
Google scholar
|
[103] |
Du P , Qi R , Zhang Y , Gu Q , Xu X , Tan Y , Liu X , Wang A , Zhu B , Yang B .
CrossRef
Google scholar
|
[104] |
Yang B , Wang Y , Gao B , Zhang L , Guo L . Size-dependent active site and its catalytic mechanism for CO2 hydrogenation reactivity and selectivity over Re/TiO2. ACS Catalysis, 2023, 13(15): 10364–10374
CrossRef
Google scholar
|
[105] |
Wang D , Yuan Z , Wu X , Xiong W , Ding J , Zhang Z , Huang W . Ni single atoms confined in nitrogen-doped carbon nanotubes for active and selective hydrogenation of CO2 to CO. ACS Catalysis, 2023, 13(10): 7132–7138
CrossRef
Google scholar
|
[106] |
Shao X , Yang X , Xu J , Liu S , Miao S , Liu X , Su X , Duan H , Huang Y , Zhang T . Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem, 2019, 5(3): 693–705
CrossRef
Google scholar
|
[107] |
Yang T , Mao X , Zhang Y , Wu X , Wang L , Chu M , Pao C W , Yang S , Xu Y , Huang X . Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nature Communications, 2021, 12(1): 6022
CrossRef
Google scholar
|
[108] |
Chen Y , Li H , Zhao W , Zhang W , Li J , Li W , Zheng X , Yan W , Zhang W , Zhu J .
CrossRef
Google scholar
|
[109] |
Ye X , Yang C , Pan X , Ma J , Zhang Y , Ren Y , Liu X , Li L , Huang Y . Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst. Journal of the American Chemical Society, 2020, 142(45): 19001–19005
CrossRef
Google scholar
|
[110] |
Zheng K , Li Y , Liu B , Jiang F , Xu Y , Liu X . Ti-doped CeO2 stabilized single-atom rhodium catalyst for selective and stable CO2 hydrogenation to ethanol. Angewandte Chemie International Edition, 2022, 61(44): e202210991
CrossRef
Google scholar
|
[111] |
Gani T Z H , Kulik H J . Understanding and breaking scaling relations in single-site catalysis: methane to methanol conversion by Fe(IV)=O. ACS Catalysis, 2018, 8(2): 975–986
CrossRef
Google scholar
|
[112] |
Schwach P , Pan X , Bao X . Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chemical Reviews, 2017, 117(13): 8497–8520
CrossRef
Google scholar
|
[113] |
Tang X , Wang L , Yang B , Fei C , Yao T , Liu W , Lou Y , Dai Q , Cai Y , Cao X M .
CrossRef
Google scholar
|
[114] |
Yang J , Huang Y , Qi H , Zeng C , Jiang Q , Cui Y , Su Y , Du X , Pan X , Liu X .
|
[115] |
Fang G , Wei F , Lin J , Zhou Y , Sun L , Shang X , Lin S , Wang X . Retrofitting Zr-Oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity. Journal of the American Chemical Society, 2023, 145(24): 13169–13180
CrossRef
Google scholar
|
[116] |
Grundner S , Markovits M A C , Li G , Tromp M , Pidko E A , Hensen E J M , Jentys A , Sanchez Sanchez M , Lercher J A . Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nature Communications, 2015, 6(1): 7546
CrossRef
Google scholar
|
[117] |
Yu B , Cheng L , Dai S , Jiang Y , Yang B , Li H , Zhao Y , Xu J , Zhang Y , Pan C .
CrossRef
Google scholar
|
[118] |
Shen X , Wu D , Fu X Z , Luo J L . Highly selective conversion of methane to ethanol over CuFe2O4-carbon nanotube catalysts at low temperature. Chinese Chemical Letters, 2022, 33(1): 390–393
CrossRef
Google scholar
|
[119] |
Wang Z , Liu Y , Zhang H , Zhou X . Cubic platinum nanoparticles capped with Cs2[closo-B12H12] as an effective oxidation catalyst for converting methane to ethanol. Journal of Colloid and Interface Science, 2020, 566: 135–142
CrossRef
Google scholar
|
[120] |
Zhou Y , Zhang L , Wang W . Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nature Communications, 2019, 10(1): 506
CrossRef
Google scholar
|
[121] |
Su J , Musgrave C B III , Song Y , Huang L , Liu Y , Li G , Xin Y , Xiong P , Li M M J , Wu H .
CrossRef
Google scholar
|
[122] |
Zhou S , Ma W , Anjum U , Kosari M , Xi S , Kozlov S M , Zeng H C . Strained few-layer MoS2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO2 hydrogenation to methanol. Nature Communications, 2023, 14(1): 5872
CrossRef
Google scholar
|
[123] |
Shamzhy M , Opanasenko M , Concepción P , Martínez A . New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149
CrossRef
Google scholar
|
[124] |
Deng X , Qin B , Liu R , Qin X , Dai W , Wu G , Guan N , Ma D , Li L . Zeolite-eencaged isolated platinum ions enable heterolytic dihydrogen activation and selective hydrogenations. Journal of the American Chemical Society, 2021, 143(49): 20898–20906
CrossRef
Google scholar
|
[125] |
Han B , Guo Y , Huang Y , Xi W , Xu J , Luo J , Qi H , Ren Y , Liu X , Qiao B .
CrossRef
Google scholar
|
[126] |
Yang J , Li W , Wang D , Li Y . Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Advanced Materials, 2020, 32(49): 2003300
CrossRef
Google scholar
|
[127] |
Wakerley D , Lamaison S , Ozanam F , Menguy N , Mercier D , Marcus P , Fontecave M , Mougel V . Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nature Materials, 2019, 18(11): 1222–1227
CrossRef
Google scholar
|
[128] |
Li X , Cao C S , Hung S F , Lu Y R , Cai W , Rykov A I , Miao S , Xi S , Yang H , Hu Z .
CrossRef
Google scholar
|
[129] |
Ren X , Zhao J , Li X , Shao J , Pan B , Salamé A , Boutin E , Groizard T , Wang S , Ding J .
CrossRef
Google scholar
|
/
〈 | 〉 |