Polyethylene hydrogenolysis over bimetallic catalyst with suppression of methane formation

Xiangkun Zhang , Bingyan Sun , Zhigang Zhao , Tan Li , Marc Mate , Kaige Wang

Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (10) : 110

PDF (1627KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (10) : 110 DOI: 10.1007/s11705-024-2461-x
RESEARCH ARTICLE

Polyethylene hydrogenolysis over bimetallic catalyst with suppression of methane formation

Author information +
History +
PDF (1627KB)

Abstract

Hydrogenolysis has been explored as a promising approach for plastic chemical recycling. Noble metals, such as Ru and Pt, are considered effective catalysts for plastic hydrogenolysis, however, they result in a high yield of low-value gaseous products. In this research, an efficient bimetallic catalyst was developed by separate impregnation of Ni and Ru on SiO2 support resulting in liquid products yield of up to 83.1 C % under mild reaction conditions, compared to the 65.5 C % yield for the sole noble metal catalyst. The carbon distribution of the liquid products from low density polyethylene hydrogenolysis with Ni-modified catalyst also shifted to a heavier fraction, compared to that with Ru catalyst. Meanwhile, the NiRu catalyst exhibited excellent performance in suppressing the cleavage of the end-chain C–C bond, leading to a methane yield of only 10.4 C %, which was 69% lower than that of the Ru/SiO2 catalyst. Temperature programmed reduction and desorption of hydrogen and propane were further conducted to reveal the detailed mechanism of low density polyethylene hydrogenolysis over the bimetallic catalyst. The results suggested that the Ni-Ru alloy exhibited stronger H adsorption properties indicating improved hydrogen coverage on the catalyst surface thus enhancing the desorption of reaction intermediates. The carbon number distribution was ultimately skewed toward heavier liquid products.

Graphical abstract

Keywords

hydrogenolysis / polyethylene / bimetallic catalyst / depolymerization mechanism

Cite this article

Download citation ▾
Xiangkun Zhang, Bingyan Sun, Zhigang Zhao, Tan Li, Marc Mate, Kaige Wang. Polyethylene hydrogenolysis over bimetallic catalyst with suppression of methane formation. Front. Chem. Sci. Eng., 2024, 18(10): 110 DOI:10.1007/s11705-024-2461-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rahimi A , García J M . Chemical recycling of waste plastics for new materials production. Nature Reviews. Chemistry, 2017, 1(6): 1–11

[2]

Liu W , Feng H , Yang Y , Niu Y , Wang L , Yin P , Hong S , Zhang B , Zhang X , Wei M . Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nature Communications, 2022, 13(1): 3188

[3]

Chen X , Wang Y , Zhang L . Recent progress in the chemical upcycling of plastic wastes. ChemSusChem, 2021, 14(19): 4137–4151

[4]

Rorrer J E , Troyano Valls C , Beckham G T , Román Leshkov Y . Hydrogenolysis of polypropylene and mixed polyolefin plastic waste over Ru/C to produce liquid alkanes. ACS Sustainable Chemistry & Engineering, 2021, 9(35): 11661–11666

[5]

Sánchez-Rivera K L , Huber G W . Catalytic hydrogenolysis of polyolefins into alkanes. ACS Central Science, 2021, 7(1): 17–19

[6]

Chen R , Cheng L , Gu J , Yuan H , Chen Y . Mechanistic understanding of metal-acid synergetic hydroconversion of polyethylene under mild conditions over a Ru/MOR catalyst. Energy Conversion and Management, 2024, 300: 117983

[7]

Yang J , Yang Y , Wu W M , Zhao J , Jiang L . Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology, 2014, 48(23): 13776–13784

[8]

MukherjeeSRoyChaudhuriUKunduP PRoyChaudhuriUKunduP P. Biodegradation of polyethylene via complete solubilization by the action of Pseudomonas fluorescens, biosurfactant produced by Bacillus licheniformis and anionic surfactant. Journal of Chemical Technology and Biotechnology, 2018, 93(5): 1300–1311

[9]

Rorrer J E , Beckham G T , Román Leshkov Y . Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions. JACS Au, 2021, 1(1): 8–12

[10]

Tamura M , Miyaoka S , Nakaji Y , Tanji M , Kumagai S , Nakagawa Y , Yoshioka T , Tomishige K . Structure-activity relationship in hydrogenolysis of polyolefins over Ru/support catalysts. Applied Catalysis B: Environmental, 2022, 318: 121870

[11]

Chen L , Meyer L C , Kovarik L , Meira D , Pereira Hernandez X I , Shi H , Khivantsev K , Gutiérrez O Y , Szanyi J . Disordered, sub-nanometer Ru structures on CeO2 are highly efficient and selective catalysts in polymer upcycling by hydrogenolysis. ACS Catalysis, 2022, 12(8): 4618–4627

[12]

Kim T , Nguyen Phu H , Kwon T , Kang K H , Ro I . Investigating the impact of TiO2 crystalline phases on catalytic properties of Ru/TiO2 for hydrogenolysis of polyethylene plastic waste. Environmental Pollution, 2023, 331: 121876

[13]

Rorrer J E , Ebrahim A M , Questell Santiago Y , Zhu J , Troyano Valls C , Asundi A S , Brenner A E , Bare S R , Tassone C J , Beckham G T . . Role of bifunctional Ru/acid catalysts in the selective hydrocracking of polyethylene and polypropylene waste to liquid hydrocarbons. ACS Catalysis, 2022, 12(22): 13969–13979

[14]

Nguyen-Phu H , Kwon T , Kim T , Thi Do L , Hyuk Kang K , Ro I . Investigating the influence of Ru structures and supports on hydrogenolysis of polyethylene plastic waste. Chemical Engineering Journal, 2023, 475: 146076

[15]

Wu X , Tennakoon A , Yappert R , Esveld M , Ferrandon M S , Hackler R A , LaPointe A M , Heyden A , Delferro M , Peters B . . Size-controlled nanoparticles embedded in a mesoporous architecture leading to efficient and selective hydrogenolysis of polyolefins. Journal of the American Chemical Society, 2022, 144(12): 5323–5334

[16]

Wang C , Xie T , Kots P A , Vance B C , Yu K , Kumar P , Fu J , Liu S , Tsilomelekis G , Stach E A . . Polyethylene hydrogenolysis at mild conditions over ruthenium on tungstated zirconia. JACS Au, 2021, 1(9): 1422–1434

[17]

Tao F F . Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chemical Society Reviews, 2012, 41(24): 7977–7979

[18]

Luo Z , Zheng Z , Li L , Cui Y T , Zhao C . Bimetallic Ru-Ni catalyzed aqueous-phase guaiacol hydrogenolysis at low H2 pressures. ACS Catalysis, 2017, 7(12): 8304–8313

[19]

Li T , Su J , Wang H , Wang C , Xie W , Wang K . Catalytic hydropyrolysis of lignin using NiMo-doped catalysts: catalyst evaluation and mechanism analysis. Applied Energy, 2022, 316: 119115

[20]

Li W , Ye L , Long P , Chen J , Ariga H , Asakura K , Yuan Y . Efficient Ru-Fe catalyzed selective hydrogenolysis of carboxylic acids to alcoholic chemicals. RSC Advances, 2014, 4(55): 29072–29082

[21]

SayanŞSüzerŞUnerD O. XPS and in-situ IR investigation of catalyst. Journal of Molecular Structure, 1997, 410–411: 111–114

[22]

Khaniya A , Ezzat S , Cumston Q , Coffey K R , Kaden W . Ru(0001) and SiO2/Ru(0001): XPS study. Surface Science Spectra, 2020, 27(2): 024009

[23]

Kots P A , Liu S , Vance B C , Wang C , Sheehan J D , Vlachos D G . Polypropylene plastic waste conversion to lubricants over Ru/TiO2 catalysts. ACS Catalysis, 2021, 11(13): 8104–8115

[24]

Nakagawa Y , Oya S , Kanno D , Nakaji Y , Tamura M , Tomishige K . Regioselectivity and reaction mechanism of Ru-catalyzed hydrogenolysis of squalane and model alkanes. ChemSusChem, 2017, 10(1): 189–198

[25]

Leclercq G , Leclercq L , Bouleau L M , Pietrzyk S , Maurel R . Hydrogenolysis of saturated hydrocarbons: IV. Kinetics of the hydrogenolysis of ethane, propane, butane, and isobutane over nickel. Journal of Catalysis, 1984, 88(1): 8–17

[26]

Nakaji Y , Nakagawa Y , Tamura M , Tomishige K . Regioselective hydrogenolysis of alga-derived squalane over silica-supported ruthenium-vanadium catalyst. Fuel Processing Technology, 2018, 176: 249–257

[27]

Jia C , Xie S , Zhang W , Intan N N , Sampath J , Pfaendtner J , Lin H . Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst. Chem Catalysis, 2021, 1(2): 437–455

[28]

Vance B C , Kots P A , Wang C , Granite J E , Vlachos D G . Ni/SiO2 catalysts for polyolefin deconstruction via the divergent hydrogenolysis mechanism. Applied Catalysis B: Environmental, 2023, 322: 122138

[29]

Jackson S D , Kelly G J , Webb G . Supported nickel catalysts: hydrogenolysis of ethane, propane, n-butane and iso-butane over alumina-, molybdena-, and silica-supported nickel catalysts. Physical Chemistry Chemical Physics, 1999, 1(10): 2581–2587

[30]

Geng Y , Li H . Hydrogen spillover-enhanced heterogeneously catalyzed hydrodeoxygenation for biomass upgrading. ChemSusChem, 2022, 15(8): e202102495

[31]

Wang H , Ruan H , Feng M , Qin Y , Job H , Luo L , Wang C , Engelhard M H , Kuhn E , Chen X . . One-pot process for hydrodeoxygenation of lignin to alkanes using Ru-based bimetallic and bifunctional catalysts supported on zeolite Y. ChemSusChem, 2017, 10(8): 1846–1856

[32]

Shun K , Mori K , Masuda S , Hashimoto N , Hinuma Y , Kobayashi H , Yamashita H . Revealing hydrogen spillover pathways in reducible metal oxides. Chemical Science, 2022, 13(27): 8137–8147

[33]

Prins R . Hydrogen spillover. Facts and fiction. Chemical Reviews, 2012, 112(5): 2714–2738

[34]

Karim W , Spreafico C , Kleibert A , Gobrecht J , VandeVondele J , Ekinci Y , van Bokhoven J A . Catalyst support effects on hydrogen spillover. Nature, 2017, 541(7635): 68–71

[35]

Xiong M , Gao Z , Qin Y . Spillover in heterogeneous catalysis: new insights and opportunities. ACS Catalysis, 2021, 11(5): 3159–3172

[36]

Yang S , Kim H , Kim D H . Improving the efficiency of Ru metal supported on SiO2 in liquid-phase hydrogenation of gluconic acid by adding activated carbon. Chemical Engineering Journal, 2022, 450: 138149

[37]

Kim H , Yang S , Lim Y H , Lee J , Ha J M , Kim D H . Enhancement in the metal efficiency of Ru/TiO2 catalyst for guaiacol hydrogenation via hydrogen spillover in the liquid phase. Journal of Catalysis, 2022, 410: 93–102

[38]

CoqBFiguerasF. Structure-activity relationships in catalysis by metals: some aspects of particle size, bimetallic and supports effects. Coordination Chemistry Reviews, 1998, 178–180: 1753–1783

[39]

Li C , Yang M , Liu Z , Zhang Z , Zhu T , Chen X , Dong Y , Cheng H . Ru-Ni/Al2O3 bimetallic catalysts with high catalytic activity for N-propylcarbazole hydrogenation. Catalysis Science & Technology, 2020, 10(7): 2268–2276

[40]

Kang Q , Chu M , Xu P , Wang X , Wang S , Cao M , Ivasenko O , Sham T K , Zhang Q , Sun Q . . Entropy confinement promotes hydrogenolysis activity for polyethylene upcycling. Angewandte Chemie International Edition, 2023, 62(47): e202313174

[41]

Wang C , Yu K , Sheludko B , Xie T , Kots P A , Vance B C , Kumar P , Stach E A , Zheng W , Vlachos D G . A general strategy and a consolidated mechanism for low-methane hydrogenolysis of polyethylene over ruthenium. Applied Catalysis B: Environmental, 2022, 319: 121899

[42]

Sun J A , Kots P A , Hinton Z R , Marinkovic N S , Ma L , Ehrlich S N , Zheng W , Epps T H I III , Korley L T J , Vlachos D G . Size and structure effects of carbon-supported ruthenium nanoparticles on waste polypropylene hydrogenolysis activity, selectivity, and product microstructure. ACS Catalysis, 2024, 14(5): 3228–3240

[43]

Ji H , Wang X , Wei X , Peng Y , Zhang S , Song S , Zhang H . Boosting polyethylene hydrogenolysis performance of Ru-CeO2 catalysts by finely regulating the Ru sizes. Small, 2023, 19(35): 2300903

[44]

Kots P A , Xie T , Vance B C , Quinn C M , de Mello M D , Boscoboinik J A , Wang C , Kumar P , Stach E A , Marinkovic N S . . Electronic modulation of metal-support interactions improves polypropylene hydrogenolysis over ruthenium catalysts. Nature Communications, 2022, 13(1): 5186

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1627KB)

Supplementary files

FCE-24015-OF-ZX_suppl_1

2256

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/